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THE FACTORIZATION OF CERTAIN QUADRINOMIALS

W. H. MILLS

In this paper we study the factorizations of those quadrinomials over the
field of rationals that are of the form x" + &, x™ + ¢,x” + ¢5, where ¢,,&,,&3
are +1. We can always write such a polynomial as 4(x)B(x) where every
root of A(x) is a root of unity, and no root of B(x) is a root of unity. Of
course either 4(x) or B(x) may be a constant. The polynomial 4(x)is easily
found and factored, while B(x) is usually, but not always, irreducible.

Selmer [2], Ljunggren [1], and Tverberg [3] have solved the
corresponding problem for trinomials. Ljunggren applied his method to
quadrinomials, but overlooked a number of cases, so that there are
counter-examples to his theorem. In the present paper we: apply
Ljunggren’s methods to factor B(x) when possible.

1. Preliminaries.
Wilhelm Ljunggren [1] considered the factorization over the field of
rationals of quadrinomials of the form

@ F(x) = x"+ &, X"+ &,x" + &3,

where n > m > p > 0 and ¢,,¢,,&; are all +1. He asserted that F(x) is the
product of two factors, of which one has only roots of unity as zeros and
the other is irreducible. The factorization

x4 xt+x2—1=(x2+1D3+x2=1)(x>—x2+1)

is a counter-example to his theorem. However his methods are sound and
we apply them.

If E(x) = e,x"+...+e,x*+¢e,;x + ¢, is:a polynomial with e, # 0 and
eo # 0, then we let E*(x) denote the polynomial

E*(x) = x"E(x™') = eox"+ e, x" 1 +e,x" 2+ ... +e,.

The roots of E*(x) are the reciprocals of the roots of E(x).
If F(x)is any polynomial that factors, say F(x) = C(x)D(x), then we can
write G(x) = C(x)D*(x) and we have
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(2) G(x)G*(x) = F(x)F*(x).

Ljunggren’s method is to determine all polynomials G(x) that satisfy (2).
" From this a complete factorization of F(x) can usually be obtained.

LemMMA 1. (Ljunggren) If F(x) is of the form (1) and if G(x) is a polynomial
with integer coefficients such that (2) holds, then G(x) has exactly four non-
zero coefficients and these coefficients are all +1.

Proor. Clearly G(x) has degree n, so that
G(x) = .Zogix‘.

The coefficient of x" in F(x)F*(x) is
1+e2+e5+e3=4,

while the coefficient of x" in G(x)G*(x) is

2.8t
i=0

Since G(x) cannot be a monomial, it follows that G(x) has exactly four non-
zero coefficients, and these coefficients are all +1.

2. Solution of G(x)}G*(x) = F(x)F*(x).

We start with a polynomial F(x) of the form (1). The factorization of
F(x) and F*(x) are equivalent problems. Replacing F(x) by ¢3F*(x) if
necessary, we can cuppose that n = m+p, and that if n = m+ p then
&1 = &85, B

Now let G(x) be a polynomial with integer coefficients such that (2)
holds. By Lemma 1, G(x) has exactly four non-zero coefficients and these
are all +1. If we multiply G(x) by —1 then (2) still holds, so that we can
suppose that the leading coefficient of G(x) is 1. Then we have

3) G(x) = X"+ 8,X° + 8,%' + s,

where n > s >t > 0 and §,,9,,0; are +1.

Replacing G(x) by d;G*(x) leaves G(x)G*(x) unchanged. Making this
replacement if necessary, we can assume thatn = s +t,and thatifn = s +¢
then 6, = §,6;.

THEOREM 1. Suppose that F(x)is of the form (1) and that G(x) is of the form
(3). Suppose that n = m + p, and that if n = m + p then &, = &,¢5. Suppose
that n>s+t, and that if n=s+t then 6, = 6,05. If F(x)F*(x)
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= G(x)G*(x), then either (1) F(x) = G(x), or (ii) n is divisible by 8 and one of
F(x), G(x) is

x8r+ Z7r+ x'—1= (x2r+ 1)(x3r+ x2r__ 1)(x3r_ x"+ 1),
and the other is
x8r+ x4r + x2r —1= (x2r + 1)(x3r + x2r _ 1)(x3r _ x2r + 1),

where n = 8r.

Proor. We have
F(X)F*(x) = e3x2" 4 g,X*" P 4 g, x2" "™+ g g5x" "™

+ £263X" TP+ g6, X" TP + f(x)
and
G(x)G*(x) = 83X "+ 8, X" 1 + 8, x2S+ 5, 03x"*¢
+ 0,05x" 48,5, x" 5T+ g(x),

where f(x) and g(x) are polynomials of degree n. We see at once that
03 = &3 and

£2X2" TP 4 g XM 4 g e X" T 4 gye3 X" PP g g, xR

4

We have 2n—p>2n—m, 2n—p=n+m, n+m>n+p, and n+m
> n + m — p. Therefore to determine the term of largest degree on the left
hand side of (4) we must look at the two terms g,x*"~? and ¢,£3x"* ™. Either
these two terms cancel or the degree of the left hand side of (4) is 2n — p.

Similarly either §,x2"* and §,5;x"** cancel, or the degree of the right
hand side of (4) is 2n —t.

CASE 1. £,x%" P4 g,63x" "™ = 0 and §,x%" "' + §,05x"** = 0. In this case
we must have n =m+p =s+t, e, 46,65 =0, and d,+ 8,05 = 0. These
last two equalities give us &; = —é&,¢; and §, = —J,6;. By assumption we
have ¢, = ¢,&5 and 0, = 0,03. Therefore ¢, =0, =1 and ¢,65 = 6,05 =
—1. Since &3 = 5 we also get &, = J,. The left hand side of (4) reduces to
€2X""™ P and the right hand side to §,x"**~*. It follows that m —p = s — t.
Since we already have m+p =s+t this gives us m=s, p=t, and
therefore F(x) = G(x).

Case 2. Exactly one of &,x?" ?+¢,e;x"*™ and 6,x*" ' +8,5;x"**
vanishes. Without loss of generality we suppose £,x2" 7+ g,e;x" "™ = 0
and §,x?" "'+ §,63x"** # 0. Here again n = m + p and ¢, + &,¢; = 0. This
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implies that ¢, +&,63 =0, &y =1, £,63 = —1, and the left hand side of (4)
becomes g,x" ™" P,

There are six terms left of (4) and these must cancel in pairs. The only way
this can happen is

szn+m—p= 52x2n—t’ 51x2n—s+5153xn+s= O, 5253xn+t+5152xn+s—t= O,

so that n+m—p=2n—t, 2n—s=n+s, and n+t=n+s—t. These
yield s = n/2, t = 5/2 = n/4, and m — p = 3n/4. Since n = m + p, we get m
= 7n/8 and p = n/8. We also have 6, =¢,, 05=—1,and 6, + 65 =0, so
thatd, =1, e3=9;= —1,and 6, = ¢, = 1. Here nis divisible by 8. Setting
n = 8r we get

F(x) — x8r+ x7r+ x'—1= (x2r+ 1)(x3r+ x2r_ 1)(x3r_xr+ 1)
and
G(X) — x8r + x4 + x2r -1 = (er + 1)(x3r + x2r — 1)(x3r _ x2r + 1)

CASE 3. £,x2" P4 g1e5x" "™ % 0 and 5,x*" '+ 5,65x"** # 0. Since the
terms of maximal degree on the two sides of (4) must be equal we have

82x2n—p — 52x2n—t,

sothate, = §, and p = t. We also have g5 = §5. Here g,65x" 7 = §,6;x"*!
and (4) becomes

(5)

81x2" '"+3133x”+'”+£182x"+"‘ p=51x2n s+5153xn s+5152xn st

If either

(6) gy X2 = §, x2S

or

(7) £163X" T = §,65x"*S
or

() £16, X" MR = §, 5, x" T,

then we must have m = s and ¢; = J, so that F(x) = G(x). Thus we can
suppose that (6), (7), and (8) do not hold. Moreover if no pair of terms on
the left hand side of (5) cancels, then the three terms on the left hand side are
equal to the three terms on the right hand side in some order, so that

2n—m+n+m+n+m—p=2n—s+n+s+n+s—t
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SN
and
£1€183818) = 6151535152.

These equalities imply that m — p = s — t and ¢,¢€,65 = 8,0,03, and again
we have m = s, ¢, = d;, and F(x) = G(x). Therefore we can suppose that
two terms on the left side of (5) cancel. This implies that two terms on the
right side of (5) cancel. The last two terms on a side of (5) cannot cancel
because they have different degrees. Since none of (6), (7), and (8) can hold
we canisuppose, without loss of generality, that the first and third terms on
the left hand side of (5) cancel, and that the first and second terms on the
right hand side of (5) cancel. Hence we have

9) g X2 g g x" TP = ()
and
(10) 51x2"_s+5153x"+s= 0.

Here (5) becomes

(11) 8183x"+"' = 5152)6"”_'.

Now (9) yields 2n —m = n+m — p or n = 2m — p, while (10) yields n = 2s.
These two imply that s < m. On the other hand (11) gives us n+m
= n+$—t, which implies that m < s. This is a contradiction. Thus in

Case 3 we always have F(x) = G(x), which completes the proof of the
theorem.

3. The factorization.
We need the following result in order to prove our main result.

LemMa 2. (Ljunggren) If F(x) is of the form (1), and if both A and A~ * are
roots of F(x), then A is a root of unity. Indeed we must have one of the
following three possibilities:

(@) A"=—&; and A"P= —g¢,,
(b) A" = —¢g185 and A" P = —g,,
(c) AP=—¢gye5 and A" M= —g,.
Proor. Since 4 is a root of F(x) we have
/1"+£,A"'1+ g2 +e3 =0.
Since ™1 is a root of F(x) we have

A" + 82831”_p + 8163/1"—"' + &3 = 0.
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It follows that

e A+ ExAP = 585" TP+ g,834" T,
which can be written in the form

(61 A™ + e,AP)(1 — g, 8,834" ™7 P) = 0.

It follows that either 1? = —¢g,6,4™ or A* = g;6,63A" ™. In the first case
substitution in F (1) = 0 gives us 4" = — &3, so that (a) holds. In the second
case substitution in F (1) = 0 gives us

(im + 8183)()."_"l + 81) = 0.
Here we see that either (b) or (c) must hold, which completes the proof.

Now let F(x) be a quadrinomial of the form (1) that we wish to factor.
Since it is sufficient to factor F*(x), we can suppose that n = m + p, and
that if n =m + p then &; = ¢,¢;. We can write F(x) = A(x)B(x), where
every root of A(x) is a root of unity, and no root of B(x) is a root of unity.
Of course either A(x) or B(x) may be a constant. Then 4*(x) = + A(x) and
by Lemma 2 no root of B(x) is a root of B*(x). It follows that A(x) is the
greatest common divisor of F(x) and F*(x).

Suppose that B(x)is reducible, say B(x) = B;(x)B,(x), where both B, (x)
and B,(x) have positive degree. Then

F(x) = A(x)B;(x)B,(x),

and we set
G(x) = A(x)B,(x)B%(x).

We have F(x)F*(x) = G(x)G*(x).

If G(x) = + F(x), then B%(x) = + B,(x) which is impossible. Therefore
we have G(x) # + F(x).

If G(x) = + F*(x), then

A(x)By(x) = + A*(x)Bf(x) and B} (x) = £+ B,(x),
which is also impossible. Therefore G(x) # + F*(x).
We now apply Lemma 1 and Theorem 1 to conclude that nis divisible by
8, and that F(x) is one of the two polynomials
x8r + x7r 4+x'—1= (x2r + 1)(x3r + x2r_ 1)(x3r —x"+ 1)
and

X8 x4 x¥ =1 = (P + 1)+ X - 1)(x¥ —x* +1),
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where n = 8r. In this case the other of these two polynomials must be either
+ G(x) or +G*(x). Therefore A(x) = x*" + 1 and the factors of B(x) can be
immediately deduced. Thus we have the following result.

THEOREM 2. Suppose that F(x) is a polynomial over the rationals of the
form

F(x) = x"+¢&,x" + &,x" + &5,

where n > m > p > 0 and &,,8,,65 are all +1. Let F(x) = A(x)B(x) where
every root of A(x) and no root of B(x) is a root of unity. Then A(x) is the
greatest common divisor of F(x) and F*(x). The second factor B(x) is
irreducible except when F(x) is of one of the following four forms:

XX+ x =1 = (X1 +xF 1) —x"+1),
X —xT"—x" =1 = (x¥+1)x¥—xT+1)(x>—x"—1),
X x4 x¥ =1 = (x* +1)(x* + x¥ - 1)(x* —x* +1),
X8 —xO —x* —1 = (x¥ + 1) (x> — x" = 1)(x> — x"+1).

In these cases the factors of degree 3r are irreducible.

In any particular case the factorization of A(x) present no difficulty,
since each of its roots must satisfy (a), (b), or (c) of Lemma 2.

As an immediate consequence of Theorem 2 we have the following
corrected version of Ljunggren’s Lemma 2.

CoRrOLLARY. If F(x) = @(x)y(x), where ¢(x) and Y(x) are monic
polynomials with integral coefficients, then either (i) at least one of the two
Jactors is a reciprocal polynomial, or (ii) F (x) is of one of the four special forms
of Theorem 2.
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