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THE ALGEBRAIC THEORY
OF FINITENESS OBSTRUCTION

ANDREW RANICKI

Introduction.

The finiteness obstruction [X]e Ko(Z[n,(X)]) of Wall [13], [14] is an
algebraic K-theory invariant of a finitely dominated CW complex X such
that [X] = 0 if and only if X is homotopy equivalent to a finite CW
complex. We develop here an algebraic theory of finiteness obstruction for
chain complexes in an additive category. The theory helps to clarify the
passage X — [ X ] from topology to algebra. Such a clarification may be of
interest in its own right, but in any case the new theory is necessary for some
recent generalizations of the original obstruction theory to more
complicated topological finiteness problems.

Let A be a ring. An endomorphism p:F — F of a A-module F is a
projection if it is idempotent

p?=p:F-F,
so that 1—p:F—>F is also a prOJectlon and F has a direct sum
decomposition
— im (p) @ im (1 p).

A A-module P is projective if it is isomorphic to im (p) for a projection p: F
- F of a free A-module F, or equivalently if P is a direct summand of a free
A-module F. A projective A-module P is f.g. (= finitely generated) if and
only if F can be chosen to be a f. g. free A-module. The projective class group
of A, Ko(A) is the abelian group with one generator [P] for each
isomorphism class of f.g. projective A-modules P, and relations

[P]+[Q] = [P ® Q]e Ko(A).

The reduced projective class group of A, Ko(A) is the quotient of Ky(A)
defined by

Ro(A) = Ko(A)/{[F]|F f.g. free}.
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At.g. projective A-module P is such that [P] = 0e K(A)if and only if it is
stably f. g. free, that is if there exist . g. free A-modules F,G such that P @ F
is isomorphic to G. More generally, given a bounded positive chain
complex of f.g. projective A-modules

p:....»0-P,-»P, —>--->P >P,

there is defined an invariant in the reduced projective class group
[P]= ¥ (-)[P]eRo(A)

such that [ P] = 0if and only if P is chain equivalent to a bounded positive
chain complex of f.g. free A-modules

F:"'—)O—*FN“‘)FN_l")"'—*Fl—*Fo.

This invariant was originally defined by Swan [12], in a precursor of the
general theory of Wall [13], [14]. A chain complex C is finite if it is a
bounded positive complex of f.g. free modules; thus [P]e Ky(A) is the
finiteness obstruction of P. A finite domination (D, f,g,h) of a A-module chain
complex C is a finite A-module chain complex D together with chain maps

fiC->D, g:D->C
and a chain homotopy
h:gf~1:C-C,

so that C is a chain homotopy theoretic direct summand of D, just as a f.g.
projective module is a direct summand of a f.g. free module. Our main
algebraic result (Proposition 3.2) asserts that a A-module chain complex C
is chain equivalent to a bounded positive f. g. projective A-module chain
complex P if and only if it admits a finite domination (D, f,g,h), in which
case there is defined a projection p of a f.g. free A-module F

«

b/ 4 -d 0
» —fhg 1-—fg d

-fh’g  fhg fg

F=DO(‘BDl@DZ@'-"—’I":DO®DI®D2@"'

such that the f.g. projective A-module im(p) represents the finiteness
obstruction of C
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[C] = [P] = [im(p)]e K, (A).
The f.g. projective A-module im (p) is the instant finiteness obstruction of C
determined by (D, f,g,h).

Let X be a connected CW complex. A finite domination (Y,f,g,h) of X is a
finite CW complex Ytogether with maps

[ X-Y g:Y-X
and a homotopy
higf~1:X->X,

so that X is a homotopy-theoretic direct summand of Y. Let X be the
universal cover of X, and let Y= g* X be the cover of Yobtained from X by
pullback along g: Y— X. Define a ring

A =Z[n (X)].

The cellular A-module chain complexes C(X), C(¥) are such that C(¥) is
finite and dominates C(X) by

Cc@.f:cX)y-c@),g:c(¥)-» cX),h:g7~1:CX)).

The finiteness obstruction of X given by the theory of Wall [13], [14] is the
finiteness obstruction of C(X)

[X] = [C(X)] € Ko(A).

The above formula gives an instant finiteness obstruction

im<p:F = i c(¥),-F= EZO C(Y)i)

which may be read off from the geometry. Thus X is homotopy equivalent
to a finite CW complex if and only if im(p) is a stably f.g. frse A-module;
the finiteness obstruction of X is given by [X] = [im(p)] € Ko(A).

Given a finite CW complex Y let y..,(Y) (respectively x.qa(Y)) be
the total number of even- (respectively odd-) dimensional cells in Y.
The finiteness obstruction is a generalization of the Euler number
X(Y) = Xeyen(Y) = Xoaa(Y) € Z of a finite CW complex Y. The rank of the f. g.
free A-module F appearing above is Yeyen(Y) + Xoaa(Y) = the total number
of cells in the dominating finite CW complex Y.

The instant finiteness obstruction is an analogue of the instant torsion
MeGLy(A) used by Whitehead [16] to define the torsion



108 ANDREW RANICKI

7(f)e Wh(n (X)) of a homotopy equivalence f:X — Y of finite CW
complexes. Here, A = Z[n,(X)] (as before),

N = Xeven (X) + XOdd(Y) = Xodd(X) + Xeven(Y)5

and M is the matrix of the isomorphism of f.g. free A-modules of rank N
determined by any chain contraction I':0 ~1:C — C of the algebraic
mapping cone C = C(f: C(X)— C(Y))

d 0 0
r a4 o
M =

0 I d

Codd = Cl@ CS(‘B CS@-'-;)Ceven = CO@ CZ@ C4@
with respect to the geometrically determined bases. The torsion
©(f)e Wh(n, (X)) = GL(A)/(E(A) + { £, (X)})

is represented by the matrix M € GLy(A) = GL(A), which may be read off
from the geometry. See Ranicki [11] for the development of the algebraic
theory of torsion parallel to the treatment here of the finiteness obstruction.

The algebraic theory of finiteness obstruction developed here is an
analogue of the algebraic theory of surgery developed in Ranicki [9], [10].
The instant finiteness obstruction is the counterpart of the instant surgery
obstruction of [10], which associates to a normal map (f,b): M — X of n-
dimensional geometric Poincaré complexes an n-dimensional algebraic
Poincaré  complex representing the  surgery  obstruction
o, (f,b)e L,(Z[n,(X)]) of Wall [15], without preliminary surgery below
the middle dimension. Although this will not be done here itiis possible to
fuse together the two theories, so as to apply to the projective L-groups
L2 (2[n]) of Ranicki [8] and the projective surgery obstruction of Pedersen
and Ranicki [5].

In fact, the algebraic theory of finiteness obstruction arose from the
extension to the projective L-groups of the algebraic S'-bundle transfer
map for the projective class groups K, obtained by Munkholm and
Ranicki [3]. The latter was itself an extension of the works of Munkholm,
Pedersen and myself on algebraic S'-bundle transfer maps for the
Whitehead group Wh and the L-groups L%, LS, defined by free modules.

In the first version of this paper only chain complexes of modules were
considered. The instant finiteness obstruction in this case was used by
Pedersen [4] to define lower K-theory invariants of chain complexes of Z'-
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graded modules. A study of this application and of the work of Pedersen
and Weibel [6] on the lower K-theory of additive categories and their
idempotent completions convinced me that the proper level of generality
for the theory should be that of chain complexes in any additive category,
not just an abelian category.

There are many connections between the theory here, the algebraic K-
and L-theory of polynomial extensions, and non-compact manifolds. I
hope to deal with these in further work.

I should like to thank the Institute for Advanced Study, Princeton and
the National Science Foundation for their support in the academic year
1981/82, when this work was started. I should also like to thank Hans
Jorgen Munkholm and Erik Kjar Pedersen for a most enjoyable visit to
Odense in June, 1983. Thanks are also due to Doug Anderson for pointing
out that the negative chain complexes appearing in the original version of
the paper could be replaced by chain equivalent positive complexes,
allowing the algebra a greater degree of geometric verisimilitude.

1. Finite chain complexes.

The standard notions of chain homotopy theory are developed for chain
complexes in an additive category .o/, in particular the connection between
finite chain complexes and the isomorphism class group Ko (%/).

ExampLe. Given a ring A let o be the additive category of f.g. free A-
modules.

Let then .o be an additive category, with direct sum .
A chain complex C in &/ is a sequence of objects and morphisms

C:_,,—-)Cr+1—d->C,—d—>C,_1 ... Cy
such that d? = 0.
A chain map of chain complexes in &/
f:C-D

is a collection of morphisms {f:C,— D,|r 20} such that dpf=fdc,
defining a commutative diagram

d d
C:..."')C,.;.l < )C,. C"’C,._l"')...

ERK

D:...»D,,,-25D,5D, ...
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A chain homotopy of chain maps in o/
ef~f:C->D
is a collection of morphisms {e:C,— D, ,|r = 0} such that
f'—f=dpe+ed.:C,- D,.

A chain equivalence is a chain map f:C — D which admits a chain
homotopy inverse, that is a chain map g: D — C and chain homotopies

h:gf ~1:C->C, k:fg~1:D—-D.

A chain complex C is chain contractible if it is chain equivalent to 0, that
is if there exists a chain contraction

Ir'o~1:C-~C.

The algebraic mapping cone C(f) of a chain map f:C — D is the chain
complex defined by

d _y-1
dey = ( OD ( c)ir 9 C(fh=D,®C, 1= C(f)-1=D,-1®C,_>.
c
ProrosiTION 1.1. A chainmap f: C — D is a chain equivalence if and only if

the algebraic mapping cone C(f') is chain contractible.

Proor. Given a chain contractionI': 0 ~ 1: C(f) —» C(f)let g,h,k be the
morphisms defined by

k ?
F=<(_)rg h)'c(f)'=D'@C'"’1-'C(f)r+l=Dr+1@C,.

Then g:D — C is a chain homotopy inverse for f:C — D, with chain
homotopies

h:gf~1:C—>C, k:fg~1:D—-D.

Conversely, suppose that f:C — D is a chain equivalence, with chain
homotopy inverse g: D — C and chain homotopies

h:gf~1:C->C, k:fg~1:D—->D.
Define morphisms B: C(f),— C(f)r+1, 2:C(f),— C(f), (r 2 0) by

ﬂ=( k 0):C(f)r=Dr®Cr—1—’C(f)r+1=Dr+1®cn
(=Yg h
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0 1
Cf)r=D,dC-1~>C(f)=D,®C,_;.
Then a: C(f) - C(f) is an automorphism of C(f'), and the morphisms
L=a"1B:C(f)— C(f)r+1
define a chain contraction

Ir:0~1:C(f)- C(f).

1 (=Y(fh-k
a=dc(,)/3+ﬂdc(f,=< (=r(s f)>:

The isomorphism class group of £, K (<), is the abelian group with one
generator [ 4] for each isomorphism class of objects A in <, with relations

[4]+[B] = [4 ® B]e Ko(=).

This is just the Grothendieck group of &, as defined by Bass [1, p. 346]. A
typical element of K(o/) is a formal difference [A] — [B], with

[4]-[B] = [4]~[B]
if and only if there exists an isomorphism in &/
A®BO®CHA@®BBC
for some object C in .

ExampLE. The projective class group Ky(A) of a ring A is the
isomorphism class group K,(#) of the additive category # of f.g.
projective (left) A-modules

Ko(A) = Ko(2).

A chain complex C in .« is finite if there exists an integer n = 0 such that
C;=0fori>n.
Define the class of a finite chain complex C in &/ by

o0

[C1= ¥ (-)[CleKol),

where the sum is only formally infinite.

ExampLE. If A is a ring such that f. g. free A-modules have a well-defined
rank, such as a group ring Z[n], and &/ is the additive category of f.g. free
A-modules then rank defines an isomorphism of abelian groups
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Ko(#)——Z;[F] —[G] - rank (F) — rank (G).

The class of a finite chain complex C of f.g. free A-modules is just the Euler
number of C

[

[C]= .-Zo (=) rank(C;) = 2(C)e Ko(f) = Z.

If A =Z and C = C(X) is the cellular Z-module chain complex of a finite
CW complex X, then y(C) = x(X)€eZ is the Euler number of X.

ProvositioN 1.2. The class of a finite chain complex is a chain homotopy
invariant, with

[C] = [DP]eKo()
for chain equivalent finite complexes C, D in <.

Proor. In the first instance, we show that [C] =0eKy(«) for a
contractible finite chain complex C in /.

Given a chain contraction I': 0 ~ 1: C — C define morphisms f,g in &/
by

(S

Caa=CiDCDCsD... 2 Coren=Co @ C,@C. D,
[T d 0 7]
0 I' d
&= 0T

Coven=CoDC,DC,D... 2 Coyy=C1DC;DCsD...

(cf. the instant Whitehead torsion quoted in the introduction). Both the
composites ,

1 0 0

rz 1 o

=149 2 1
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Ceven=C0®C2®C4®""—'Ceven=CO@CZ@C4('D---9

1 0 0
, rzr 1 o0
gf=

0 I'* 1

Cotda=CiDC3DCsD... 2 Cogq=C,DC;PC5D...

are automorphisms. It follows that there is defined a two-sided inverse
f_ ! : Ceven - Codd fOI' f: Codd - Ceven,

1= (gf)_lg = g(fg)—l : Ceven - Codd'
Thus f is an isomorphism, and

[C] = [Ceven] - [Codd] = OEKO(M)
The algebraic mapping cone C(f') of any chain map f: C — D of finite chain
complexes C,D in o/ has class

[C(N)] = [P] - [CleKo().
If fis a chain equivalence then C(f') is chain contractible (by Proposition
1.1), so that by the above
[P] — [C] = [C(f)] = 0e Ko().

A chain complex C in &/ is homotopy finite if it is chain equivalent to a
finite chain complex D. The class of a homotopy finite chain complex C is
defined by

[C] = [DP]eKo()

for any chain equivalent finite complex D. Proposition 1.2 shows that this
definition is independent of the choice of D.

2. The idempotent completion.

The idempotent completion 2 of the additive category &/ is used to
define a class of infinite chain complexes C in & with an invariant
[C] e Ko(2) such that C is chain equivalent to a finite chain complex in & if
and only if [C]eim (Ko(«/) - Ko(2))

A morphism p: 4 — A of an object 4 in & to itself is’a projection if it is
idempotent, that is

pP=p:A-A,

in which case 1 — p: A — 4 is also a projection.



114 ANDREW RANICKI

The idempotent completion of <, &, is the additive category with one
object (4,p) for each projection p: A — A in &/, and morphisms

J:(4,p) - (B,q)
the morphisms f: 4 — B in &/ such that

qfp=/f:A-B.

The identity morphism of (4,p) in 2 is defined by
L.p =P:(4,p) = (4,p).
The embedding of additive categories
o P, A—(4,1)

is full and cofinal: the morphisms f:(4,1) - (B,1) in £ are precisely the
morphisms f: A — Bin o/, and for every object (4,p) in £ there are defined
isomorphisms

(4.p)® (4.,1-p) ‘(—H_:TJ (4.1)

1-p

expressing (4,p) as a direct summand of (4,1).
The isomorphism class group K,(2) is the projective class group of <.
The cofinality of o/ < £ implies that the natural map

Ko(#) — Ko(P); [A] - [4.1]

is an injection, so that K (/) can be regarded as a subgroup of Ky(#). The
reduced projective class group of & is the quotient group

Ko@) = Ko(@)/Ko():
Aitypical element of K,(2) s of the form [4,p]~ for some (4,p) in 2, with
[4.p]" = [B.4]™ eKo(?)
if and only if there exists an isomorphism
(4,p)® (F,1)——(B,q) ® (G,1)

in 2 for some objects F,G in <.
Note that the isomorphism (4,p) @ (4,1 — p)—— (4,1) (used above to
prove that of o 2 is cofinal) implies that for any (4,p) in 2

~ [A.0]" = [41-p]"€Ro@).
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ExampLE. The idempotent completion 2 of the additive category of f.g.
free A-modules (for some ring A) is equivalent to the additive category of
f.g. projective A-modules. The equivalence

2P~ {f.g. projective A-modules}; (4,p) - im(p: 4 — A)

induces isomorphisms of abelian groups
Ko(?)— Ko(A);[4,p] - [im (p)]
Ko(2)— Ko(A);[4,p]™ - [im (p)]

with Ko(A) (respectively K (A)) the usual (respectively reduced) projective

class group of A.

We shall use the terminology (C,p) for a chain complex in 2
(C.p)ie. > (Cig15Di+ 1)"1” (Ci,Pi)L’ (Ci-1;pi-1) ...~ (Co,P0)-

The class of a homotopy finite chain complex (C,p) in 2 is denoted by
[C.p] € K((2). The reduced class of (C,p)

[C,p] Te KO('O]))
is the image of [C,p] under the canonical projection Ko(2)— K ().

ProposiTION 2.1. A homotopy finite chain complex (C,p) in P is
chain equivalent to (D}1) for a finite chain complex D in &/ if and only if
[C.p]™ = 0eKo(2P).

Proor. By the chain homotopy invariance of [C,p]~ € Ko(2) (given by
Proposition 1.2) there is no loss of generality in assuming that (C,p) is a
finite chain complex in 2.

If (C,p)is chain equivalent to (D, 1) for a finite chain complex D in .o then

[C.p]™ = [D,1]™ = 0e Ko(2).

For the converse it is convenient to have the following notion: given an
object (4,p) in 2 and an integer i = 0 define the elementary chain complex
n .2

(A,p)[i,i +1]:...> 0> (4,p) B> (4,p) > 0.

with the non-zero entries in degrees i,i + 1, which is clearly finite and chain
contractible.

Lemma. Every finite chain complex (C,p) in 2 is chain equivalent to a finite
chain complex (D,q) such that q;=1:D;— D; for i 21, and
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(€] = [Pogi]+ 3 (~)[Dil]eKo(@),
[C.p]™ = [Do,40]™ € Ko(2).

Proor. Assume inductively on j that (C,p)is such that p; = 1: C;— C; for
i>j, with j 21. Now (C,p) is chain equivalent to (C,p)® (C;,1—p;)
[i —1,j], and replacing (C;,p;) ® (C;,1 — p;) with the isomorphic object
(C ;»1)in 2 there is obtained a chain equivalent finite complex (C',p’) with
pi=1:Ci—>Ciforizj.

Let now (C,p) be a finite chain complex in 2 such that [C.p]”
= 0e K,(#). By the lemma (C,p) is chain equivalent to a finite complex
(also denoted (C,p)) with p; =1:C; - C;fori =21, and

[C.p]” = [Co,p0]~ = 0e K((2).
Thus there exist objects 4,B in &/ and an isomorphism in &

f: (A’l)—:'—’(B’l) @ (CO’p0)~

Now (C,p)is chain equivalent to (B,1)[0,1] & (C,p), and using f to replace
(B,1) ® (Cy,po) by (A4,1) there is obtained a chain equivalent finite complex
(D,1).

A chain complex C in & is homotopy P-finite if (C,1) is homotopy finite
in &, that is if (C,1) is chain equivalent to a finite complex (D,p) in £. To
avoid confusion we shall call homotopy finite camplexes in & (as defined at
the end of Section 1) homotopy o/ -finite.

The P-class of a homotopy 2-finite chain complex C in & is defined by

[C] = [C.1eKo@),
so that for any finite complex (D,p) in £ chain equivalent to (C,1)
[C]=[D.p]
= ‘;0 (=Y[Di,pi]€ Ko(P).
The reduced P-class of a homotopy #-finite complex C in .o/ is the image of
[C]e Ko(2) under the canonical projection Ko(2)—» Ko(2),
[C]=[C.1]"eKo(@).

PROPOSITION 2.2. (i) A homotopy P-finite chain complex C in & is
homotopy sf-finite if and only if [C] = 0e Ko(2).
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Thus the reduced P-class [C e Ro(P) is the (o£-) finiteness obstruc-
tion of C.

(ii) Every element of K (%) is the finiteness obstruction [C] of a homotopy
P-finite complex C in .

ProoOF. (i) If Cis homotopy «7-finite there exists a finite chain complex D
in .« chain equivalent to C, and

[C] = [D,1]eim(Ko() = Ko(?P)) E Ko(2P),
so that [C] = 0e K((2).
Conversely, if C is homotopy #Z-finite and [C] = 0e Ky(#) then by
Proposition 2.1, (C,1) is chain equivalent to (D,1) for some finite chain
complex D in /. The embedding &/ &2 is full, so that C is chain

equivalent to D in &/, and C is homotopy «/-finite.
(i) Given an object (4,p) in 2 define a chain complex C in &/ by

dz{l—p:C2i+l =A-C; =4 (i>0).
p: Crivs=A-Cyysy=4
Define a finite chain complex (D,q) in £ by
qo=p:Dog=A—->Dy=A, D;=0 (i#0).
The chain maps in # °
f:(C.1) > (D,q), g:(D,q)— (C,1)

defined by

f=p:Co=A-Dy=A4

g=p:Dyg=A-Co=4

are inverse chain equivalences, since
fg=4q:(D,q)— (D.q)
and there is defined a chain homotopy
h:gf~1:(C]1)—(C)]1),
with
h=1:C;=A->Ci,;=A4 ({20).
Thus C is homotopy #2-finite, with 2-class
[C] = [D.q] = [4.p]eKo(P).
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3. Finitely dominated chain complexes.
A domination (D, f,g,h) of a chain complex Cin .« is a chain complex D in
& together with chain maps

fiC->D,D->C
and a chain homotopy
h:gf~1:.C->C.

The domination is finite if D is finite.

We wish to make precise the sense in which a chain complex C with finite
domination (D,f,g,h) is ““the image of the projection fg: D — D”’. The main
difficulty is that fg is only a projection up to the chain homotopy

fhg:(fg)* ~fg:D-D,

so that it does not directly define a chain complex “(D,fg)” in the
idempotent completion 2. This difficulty is overcome in the proof of
Proposition 3.1 below by manufacturing from (D,f,g,h) a finite chain
complex (E,q) in £ chain equivalent to (C,1).

ProrosiTiON 3.1. A chain complex C in o/ admits a finite domination
(D.f.g,h) if and only if C is homotopy P-finite. Any such finite domination
determines an object of P

fg -d 0
(F=§D. | -fhe 1-fg d

&P T \ornig fhg s

F=D0®D1®D2®...-"F=D0®D1®D2®...),

the instant finiteness obstruction of C determined by (D,f,g,h), such
that ‘

[C] = [F.p] = [Dosss1]€ Ko(P),
[C] = [F.p]~ e Ko().

Proor. If C is homotopy P-finite, let (D,r) be a finite chain complex in 2
chain equivalent to (C,1), via inverse chain equivalences

f:(C,1)—> (D,r), g:(D,;r) > (C,1)
with chain homotopies ‘
h:-gf~1:(C,1)-> (C,1), k:fg ~r:(D,r)— (D,r).
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In particular, there is defined a finite domination (D,f,g,h) of C in /.
Conversely, suppose given a finite domination (D,f,g,h) of C in /.
Define an infinite chain complex C’ in o chain equivalent to C by

d=y
j=o0

with djj: D; — D, given by

i—1 i i-1
dip:Ci= Y, Dj>Ci_y= Y D, (i21)
0 i=o K=0

i
k=

0 if j2k+2
(=)**d ifj=k+1
=1 1-fg if j=k, j=i(mod?2)
fg if j=k, j=i+1(mod2)
(= )itk ifpk=ig if j<k—1

In matrix terms

fg -d 0
P 1-fg d

—~fh’g  fhg fg

5% =Do@® D, ® Dy ®...® Dy = Chy—y
=D0@D1@Dz@---@ Dzi—u

1—fg d 0
o | e -
fh*g  —fhg 1-fg
,2i+1=DO@D1@D2®-'-@D2i+1—)C’2i=DO@DI@DZ@"‘@DZI"
The chain maps in .o/
f.C->C,g:C-C
defined by

f'=| 1 |:¢,;»Ci=Dy@®D,®...0®D;—1 ® Dy,




120 ANDREW RANICKI

g=Mgh'g..hgg):Ci=Dy@®D,®...®D;,_,®D; - C;
are inverse chain equivalences, as there are defined chain homotopies
h:gf'=gf~1:C->C,
k:f'lg ~1:C'->C
with

.10
' 1
L 0 0_]
C:'—:DO@DI @...@Di_l@l)i—’c;_'.l:l)o@Dl @"'@Di®Di+l'

Let n = 0 be an integer such that D, = 0 for i > n. The instant finiteness
obstruction

o

is an object of 2 such that fori > n

if i =0 (mod2)
if i=1(mod2)’

Let E be the finite chain complex in o/ defined by the n-skeleton of C’

d’={” {Ci=F—C,_,=F
1-p

E:..»0-C"5C_>...oC- 5,
and let ¢ = g°: E — E be the projection of E defined by
4 =1:E;=C;—>E;=(; 0=i=n-1)

if n=0 (mod?2)

= p . = /=
I { Ey=Fo B =F e 1 (mod2)

1-p
Now (E,q) is a finite chain complex in £, and the chain maps in £
I:(C,1)-(E,q), J': (E,q)— (C,1)
defined by '
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= 1:Ci> E;=C; f0gLi<n-1
" 19n:C;=F—>E=F ifi=n

7= 1:E;=C;- C; f0gign-1
" 1guE;=F->C,=F ifi=n

are inverse chain equivalences, with
I'V'=q:(E,q) - (E,q),
K:JI'~1:(C)),
the chain homotopy K’ being defined by

K,={o:cg'—+cg+l if0<i<n-1
1:Ci=F—->Cj,=F ifizn
The composite chain maps in £
I =1f:(C1L () (Eg)
J=gJ":(E,q)-5(C1)-E5(C,1)
are thus also inverse chain equivalences, with chain homotopies
h+gK'f:JI ~1:(C,1)- (C,1),
I'k'J':1J ~ q:(E,q) — (E,q).

By the chain homotopy invariance of class (Proposition 1.2)

[€]=[C1]= [E) = 5 (~F[Enal

- (PRl + Y (- (Z [p,11)
- (-rIRal+ Y, (Z (_)f>[p,.,1]

= (=)'[F.4.] +(-)”"[ ) Dj’l]

n—jodd
_ [ [F,p] — [Doas,1] if nis even
" 1 =[F,1= p] + [Deven»1] if nis 0dd
= [F,p] — [Dosa1] € Ko(2),
where
Duea= Y Di,Dogg= Y. Di (s0 that F = Deyen® Doga)-
iodd

ieven
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It follows that the reduced class of C is represented by the object (F,p) of 2
[C] = [F.p]e Ko@),

so that the instant finiteness obstruction (F,p) does indeed represent the
finiteness obstruction of C.

For the application of the theory to topology it is necessary to
widen somewhat the context, from a single additive category &/ to a pair
(B, A = B).

Let then o/ &£ be a full embedding of additive categories. Let 2
(respectively 2) be the idempotent completion of o/ (respectively %), so
that there is defined a commutative square of additive categories and full
embeddings

S o B
I 2
P o 9

We shall now show that a chain complex C in £ is dominated by a finite
chain complex in .« if and only if (C,1) is chain equivalent in 2 to a finite
chain complex in £, in which case there are defined a class [C] e K((#) and
a reduced class [C']e K,,(.#). The main result is that such an «/-finitely
dominated C is homotopy «/-finite if and only if [C] = 0 e K(#), and
that there is defined an instant .o/-finiteness obstruction (F, p) in 2.

ExampLE. Given a ring A let
o = {f.g. free A-modules} & & = {A-modules}.

Then 2 is equivalent to {f.g. projective A-modules}, and # © 2 is an
equivalence with inverse

2--54%; (B,q)—im(q:B— B).

A chain complex C in & is homotopy of/-finite (respectively P-finite) if C
(respectively (C,1))is chain equivalent in 2 (respectively 2) to a finite chain
complex D in of (respectively (D,r) in ) in which case the .of/-class
(respectively P-class) of C

{ [C] = [D]eKo(#)
[C] = [Dr]e Ko@)

is defined.
A domination (D,f,g,h) of a chain complex C in # is &/-finite if D is a
finite chain complex in &/.
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ProrosiTiON 3.2. (i) A homotopy P-finite chain complex C in & is
homotopy </ -finite if and only if [C] = 0 R(2). Thus the reduced P-class
[CleRo(P) is the o -finiteness obstruction of C.

(ii) A chain complex C in B admits an s -finite domination (D.f,g,h) if and
only id C is homotopy P-finite. Any such < -finite domination determines an
object (F,p) of P, the instant o -finiteness obstruction of C, such that

[C] = [F’p:l - [Dodd’l]EKO(g’)’
[C] = [F.p]" € Ro(2).

Proor. The definitions and proofs of the previous case o/ = # carry
over verbatim to the general case o/ < 4.

ExaMpLE. As before, given a ring A let
o = {f.g. free A-modules} o # = {A-modules}.

If C is a A-module chain complex with a domination (D,f,g,h4) by a finite n-
dimensional f.g. free A-module chain complex D the instant finiteness
obstruction (F,p) is the projection of a f.g. free A-module

Jg —-d 0
| e 1k

—fh*g fhg fg

F=Dy®D, ®D,®...®&D,~F =Dy®D,®D,®...®D,,
such that P = im(p: F — F) is a f.g. projective A-module with
[C] = [P] - [Deasl € Ko(A), [C]=[P]eRo(A).
The proof of Proposition 3.1 gives an n-dimensional f.g. projective A-
module chain complex B = im (q: E — E) chain equivalent to C, with
B,=D,®D,®..®D; (0=isn-1)
im(p:F—>F)=P ifniseven
"= {im(l—p:F—»F) if n is odd.
For i < n the i-skeleton of B is a finite f.g. free A-module chain complex
B?:...»0-B-%B;_;—~...~ By

with
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d 0 0

d. =
' fe —-d 0
—fhg 1-fg d

Bi = DO@---®Di—2@Di-—1®Di'—>Bi—1 = DO@H-('BDi—S@Di—‘Z(—BDi—l’
such that there is defined a A-module chain map ¢ : BY — C with H,(¢?)
=0 0=r<i)and
Hy1(@®) = coker(d;y2:Bir,— Bity)

a f.g. A-module. The (i +1)-skeleton B¢*Y jis obtained from B® by
attaching a finite number of (i + 1)-cells killing H; ., , (¢”), by an algebraic
mimicry of the geometric procedure of Wall [13], [14]. Itis possible also to
kill the f.g. projective A-module H,(¢™ V) = B, so as to obtain a finite

complex chain equivalent to C if and only if B, is a stably f.g. free A-
module, that is if the reduced projective class

[C] = (-)[B.] = [PleKo(A)

vanishes. The purely algebraic procedure has the theoretical advantage
that it is easier to keep track of the number of cell attachments required,
which may be of relevance to the controlled finiteness obstruction theory of

Quinn [7].

Given a CW complex X and a regular covering space X with group of
covering translations 7 let A = Z[r] be the group ring, and let C(X) be the
cellular A-module chain complex defined as usual by

C(X), = Hy(X",X~1)
= the free A-module generated by the i-cells of X,
d = the boundary map of the triple (X®,X¢-1, §¢-2).
CX)= H(X®, X" V) > C(X);-y = H;- (XD, X0D),
Given a finite domination of X
(Y = finite CW complex, f:X - Y, g: Y= X, h:gf~1:X > X)

there is induced a finite domination of C(X)
(C(Y) = finite f.g. free A-module chain complex,

fcEXy-»c@), g:cX)-»cX), h:gf~1:cX)- C(X))
with ¥ = g* X the regular covering of Y induced from X by pullback along
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g:Y— X. (In practice Yis usually a finite subcomplex of X, with g: Y— X
the inclusion, and both X and Y are the universal covers). Applying
Proposition 3.2 in the case

o = {f.g. free A-modules} & # = {free A-modules}

there is obtained an invariant in the reduced projective class group of the
idempotent completion # ~ {f.g. projective A-modules} of ./, the reduced
projective class group of A

[X] = [CX)]eKo(2) = Ko(A),

such that the finitely dominated A-module chain complex C(X) is
chain equivalent to a finite f. g. free A-module chain complex if and only if
[X] = 0. Furthermore, the projection p = p*: F > F of the f.g. free A-
module

F=Y Cc¥), n=dimY)
i=0
defined by
Jg -d 0
—-fhg 1-fg d

—fh*g  fhg fg

F=c(yecl)necl),e..ocCd),
»F=Cc@)p®cl)ecl),s..0cd),
is such that the f.g. projective A-module

P=im(p:F—>F)
is an instant finiteness obstruction of C(X’ ), with
[X]=[P] eKy(A).

For the universal cover X of a connected finitely dominated CW complex
X this invariant is the geometric finiteness obstruction of Wall [13],[14]

[X]e Ro@[n: (X)),
such that [X] = 0 if and only if X is homotopy equivalent to a finite CW
complex.

Remark. Liick [2] uses the instant finiteness obstruction to give an
algebraic description of the transfer map
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p':Ko(Z[n,(B)]) = KoZ[n,(E)])

induced in the projective class groups by a fibration F - E-£> B with
finitely dominated fibre F. In the case when B (and hence E) is finitely
dominated the transfer map sends the unreduced projective class
[B] € Ko (Z[=(B)]) to p'([B]) = [E] € Ko(Z[,(E)]). The algebraic effect
of p'is to send the class of a f.g. projective Z[n, (B)]-module P which is a
direct summand of the f. g. free Z[ n; (B)]-module Z[ =, (B)]" to the class of a
finitely dominated Z[r, (E)]-module chain complex P' which is dominated
by C(F), with F the pullback to F of the universal cover E of E.
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