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PYRAMIDS OF
HIGHER ORDER COHOMOLOGY OPERATIONS
IN THE p-TORSION-FREE CATEGORY

D. N. HOLTZMAN

1. Introduction.

It is our purpose here to consider an alternative, rather algebraic, approach
to higher order cohomology operations. We shall construct pyramids of
operations, in the sense of Maunder ([11] and [12]) that instead of being based
upon relations in the modp Steenrod algebra, find their source in the p-
divisibility of certain “pseudo” primary operations. These operations are called
“pseudo” because of their failure to exhibit the classically required naturality
property. The nature of the source notwithstanding, the resulting higher order
operations are quite proper and satisfy all the usual properties associated with
cohomology operations of higher order. This paper is concerned with making
these notions precise.

We further motivate our approach with the claim that the higher order
operations which we shall define lend themselves particularly well to the task
of making specific calculations. We shall illustrate this claim by providing, as a
direct application of our operations, a simple proof of the following result:

1.1. THEOREM. Let X be a finite H-space such that HZ ¥ (X) is isomorphic, as
an algebra, to the Z ;-cohomology of the exceptional Lie group Eg. Then, X is not
3-equivalent to a product of non-trivial spaces.

This result has been proved by R. Kane [9] by means of a rather
complicated BP argument. Our approach provides both a rather simple proof
as well as an obvious way to proceed with generalisations of (1.1), namely by
making use of the “generalised Adem relations”, defined below. We hope to
return to this point in a future publication.

As further motivation, we present the calculation of several of our operations
in the context of HZ#*(CP*). (See Theorem 6.11.)

These results are not presented as the main goal of this paper but rather as

Received June 30, 1982; in revised form June 21, 1983.



128 D. N. HOLTZMAN

illustrations of the sort of theorems one can generate using the operations
defined below.

Our presentation is organised in the following manner. In section 2, we shall
define our pseudo primary operations and demonstrate several of their basic
properties. We shall close this section with a proof of the fact that these pseudo
operations coincide with well-known cohomology homomorphisms defined by
J. R. Hubbuck ([6] and [7]). The present formulation, however, lends itself far
better to certain calculations and to the definition of our higher order
cohomology operations.

Next, in section 3, we shall define a similar family of pseudo primary
operations, dual in the sense of [13] to those presented in section 2. Pyramids
of higher order cohomology operations based upon these pseudo operations
will be constructed in sections 4 and 5. We shall conclude, in section 6, with the
applications mentioned above.

During the writing of [5], from which this paper is excerpted, the author
has indebted himself to several institutions and individuals. It is with great
pleasure that I exploit this forum to express my gratitude. Thanks are due, in
the first instance, to Linacre College, Oxford and to the Catholic University of
Nijmegen for their generous financial support. Secondly, professors 1. M.
James, H. O. Singh Varma, S. Gitler, and E. G. Rees are all owed thanks for a
great deal of help and guidance that they have extended to the author. Thanks
are also due to the referee for many helpful comments and criticisms. Lastly,
and, perhaps, most importantly of all, the author’s very deep gratitude is due to
Prof. J. R. Hubbuck for the generous giving of his time, knowledge and
perspective during the writing of [5] and thereafter.

2. The pseudo primary operations.

Let us begin by introducing some notation which we shall use throughout
this paper. We shall be working in the category the objects of which will be
topological spaces with the homotopy type of a CW complex of finite type for
which the integral cohomology is free of p-torsion, for some fixed prime p. The
morphisms of our category will be homotopy classes of continuous maps of
such spaces. This category shall be denoted by %, '

Let Q, indicate the subring of the rational numbers, where the denominators
are all relatively prime to p. We will write H*(X) and K(X) in place of
HQ}(X) and KQ)(X), the cohomology and zero-graded unitary K-theory,
respectively, of a space X, with coefficients in Q,. Let Z, denote the integers
modulo p, Z/pZ. The obvious homomorphisms: ¢: Z — Z,, ¢: Q, — Z,,
k:Z— Qk':Z— Qpandl: Q, — Qinduce the coefficient homomorphisms
in cohomology: @,, @ k4 kK, and I, respectively.
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Given a space X in # ,, we write the standard skeletal filtration as follows:
(2.1) KX)=Ki(X)2K;(X)2 ... 2K,X)2 ... 2 *.

Because we will be working frequently with the residue classes mod (p— 1), we
shall fix the notation m=p—1. We will write ch, for the component of the
Chern character in dimension 2n.

Before we can define our pseudo primary operations, we must make several
observations about K-theory in our category # , We know from [3] and [7]
that p-localised unitary K-theory splits up into a direct sum of K-theories, one
for each of the mod m residue classes. Thus, we have

(2.2) K(X) = "'(-;31 K(X)® .
i=0

Such a decomposition is respected by the action of the Adams operations y/*,
and it induces a mod m splitting on the skeletal filtration (2.1). The following
theorem which is due to Adams and Hubbuck ([3], [4], and [7]) makes this

more precise.

2.3. THEOREM. There is a canonical direct sum splitting given by (2.2) such that:

(i) each K(X)® is closed under the action of Y* for each k € Z;
(ii) the associated graded group is defined by

K,, (X)(i)/Kzn +1 (X)(i) = G,K (x)®

and it equals the usual associated graded group G,,K(X) (which is naturally
isomorphic to H?"(X)), if and only if n=imod m. If n¥imod m, then G,,K (X)*¥
=0.

Now, given that the p-local K-theory breaks up into m summands, we may
consider the associated split, local cohomology. This is related to the split K-
theory as follows:

2.4. ProposiTioN. There exists a (non-natural) isomorphism J: H®(X)
— K(X), for X € &, such that:

) J(H*"(X)) £ K;a(X);
(ii) the composition of J with the quotient map

Lyt Kp(X) = Kau(X)/K2ps1(X) = H(X),

is the identity map on H*"(X); -1 j6)
(iii) we may decompose J into a direct sum, ®7=o J©, such that
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JO (X0 S K, (X)O
where H*"(X)® is defined to be K,,(X)?/K,,,,(X)?.

Proor. Let {x,,. .., x,} be a basis for H*"(X)®, for some fixed i, 0<i<m—1.
For each x; (1<j<t) one can choose elements, u; € K,,(X)® of exact filtration
2n such that I (u;)=x;. Let us define J® by x; — u;, for 1 <j<t. Now define
J=@®m J9. This gives us, in view of (2.3), the desired results.

Note that J: H*(X) —» K(X) is the isomorphism of filtered modules
uniquely induced by a sequence of morphisms: J,,: H*"(X) — K,,(X)
— K(X).

From this point onward, we shall only consider “splitting isomorphisms” of
this form, namely those J’s which satisfy (2.4).

2.5. DEFINITION. A cohomology class, x € HQ"(X) is said to be integral mod
p if it lies in the image of I,: H*(X) - HQ"(X).

We have the following theorem of Adams [1]:

2.6. THEOREM. Let n be a complex vector bundle over a CW complex X, such
that n is trivial when restricted to the (2q — 1)-skeleton of X. Then p'ch, 1 is
integral mod p.

We are now in a position to define our.pseduo primary cohomology
operations. These will be homomorphisms on cohomology groups defined on
and evaluated in H*'(# ), the subring of H* with even grading and arguments
taken from our category # .

2.7. DerFINITION. Let J be a splitting (satisfying (2.4)) and let u be any
element of H*"(X), for X € # ,and n € Z*, the non-negative integers. Then for
each ¢ =0, we define a pseudo primary cohomology operation of the first kind
of degree g by:

1.1 po%ch, 4 gt (u) .

We shall denote this “operator” by 6%: H*"(X) — H?"*2am(X).
We set the convention that 6%(u)=0 for ¢<O0.

Invoking Theorem 2 of [1] yields:

2.8. PrOPOSITION. Let X € # . Then the following iiiagram commutes:
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H2H(X) o3 HZn+2qm(x)

o le.
Zz"(X) Z ZZn+2qm(x)

Here and throughout this paper we shall use y to denote the canonical anti-
automorphism of the Steenrod Algebra. Moreover, we shall always take 24 to
mean Sq2? in the case p=2.

We note that J(u) (in (2.7) above and elsewhere) can be considered to be an
element of K(X) despite the fact that X could well have been an infinite
complex. This follows since u will always be taken from some finite
cohomological grading and we shall only be dealing with finite skeleta on every
occasion. This justifies our use of ordinary K-theory as opposed to the -
theory of Atiyah, even though we are working in % ,. This also accounts for
our use of direct sum notation where one might expect direct products.

The property that will turn out to be very useful in the evaluation of higher
order operations derived from 69 is established in the following manner. Let X
and Y be spaces in &, and let f: Y— X be a morphism in this category. We
may choose splittings:

J:HY(X) > K(X) and L:H®(Y)— K(Y).

We define a homomorphism f), by requiring the commutativity of the
following diagram:

(2.9) H¥(X) -1 K(X)
i v
H®(Y) L5 K(Y)

Taking the Chern character of both sides of the equation derived from the
commutativity of (2.9) yields:

(2.10) chLf,, = chfiJ = f*chJ.

Because J and L were chosen such that they satisfy (2.4), the diagram (2.9)
must commute for each mod m residue class. Thus, for some fixed n and some
j € [0,m—1] such that n=j(m), we get the following commutative diagram:

@.11) H2 (X)) ———— K3, (X))

L
H2n+2im(y)0) _Oizolhiiam K, (Y)?
iz0
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Now by (2.3)
K2n+1(Y)U) = K2n+2(Y)m =0 = K2n+2m(Y)U) .

Thus f;; can be written as a sum of linear maps:

(212) fi=% £,
iz0
where each f; raises degree by 2im and where f, = f*.
Now for any fixed n and q we may consider the component of (2.10) in
dimension 2n+2qm:

(2.13) Chy s amLf5r = ¥ Chyygmd -

Applying I, 'p? to (2.13) and incorporating the identification given by (2.12)
yields the following important formula which measures the deviation from
naturality of our pseudo primary operations:

2.14. THEOREM. Under the above hypotheses:

\

f*05 = i p‘l"ieifq_i: HZ"(X) N H2n+2qm(Y) )
i=0

We end this section with a proof of the correspondence between our pseudo
operations and the cohomology homomorphisms of Hubbuck ([7] and [6])
which are defined as follows.

Given a splitting J and a k € N we define a map &% by requiring the
commutativity of the following diagram: ‘

(2.15) HY(X) -2 HY(X)
Voo b
KX X KX)

Consequently, we have:
(2.16) ch¥*J(u) = chJd4(u) .

In [7] and [6], Hubbuck has defined homomorphisms of evenly graded
Q,-cohomology, Q% and §9, in terms of this map @*. In [7] (see 2.9 and 2.8) it
is shown that for a given x, € H**(X) and a given J and k, one has the exist-
ence of a unique finite set of elements, x; € H*"*2/™(X), 1<j<t, such that
x=Y}=op ’x; satisfies @*(x)=k"(x). Hubbuck then defines the homomor-
phism §%: H?*(X) - H*"*24(X) by x, — x,. The homomorphism Q¢ with
the same domain and range as S9, is defined by the requirement that
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S0 =Y 1Sy and Q) = ¥ 103
q20 q20

be formal inverses. Moreover, it is shown (see 2.10 of [7]) that:

o5 = k"3 3 (/p*(k"/pYSIQy .

q20 r20

2.17. THEOREM. Let X € % , and let u € H*"(X), for some n € N. Then 65(u)
=Q%(u).

Proor. Fix a q and restrict attention to dimension 2n+ 2gm; the righthand
side of (2.16) becomes:

*

(2.18) chy gmd {k” aio (l/p)"’“(k'"/P)“ST“Q‘}(u)} :

This equals:

(219) (1/py ch,,+q,,,J{k"S§(u)+k"+"'S3“Q}(u)+ R Ak ¢ (T}

On the other hand, the left side of (2.16) becomes ([2]):

(2.20) k"*amch, . gmJ (W) -

Now, multiplying both (2.19) and (2.20) by p? and equating the coefficients of
kn*am yields:

(221) 0 (u) = chy s gn JQI(H) -

The theorem now follows from (2.21) and the fact that Qj(u) is a (2n+2gm)-
dimensional Q,-cohomology class upon which ch,,,,J acts as the identity.

3. Pseudo primary operations of the second kind.

In this section we shall define a family of pseudo primary operations, dual to
those of section 2.

3.1. DEFINITION. Let J be a splitting and u be an element of H*™(X),X e #,
and n e N. Then for each q € N we may define a pseudo primary operation of
the second kind, 89, by the formula:

q
(3.2 Y 8575w = 0 H"*™(X),

i=0
where we define #(u)=u and 84(w)=0, for g<0. The result is a
homomorphism of Q,-cohomology groups of spaces in & .
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63: H2n(X) — H2n+2qm(X) ,
the formal inverse of 69.

The proofs of the following two propositions are immediate.

3.3. ProrositioN. With u, X, J and q as above,

O (w) = SY(w) .

3.4. ProposITION. Let X € % ,. Then the following diagram commutes:

HZn(X) L H2n+2qn|(X)
(A le,
HZ2(Xx) -2 HZ2m+2m(X)

Now it turns out that the two pseudo operations 6% and 84 are not only one
another’s formal inverses, but are also dual to each other in the sense of [13].
More precisely, let X and Y be two spaces in # ,, Spanier dual to one another.
We shall denote by (-, -) the usual cohomology pairing induced by the duality
([8] and [14]) and choose elements u and v in H®(X) and H®'(Y), respectively.
Let J be a splitting for H*(X) and define a splitting for H*(Y), J as follows.
Let w be an element in K(Y) and denote by (-, )k the pairing in K-theory
corresponding to (-, ) ([8]). Then we define J by the relation:

@, wk = I w).
With these hypotheses we have:

3.5. THEOREM. (B9u, w)= (u, O%w).

Proor. See either [8] or [5].

t

Dual to the deviation from naturality formula for 89, we have (by virtue of
3.3):

3.6. THEOREM. With the notation /of (2.14), we have:

BS* = 3 P HX) - H ().

i=0

A further result of the correspondences between our pseudo primary
operations and the cohomology homomorphisms of Hubbuck is the following:
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3.7. THEOREM (“GENERALISED ADEM RELATIONS”). Let k be any positive integer
prime to p. Then we have:

T3(k) = (1=K + (k" — k™4 163+ ...
+(Ke=0m—mB5 ! = 0, mod e
(See [7].)

4. Pyramids of higher order operations.

We shall construct, in this section, an algebraic system of higher order
operations acting on the evenly graded Z -cohomology of spaces in # » These
operations, which will be based upon “sums” of pseudo primary operations of
the form ¥5_, 847", will form pyramids in the sense of Maunder [11]. We begin
by establishing some notation.

4.1. DerFINITION. (i) Let {u;} be a vector in the Q,-cohomology of some space
X € # ,, where u; € H*"*2™(X), for i between 0 and some non-negative integer
s, and where n is some fixed natural number. For a given ¢>s>=0, we shall
denote a sum of pseudo primary cohomology operations of the first kind, of
degree g and of type s by the expression Y5_, 0%, defined upon a vector {u;}
and taking values in H2"*29™(X).

(ii) Let {u;} be as above. Suppose that 35_, 60,4 ‘u;=y is divisible by p"~*~ 1,
for some integer r>s. Then we shall say that [J, {u;}] is a (g,r, s)-pair of the
first kind.

Before we rigorously present the construction of a pyramid based upon the
sum ¥5_ 647, we offer a somewhat more heuristic discussion of our method of
procedure. The general idea is as follows. Assume we are given a vector {x,},
(0<i<s)in the Z ,-cohomology of some space X € %, Suppose, moreover, that
there exists a splitting isomorphism, J, such that [J, {u;}] forms a (g,7, s)-pair of
the first kind (as we have yet to define another kind of pair, we shall suppress
explicit mention of kind until it becomes meaningful to do so) for some Q,-
lifting {u;} of the given Z ,-vector. That is to say, we assume the existence of a
splitting J and a Q,-vector {u;} such that ¢\,u;=x; (for 0<i<s) and such that y
=31-009 "y, is divisible by p"~*~! in H?"*24™(X). Consequently, dividing y by
P"*7' is a valid operation in the context of the Q,-cohomology of X.
Performing this division and then reducing to Z,-cohomology gives the coset
value of our cohomology operation of order (r—s) acting on the vector {x;}.
We shall denote this by:

N (L L
i=0
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where J and {u;} run over all possible (g,r,s)-pairs associated with the vector
{x;} in the sense described above. The symbol Q(®;%) denotes the
indeterminacy of the operation @7°. This will be a subgroup of HZ,Z,"”""‘(X)
generated by the choices of splitting isomorphism and Q,-lifting. It will be
shown that the value of Q(®}*) is the image of the operation @7 ***. It will be
demonstrated, furthermore, that every element in the indeterminacy can be
explicitly realised in the sense of (4.2). As a result we shall be able to conclude
that any element in the kernel of @7 ° can be represented by an explicit (g,r
+1,s)-pair. In this way, we shall inductively construct a pyramid of higher
order cohomology operations {@}°}, g=ZN=r>s20 (for some N), such that

43) op*: Ker &, 1* — Cok @7+ .

This will be a pyramid shaped collection of operations with a bottom row
consisting of primary operations, a second row of secondary operations, a
third row of tertiary operations, and so on, up to a peak of a single Nth order
operation. Domain and range of any operations in the pyramid will be found
in the kernel and cokernel, respectively of operations in rows lower in the
pyramid. Before we proceed to make this precise, we establish some definitions
and notation.
Firstly we fix for all that follows some natural number n.

4.4. DerINITIONS. (1) We shall denote by ¥ a countably infinite direct sum of
free cyclic Q,-modules,

V.= Weio

tie
Each V, ; is filtered in the following trivial way:
V,’g = V?_‘ _ V,l.. = .., = Vtz.(in+i"') =) V'2'$n+im)+1 =0.

We denote a generator in exact filtration 2(n+ini) by , ;.
(i) Similarly, we shall write W for the countably infinite direct sum of the
associated free cyclic graded Q-modules, .
W:= Wi,
tiel*

where
 — 2(n+il 2(n+im)+1
W= ViPHmviprm*sl 2 v, ;.

We shall write £, ; for the image of {, ; under the action of the quotient map.
(ili) We define a Chern character ch: V— W®Q by

E,®1 if s=0
Chy s samlei = {Q‘J if >0
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We define ch universally by extending linearly.
(iv) We shall write W, for @,.z+ W, ; and W, for W,®Z,.
(v) We extend our notion of splitting isomorphism in the obvious way:

J: HY(X)@W - K°(X)@V.

We restrict our attention, however, for all of what follows to the case where
J(,,)={,, for “almost all” (i.e. with only finitely many exceptions) i and t.

(vi) Let &, ; be one of the finite number of exceptions in the above sense. We
shall then say that J crosses ¢, ;.

Before we proceed with the construction of our pyramid, we record the
following lemma for later use:

4.5. LeMMA. Let J be a splitting isomorphism for X € % ,. Suppose, further,
that {g;}, i=0, is a collection of linear maps,

g HZ"(X) N H2n+2iM(X) ,

with g, =the identity map. Then the {g;} uniquely determine another splitting L
for X such that J(u)=L(g;(w) in exact filtration 2n+2im, for all non-zero
u € H**(X), for all i=0.

Proor. For each i >0, choose bases for H>"*2™(X) such that g; injects onto
its image. For each basis element ! not in the image of g;, define L by the
condition that L(I)N K, , ,:m(X)=0. For each basis element in the image of g,
define L to take the value determined by Jg; . Extend linearly.

Let us now suppose that we are given integers N and g such that g2 N >0.
Suppose, moreover, that we are given a space X € &, for which at least one
(g7, s)-pair exists, for all r and s in the range N=r>s20. With this fixed
notation we proceed with the inductive construction of the pyramid of
cohomology operations, {®°}, which acts on the Z,-cohomology of X.

4.6.i ConstrucTiON, THE FirsT OrDER. The “base” of the pyramid will
consist of primary operations of the form @, * for 1 <r<N. By (4.2) and (2.8)
we have:

- "N i n m
¢;,r—l = Z x?q—i: l—_@o HZ:"+2[M(X)-" HZIZ, +2q (X)

i=0

This is defined for any Z -vector and has no indeterminacy.

4.6.ii THE SEcOND ORDER. Next we explicitly calculate the second to bottom
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row of our pyramid, comprised of secondary operations of the form &;"~2 for
2<r=N. Let us pick an r in this range and consider the resulting operation of
degree g, type r—2 and order 2.

This secondary operation will not be universally defined but will have as
domain the subset of @;2¢ HZ2"*?™(X) consisting of vectors {x;}, which lift
to Qp-vectors {u}, which form (q,r,r—2}-pairs with some splitting
isomorphisms. This is evidently equivalent to the condition that {x;} be in the
kernel of the primary operation &~ """ 2, Let us choose such a Z -vector {x}.
Modulo the indeterminacy we define the coset value of the resulting secondary
operation by:

Oy AHx) = Q’*l:<,§4:z gﬁ_i“i)/P:' € HZp" ™ (X) .

The indeterminacy is computed as follows. There are two sources, the choice of
Q,-lifting and the choice of splitting isomorphism. That is to say, our
secondary operation is only well defined up to choice of (g,r,r—2)-pair. To
calculate Q(di;"”z), let us suppose that we have two (g, r,r —2)-pairs [J, {u;}]
and [L,{v;}] both representing the same Z -vector {x;}. Let us firstly con-
sider the effects of choosing two different Q,-liftings for {x;}. Clearly for all
i € [0,r—2], there is a w; € H*"*2™(X) such that

4.7) Up—v; = pw;. |
Applying our homomorphism to (4.7) gives
r-2 . r-2 . r—2 .
4.8) Y 05w =Y 65 v+p Y 65w, .
i=0 i=0 i=0.

The other source of indeterminacy is the choice of splitting isomorphism. We
can calculate the effect of this with the help of (2.14). Choosing X =Y and
[*=f,=the identity map, we apply our deviation from naturality formula
to (4.8). Modulo p? this gives:

r-2 r-2
(4.9) ‘:4:0 [%_iui—'oi—ivi] =Pp 'go (61 'w;+01 " 'fyv] .

Since [J, {«;}] and [L,{v;}] may range over all possible (g,r,r—2)-pairs, we
may conclude from (4.9) that
(4.10) Q@) = Im&; !,

Consequently, we have (since the primary operations are universally defined):
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r-2
@11) Py Kerd, V72 ¢ .'6;% HZZ"*2m(X) — Cok )"~

4.6.iii INTERMEZZO. The fact that a primary operation is fully determinate is
reflected in the relative simplicity of the definitions of first and second order
operations. For orders three and higher, the situation complicates somewhat.
In order to deal properly with this increased complexity, we must have a rather
tighter grasp on the indeterminacy. The following series of results is dedicated
to this aim.

By way of preparation, we fix some notation: as always X € #,; x; and y;
will always denote elements in HZ2"*2"(X) @ W,; u,, v;, w; and z; will always lie
in H*"*2im(X)@ W,; X; and , shall denote the cosets of x; and y,, respectively,
in (HZZ"**™(X)@® W,)/W,; n; and v, will always represent element of W;; J, K,
L and M will denote splittings. The following seven results will take place in
the context of H*(X)@ W,,.

4.12. LEMMA. Suppose we are given a non-zero class modp, u, € H*"(X)
together with a splitting J. Suppose moreover that we are given a collection of r
vectors, each of length s, {vi}, together with r splittings K’ (v} € H*"**™(X) for 1
Si<s and 1<j<r). Then, there exists a splitting L such that

03uy = Oup+ > Y p'oLvi.
j=1 i=1
ProoF. By (4.5) it is sufficient to determine the maps { f;}, which will in turn
yield a splitting L such that L=J 3, , f. We define f;(u,) to be J ~* (3] K'v))
for 1 <i<s and f;(up) =0 for i=s+ 1. Now set f;=0 on all elements which are
linearly independent of u, for all i>1. This defines on L with the desired
properties.

4.13 LEMMA. Suppose we are given a 2n-dimensional class u, together with two
splittings L and J. Then there exists a class v, together with a splitting K such
that Juy=Ku, and such that

0fu, = 09uo+pO% v, -

PROOF. This follows from (2.14) and (4.5). Writing J™'L as ¥ f; and K~'J
as 3 g;, we set v, =f,uy+¢&, , for some t such that J does not cross &, Now
define g;(v,): = — K ~1Jf; , ,u, for all i > 1. Linearity now defines g; on multiples
of v,. Set g, =0 for i > 1 elsewhere. This defines a K with the required properties.
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4.14. LEMMA. Let {n;}, —1<i<s, be given together with a splitting L. Then
there exists a vector {u;}, 0Si<s+1, and a splitting K such that
s+1

(4.15) S 6= p % 0

i=—1
Proor. Choose a J such that it does not cross n;_, for all i € [0,s+1]. Then
by (4.13), se have the existence of K and u; such that
07 iy = 097 iy + PO My
for each appropriate i. This gives the result.

Now, we establish the converse to (4.14):

4.16. LEMMA. Let {u;}, 0<i<s+1 be given together with some splitting K.
Then there exists a vector {n;}, —1=<i<s, and an L such that (4.15) holds.

Proor. Choose a J and a vector {#,}, —1=<i<s such that none of the n, are
crossed by J nor are any ;=0 (mod p). Now we may apply (4.12) to get the
result.

4.17. LeMMA. Let {x;} and {y;}, 0<i<s be given such that x;—y; € W, for each
appropriate i. Let {u;} and {v;} be Q,-representatives of {x;} and {y;},
respectively. Suppose, moreover that we are given splittings J and K. Then there
exists a vector {y;}, —1<i<s and a splitting L such that

(4.18) S o0y = Y 03 w0k 0] .

i=-1 i=0

Proor. By (4.13) we have 64 'u;— 0% ‘u;=p01 ‘"'z, , for each i e [0,s].
Moreover by hypothesis we know that u;—v;=n;+ pw, for appropriate n; and
w;. Consequently we have for each i € [0,s]:

0% u;— 0% 'o; = 0% ni+pOk 'wi+pBY T Tz
Now let us choose a vector {£;}, —1=<i<s such that K does not cross it. This

gives:

(05 'u;— 0% 'v] = 6% ¢ +pOkwo

M«

i

]

0
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s—1

+ ¥ [0 O+ &)+ 0K T Wiy P01 2]
i=0

+04 (0, + &) +pOT Tz,

s s ri ti
= 2 0kwm+ Y Y Y P0G,
i=-1 i=-1j=1k=1
where we have defined {y;}, —1<i<sbyy_;:=¢_, and y;:=n;+¢&, 0<i<s.
This gives the result as a consequnce of (4.12).

Conversely, we have:

4.19. LEMMA. Let {x;} and a Q-lifting {u;}, 0Zi<s, be given together with a
splitting J. Suppose moreover that we are given a vector {y;}, —1<i<s, and a
splitting L. Then there exists a {y;}, 0<i<s with Q,-representative {v;} and a
splitting K such that x;—y; € W, for each appropriate i, and such that (4.18)
holds.

Proor. Choosing a vector {;}, 0<i<s such that J does not cross it, we may
write by virute of (4.14):

s s s+1 . s .

(4.20) > 01— Z 05w =p ), 04 'z~ Y 057 w8y
i=-1 i=0 i=0 i=0

Writing z for the 2n-dimensional class (J ™ Tpz,),, We see thst the right-hand

side of (4.20) equals:

0%(Eo —uo+2)+p0y 'z, + Z [637'(¢, —u)+p0% Tz ] .
i=1
Writing v;:=u;— &, i<i<s and vy: =u,— &, —2 and applying (4.12) gives the
result.

4.21. THEOREM. Let {%;}, 0Si<s be a coset in
@ tHZy ") @ WY@ Wi = @ HZP (0.
0 i= i=

Let {u} be any representative for {%;} in @i-o[H*"**"™(X)@W.]. Suppose
moreover that we are given some splitting isomorphism J. Then we have:

(i) For any representative {v;} of {%;} and any K, there exists a splitting T and
a vector {z;}, 0<i<s+1, such that the following holds:

s+1

4.22) i [0 'u,—0% vl = p Zo 0% 'z, .
i=0 i=
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(i) For any splitting T and vector {z;}, 0Si<s+1, there exists a
representative {v;} of {X;} together with a K such that (4.22) holds.

Proor. This follows from the combination of lemmas (4.14), (4.16), (4.17),
and (4.19).

4.6.iv THE HIGHER ORrDERS. Theorem (4.21) places us in a position to keep
track of the indeterminacy in a rigorous fashion and allows us to proceed with
the construction of the pyramid of operations {@°}. We shall define a linear
homomorphism ®7° on the kernel of @;~ 1% a subgroup of

@ H22n+21m(X) C_D [H22n+2|m(X)® W]/C_D W
This last 1dentxﬁcatlon will be tacxtly assumed in what follows and we shall not
explicitly distinguish between a vector {x;} € @i.,HZ2"**™(X) and its
associated coset {X;}. When considering ranges, we shall identify H Z}(X) with
the obvious subgroup of HZ}(X)® W,. With these identifications in mind, we
shall define an operation of degree q and order (r—s):

4.23) LA Ker ot o .'C-.—*% HZ2*2m(X) — Cok @°*! .

Orders one and two have already been defined and possess, together with
(4.23), the following three properties:

4.24) Ker ¢° < Ker q&;-ll—s ,
(4.25) Im @, 2 Im &)+,

in the following strong sense: given a cohomology class z € Im @};**?, there
exists a (g, r,s)-pair such that @* defined using that pair yields precisely the
same class z. ‘

(4.26) Let {%;} be any vector upon which @7 * is defined. Then there exists a
vector {x,} representing {%;} which in turn has a Q,representative {u;}
together with a splitting J such that [J,{,}] forms a (g,r, s)-pair. Modulo its
indeterminacy, the value of this (r—s)th order operation is given by:

4.27) Folx) = d, [‘io o8-y

4.28. REMARKS. (i) With the help of (4.26) and (4.27), we restate and prove
(4.25). Given a cohomology class z € Im@}°*! resulting from a particular
(¢,r,s+1)-pair [J,{u;}], there exists a (g,r,s)-pair, [L,{v;}], say, such that:
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s
QQ[Z 9"[‘”;-/1’""‘] =1z,
i=0

with no indeterminacy. That this holds for any pair (r,s) with r>s=0, we see
as follows:
Choosing an ng such that J does not cross it, we may write

s+1 s—1

p _=ZO 05 (u) = . 09~ (pu) + 055 (pug+n,) +p05 ™" H(ug, ) .

i=

By (4.12), we may rewrite this as

s+1

s—1 s
p Y 0% w) = Y 037 (pu)+ 0%k “(puy+n) = Y 017°(v),
i=0 i=0 i=0
where v;=py; for 0<i<s—1, v,=pu+n, L=J in dimensions 2n though

2n+2(s—1)m and L=K, the splitting determined by (4.12), in dimension
2n+2sm. Consequently we may write:

s+1
zZ = Q,*l:_zo GS—i(ui)/Pr~s_2:|

s+1
9’*[17 2 %‘i(ui)/p’"s“]

Q'*['_io 01 (w/p" " ‘] -

Choosing r=s+2, demonstrates that our already-defined second order
operations exhibit property (4.25).

(i) That our secondary operations obey (4.2.6), follows directly from
theorem (4,21).

(iii) That the above-defined primary operations satisfy the four properties
(4.23-4.26) is trivial.

(iv) Lastly we check that our primary and secondary operations are linear
homomorphisms. Let [J,{w}] and [L,{v;}] be two (g, r,s)-pairs. We may
assume that u, and v, are linearly independent for all appropriate i, for were
that not the case, we could replace u; by u;+n; for some #; which is left
uncrossed by J. Consequently we may define a new splitting K which agrees
with J (L respectively) on the subspace spanned by u; (v; respectively). Thus, we
may write:

S

S o S o = 3 0o
i=0 i

i=0 i=0

Now that we have seen that our operations defined in (4.6-1) ar.ld (4.6-ii) are
linear cohomology homomorphisms which obey the four properties (4.23-4.26)
Wwe may proceed with the inductive step.



144 D. N. HOLTZMAN

We assume, as inductive hypothesis, that we have constructed linear higher
order operations satisfying properties (4.23-4.26) up to and including the bth
order (b=2). We shall now construct a typical operation of order b+1
satisfying all the desired properties. Let {x;} be an element of the kernel of
@,**". By (4.26), there exists a J and a {u;} representing {x;} such that
0, [Xh-00% "uy/p*~'] is in the coset of zero. Thus, there exists a (g,r+b,7+1)-
pair, [T,{z;}] such that

r+1 r
e’,.,[p ZO O’r"zi/p”“] = e;[Z 03"u.~/p"“]-
i= i=0
Now by (4.21) we have the existence of a (g,r+b+1,r)-pair [L, {v;}], where
{v;} represents {x;}. We define the corresponding (b+ 1)st order operation by:

¢;+b+1,r{xi} — QI*I:Z oz—ivi/pb:I/Q(¢;+b+l,r).
i=0

4.29. REMARKs. (i) That Q(@;*** ") =Im @, ***1.7*1 follows from (4.22).
Consequently, we see that (4.23) is satisfied.

The remaining properties (4.24-4.26) are easily seen to hold for the (b+ 1)st
order operations by virtue of (4.21) and (4.28-i). Linearity follows as above.
This completes the inductive construction of our pyramid of operations {®7*},
Nzr>s20.

(ii) Picorially, we may represent this pyramid (here, we have chosen N =5)
as:

oS ®3° O"Ib%
¢ o3 op° Vk,,
(4.30) @52 ot @30
@3 32 o1 P20
¢2,4 ¢:,3 ¢3,2 ‘ ¢i,l ¢;,0

(iii) In addition to those mentioned above our operations also enjoy the
properties of being natural with respect to maps of spaces and that of being
stable under double suspension. This follows from (4.23) and (2.14).

We end this section by identifying our operations of higher order with those
of C.R.F.Maunder ([11] and [12]). Let us consider the following chain
complex in the sense of Maunder. Let g and N be integers such that g2 N=1.
We define a series of left o ,-modules C,, 0Sn< N. Each C, shall be generated
by elements, {C,, C, 0 C, 15- - -»Cn,n}» Where the dimension of ¢, is 2gm+n—1 and
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that of ¢, ; is n+2(n—i)m for 0<i<n. We define the differentials of our chain
complex d,: C, —» C,_, by:

n—1

(1) dn(cn) = _ﬁ(cn-l)-'_. xgq_i(cn—l,n—l—i) and

=0

(ii) du(cn)=PB(Ccn-1,i-1)+7(ch-1,)

Here § denotes the Bockstein homomorphism and 7 is 2! — p#*. Let {¥%°},
Nzr>s20, denote the corresponding pyramid of operations associated with
the above chain complex. We have:

4.30. THEOREM. Restricted to the category F ,, {¥y*}={®y"} modulo the
indeterminacy.

Proor. We only consider the case where p=2 as the odd prime case is
proved analogously. Notice that in this case the above chain complex becomes
the admissible complex of [12]. We proceed with the proof by induction.

Clearly in %, one has ¥;°=a,°=xSq?. Consequently we see that the
primary operations agree. Let us take as our inductive hypothesis that in &,
‘I’;’°=d>;'° for all r, 2<r<R some R<N. By axioms 1 and 2 of [11] and by
(4.6) above we have agreement of the respective domains and ranges of ¥X*1:°
and ®R+1:% That these operations actually agree in # » follows from Theorem
2 0f [12] and (4.27). Thus, we have proved that in F ‘I’;'° =<D;'° for Nz2r=1.
The theorem now follows from axiom 0 of [11] and the definition of ¥;***.

5. Pyramids of operations of the second kind.

As with 69 the pseudo primary operations of the second kind also generate a
system of higher order operations in HZ *(# ). This system, however, behaves
rather differently from the pyramids of section 4 above. At the heart of this
difference lie the two formulae (2.14) and (3.6). This seemingly minor contrast
gives rise to some fundamental distinctions in behaviour. Let us begin by
establishing some notation (we remain in the category % ):

5.1. DerINiTION. (i) Let @f_, 85 be a direct sum of pseudo primary
operations of the second kind. We shall say that such a sum is of type s and
degree q (g=s). (It will be defined on any element u € H 2n(X) and will take as
value a vector of element in @3_, H*"*24~ (X))

(ii) Let n,q,r,s € Z* be given such that g=r>s20. Let u be any element of
H?"(X) such that, for some J:
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@0 u=0 modp*!andifr—s—121,
i=0

s
@B Tu=0 modp Y, 15jSr—s-—1.
i=0

Under such conditions we shall say that [J,u] forms a (g,r,s)-pair of the
second kind.

As above, we shall present our construction inductively. We shall explicitly
define primary and secondary operations of the second kind and show that
they satisfy certain properties. Then we will go on to define a higher order
operation of the second kind of arbitrarily high order and we shall show that
these operations satisfy the above-mentioned properties as well. This will
complete our construction of a pyramid of the second kind. We shall be using
the following notation throughout. We suppose we are given a space X € %,
together with numbers N,n,q € N, where g= N =2.

5.2.i ConstrucTiON, THE FirsT ORDER. Our pyramid will be erected upon a
base of primary operations which we shall denote by &;"~!, (N2r>0). We
define such an operation by:

r—1 r—1
Frti= @ P HZPX) > @ HZPTH(Y) .

5.2.ii THE SEcoND ORDER. The second row of our pyramid of the second
kind will consist of second order operations ‘denoted by 4—5,';"2, (NzZr>1).
Such an operation shall be defined upon the kernel of the primary operation
&1 in the following way. Suppose we are given an

x € HZ;*(X) N Ker &;" 1.

Then by (5.1.ii) there exists a (g, r,r — 2)-pair of the second kind [J, u] such that
¢« =x. We define our second order operation evaluated on x by:

r-2
Py 1= Q’.[@) @"“/P]/Q@;"")-

The indeterminacy of this second order operation Q(&;"~2) will be calculated
as follows. Given an element x in the kernel of a primary operation ;"' one
must choose a suitable J and u such that [J,u] is a (q,r,r—2)-pair of the
second kind and such that ¢’,u=x. Suppose [L,v] was another such pair. The
indeterminacy Q(&;"~?) is clearly generated by:

r-2
(-3 _ ¢ ‘@) [O5"u—81""v)/p] . -
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It will turn out that unlike our higher order operations of the first kind the
indeterminacy here will be solely generated by the choice of Q,-lifting of x. The
choice of splitting offers no contribution to the value of the indeterminacy. We
see this as follows. Let J and L be two splittings such that [J,u] and [L, u] are
both (g,r,r — 2)-pairs of the second kind for Q,-lift u of x. We apply (3.6) in the
special case where X =Y and where f is the identity morphism. Mod p? we get:

r-2 X r-2 . r—2 .
(54 g}% 04 = 'C;Bo 0 u+p @fﬂl"—lu.

Because [L,u] was assume to be a (g,r,r—s)-pair of the second kind, this

becomes:
r—2 r=2 .
(5.5) @0 'u=@ 0 v, modp*.
i=0

i=0

We return to our calculation of Q((qu"‘z). Since u and v were both assumed to
be Q,-lifts of x, it is clear that

(5.6) u—v = pw,

for some w € H*"(X). Now, in view of (5.5), we may write (5.3) as:
r—2 X . , r—2 iy
5.7 0 (—_BO (0% 'u—01""v)/p] = 0 Q-Bo 09" 'w .

Moreover, given any two of u, v and w, clearly the third is uniquely determined.
Consequently, one may conclude that Q(&}"~?) is precisely equal to the image
of our primary operation Im &;~'*~2. This value of Q(®;"~?) is, moreover,
minimal.

5.2.iii THE GENERAL Cask. Here we shall define an operation of order (r—s)
and degree q which we shall denote by &} *. The coset value of the operation
will be given by:

(5.8) Fr(x) = g;[_@o 95 'u/p’ 7 [Q(B;) -

Moreover, the following properties will be satisfied:

(59 & :Kerd;**' ¢ HZ2"(X) —» Cok &',

(5100 Im®;* 2 Im &, "%, in the strong sense of (4.25),
(5.11) Kerd}* c Ker &1,

(5.12) @ is a linear homomorphism and

(5.13) for any x e (HZZ"(X) N Ker @7 +1), there exists a (g7, 5)-pair of the
second kind [J,u] such that g u=x.
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5.14. Remarks. (i) The primary operations defined in (5.2.i) satisfy the
properties (5.8-5.13), trivially.

(i) The secondary operations defined in (5.2.ii) clearly satisfy properties
(5.8-5.11). That (5.12) also holds for secondary operations follows from (5.8)
and the fact that the choice of splitting isomorphism plays no role in the
generation of indeterminacy. Finally property (5.13) is satisfied by virtue of the
definition of a (q,r,r—2)-pair of the second kind.

(iii) Notice that the “full realisability” of the indeterminacy in the case of
operations of the second kind was achieved directly (compare (5.7) with (4.22))
without an elaborate procedure corresponding to (4.6.iii). As such we may
proceed straight away with the inductive step in our construction.

Let us assume as inductive hypothesis that we have constructed a truncated
pyramid of operation satisfying the above properties up to and including the
bth order (b=2). We shall now construct a typical element of (b+ 1)st-row of
our pyramid &;***%". To this end, we choose an element
x € (HZ2"(X)NKer &,***1-r*1), By inductive hypothesis, we are free to invoke
(5.13). This provides us with a (q,7+b+1,r)-pair of the second kind [J,u]
where ¢’ ,u=x. We now define the coset value of our (b+ 1)st order operation
by

(5.15) PP Lr(x) = Q’*[@ ‘5""u/p":|/Q(d_>;+"+"’).

We compute the value of Q(®,***'") as follows. This is clearly generated by
the differences in the value of the operation given in (5.15) depending upon the
various choices of (g,r+b+ 1,r)-pair. Let [J, u] and [L,v] be two such choices.
As before, these assumptions imply that there exists an element w € H*"(X)
such that u—v=pw. Using this fact together with (3.6) (in the above-
mentioned special case) we get modulo p**!:

r b-1 r ' b ’
(516 @ Oy u=01") = 3 p @ S e TP @ P
i=0 ji=0 i=0 ji=1 i=0

Now, because [L,v] was assumed to be a (q,r+b+1,r)-pair of the second
kind, we may rewrite (5.16) as:

r r b-1 r
(5.17) @)._[%“u@l"u] =p @) qu—iw+ Z Pt @fjgfi—jw ’
i= = i=1 i=0

modulo p®*1, Here as in (5.2.ii), we see that the choice of splitting isomorphism
contributes nothing to the value of Q. We may further reduce (5.17) to:

(5.18) @ (0% u—81 "] = p @o Bi-'w, modp"*!,

by virtue of the following:
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5.19. LEMMA. Under the above hypotheses, we have

@ 0w =0 (@Y, forallje[l,b—1].
i=0

Proor. It is clear that we lose no generality by assuming that r=0. We
proceed by induction on (b—j).
For (b—j)=1 we have:

(5.20) Ge-C=Dy = g1y 4 pfa-C-Dy = 0(p?).

Since [J,u] and [L,v] were both assumed to be (g,r+b+1,r)-pairs of the
second kind (5.20) implies that 62 ®~Yw=0(p). This serves to start the
induction. We take now as inductive hypothesis the validity of 89 fw =0(p® ),
for all (b—j) e [1,b—t—i], for some t € [1,b—2]. We must show that 8] 'w
=0(p®~"). This follows, however, directly from the inductive hypothesis
together with:

b-t—1

ga—tu = gl—tv+pgl—tw+ Z pk+1ﬁ¢9-1_'—k = 0(pb-—t+l) .
k=1

5.21. ReMaRrks. (i) The fact that in (5.18) any two of u, v and w fully
determine the third yields the “total realisability” of the indeterminacy of our
higher order operations of the second kind. This together with (5.15) and the
fact that the choice of splitting offers no contribution to the value of Q makes
the properties (5.8-5.13) all direct consequences of the definitions. This
completes the inductive construction of our pyramid of operations of the
second kind, {@}°}, gZN=r>s=0.

(ii) Pictorially we may represent such a pyramid (here, we have chosen N = 5)
as:

(5.22)

$H1.0 BH2,1
q ¢‘I

(iii) In addition to the properties (5.8-5.13), these higher order operations of
the second kind are also natural with respect to maps of spaces and are stable
under the action of the double suspension. This is a direct consequence of
(5.1.i).

To end this section, we shall construct a chain complex dual in the sense of
Theorem 4.3.1. of [11] to the complex constructed at the end of section 4. We
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shall see that the resulting pyramid will correspond to our pyramid of the
second kind when we restrict to & ,. Let g and N be integers such that g= N
21 and consider the «f,-modules C}, (0=n=<N) with generators,
{emen 0:€n1s- - >y N-n}}- The dimension of e, is 2gqm+ N—n—1 and that of
e,; is N—n+2m(N—n—i), for 0Si<N—n. We define the differentials of
our dual chain complex d}: C¥ — C¥,, by:

N-1
(i) dy(e)=—PBlen+1)+ Z P " en+1sn-1-) and

(i) d¥(en,)=PB(eys1,i-1)+7(€ns1,0s

with B and t as before. Let {¥7°}, N=r>520, denote the associated pyramid
of operations. We have:

5.23. THeOREM. Restricted to the category F ,, {¥7°}={®;*}, modulo the
indeterminacy.

PRrooF. By (4.30) we see that it is sufficient to show that &}* is dual to @°.
We do so by induction on the order of the operation. For primary operations,
this follows directly from (3.5) above. Let us take as inductive hypothesis that
d_);" is dual to @7, for all r and s, N2r>s20 such that (r—s)<t for some ¢t
<N. For r and s such that (r—s)=t+ 1, the result follows from the inductive
hypothesis together with (4.23), (4.27), (5.8), and (5.9).

6. Two applications.

We shall now make good our promise of section 1 by presenting two
applications of the theory developed above. ,

Let Eg denote the exceptional Lie group and let X be a finite H-space such
that, as an algebra, one has:

(6.1) HZ3(X) = HZ$(Eg) = E(x3,X7,X15, X195 X27 X355 X39, X47) ® T3 (Xg, X20)
where E denotes an exterior algebra and T, denotes a polynomial algebra,
truncated at height 3. Given a Hopf algebra A we shall write PA and QA4 for
the primitives and indecomposables of A, respectively. We claim that the
algebra structure alone is sufficient to prove that Eg is not “irreducible mod 3”.
For Eg with its entire algebra and coalgebra structure, this irreducibility mod 3
was shown in [10]. In [9] Kane proves (1.1) via a rather complicated BP
argument. We deduce this result -as an immediate corollary of the following:

6.2. THEOREM. With X as above ®3° is defined on a generator a,s of
PHZ%%(02X) and takes the coset of asg a generator of PHZ3®(QX) as value.
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Before we proceed with the proof of (6.2), it behooves us to recall a few facts
concerning the algebraic structure of (6.1). Firstly, we point out that the
generators in dimensions 3, 7, 8, 15, 19, and 20 are all linked to one another by
elements of the Steenrod algebra, as are the generators in dimensions 27, 35, 39,
and 47 (see [9]). Consequently, if X were to be reducible mod 3, then x,, would
have to be primitive for dimensional reasons. Secondly, passing to the Z;-
homology of the loop space 2X via the Eilenberg-Moore spectral sequence
and then in turn computing the Q;-cohomology of QX, yields the following
divided polynomial algebra:

(6.3) HQ3Z(2X) = T(b;,b14,b22, b6, b34, b3g, bas, bss)

where the b; were all chosen to be primitive classes. To allow ourselves to use
our operations in the primitive submodule of (6.3), we shall require the
following lemma which is due to J. R. Hubbuck:

6.4. LEMMA. For i =22 one can choose primitive classes u; € K,;(2X; Q,) such
that u; goes to b; under the action of the quotient map.

Proor. Because PK°(QX; Q;)=Hom (QK,(2X; Q,),Q,), we see that it is
sufficient to show that there exist classes a; in the 2ith K-homology skeletal
filtration which do not become divisible by 3 when we pass to the
indecomposable quotient. This, however, is clear since the a; for i = 22 generate
a polynomial subalgebta.

PROOF OF 6.2. Let a,, be ¢ b,, in PHZ3*(QX). In [9] it is shown that one
has the following relation:

(6.5) Pg(azz) = Qsg -
Let k be any integer prime to 3 and g any natural number. It follows from
(2.14) of [7] that
q—1
(6.6) (1-k™B5— Y. k™T"i(k)8; = 0 (39),
i=1

where T?(k) denotes the pseudo operation given in (3.7).
Applying (6.6) to b,,, taking g=9 and restricting our attention to the
primitive submodule (which we may do by virute of (6.4)) gives:

6.7) (1 —K'8)8%b,, — k2T (K)B%b,, = 0 (3%).
This follows since PH°(2X)=PH3*(QX)=0. By (6.7) and (6.5) we see that
(6.8) (1 —kPbes = (1—k'®)bsg, mod (3%) .

Now since v3(1 —k)=1+v;(gm) (here v, denote the p-adic valuation) (6.8)
becomes
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6.9) 3bse = 3bsg, mod9 .

Since PH;,(R2X)=0, we see that [J,b,¢] forms a (3,2,0)-pair of the second
kind. This gives the result.

Proor oF 1.1. Let us assume that X is reducible mod3. Thus, x,, is
primitive. Restricting to the primitive submodule of HZ#(X) and using (5.23),
we see that P20 is defined on x,, and takes the value zero, since PHZ3®(X)=0.
This contradicts the previous theorem as our operations commute with the
classical map o*: QHZ)(X) — PHZ} ! (QX). Hence, X is irreducible mod 3.

Our second application concerns calculations of our higher order operations
of the first kind in the Z,-cohomology of CP*. We shall require firstly the
following:

6.10. LEMMA. If J is such that J(u-v)=J(u) - J(v), then:
O3u-v) = 3 05(u)05(v).

i+j=q
Proor. This follows directly from (2.20) of [7] and (2.17) above.

Now, let z denote the canonical two-dimensional generator of HZ*(CP>).
We shall write Z for the mod 2 reduction of z. Furthermore, we shall use the
notation. a(q) to denote the value of the function which assigns to any natural
number the number of ones in its dyadic expansion. We shall use v, to denote
the 2-adic valuation. With this notation, we have the following:

6.11. THEOREM. @29+1:0(3) is defined and equal to #*', with no
indeterminacy.

Proor. Let J be the splitting isomorphism for CP* which assigns 7y, the
Hopf bundle over CP* to the generator z. The value of the Chern character of
y in dimension 2(g+1) is then clearly z2*!/(q+1)!. Using the fact that v,(r!)
=r—a(r) and the definition of 6% we get:

6.12) . 09z = 20@r D141

Consequently, we may conclude that [J,z] is a (g,a(g+ 1), 0)-pair of the first
kind. Thus, clearly,

(6.13) P07 = 7% modQ, for all g21.

Now we must show that the indeterminacy Q is zero. By (4.25), we see that it is
sufficient to show that
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(6.14) 0. [(0%z 469 1z2)/22@+ 2] = 0
*LAHJ J ]

Now J can clearly be taken to be a ring homomorphism so that we may apply
(6.10) to calculate 8%~ 'z%. Using (6.12) we see that (6.14) is equivalent to the
following statement:

q—1
(6.15) k = 2:@*D71p % pua-dral+D=2 g divisible by 26@+ D1

i=0

We consider the two cases, g being even or odd, separately. Firstly, we let g be
an even natural number. Then k becomes:
q-1

+
(616) 2a(q+l)-1+( Z )za(q—-i)+a(i+1)-1 .
i=0

Since a(a)+ a(b) = a(a+b), we have shown (6.15) to hold.
Now let g be equal to 2s+1 for some s. In this case k becomes:

s—1
(617) 2a(q+1)—1+ Z '2a(q~i)+a(i+1)—l+22(a(s+l)—1) .
i=0

Now, (6.15) follows in the case that g is odd, as well, since 2(a(s+1)—1)
>ua(s+1)—1. This completes the proof.
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