NOTE ON A CONGRUENCE FOR *p*-ADIC *L*-FUNCTIONS

TAUNO METSÄNKYLÄ

1. Introduction.

For a fixed prime p, let $L_p(s,\chi)$ denote the Kubota-Leopoldt p-adic L-function attached to a primitive Dirichlet character χ . If the so-called first factor θ of χ is nonprincipal, then $L_p(s,\chi)$ possesses a well known power series expression, say $f(X,\theta)$, due to Iwasawa [4]. In this note we consider a congruence relation between $f(X,\theta)$ and $f(X,\theta\psi)$, where the character ψ is of p-power order.

Let Ω_p denote the field of p-adic numbers and let K be a finite extension of Ω_p containing the values of the characters θ and $\theta\psi$. Then $f(X,\theta)$ and $f(X,\theta\psi)$ belong to the power series algebra $\Lambda = \mathfrak{o}[[X]]$, where \mathfrak{o} is the ring of integers of K. Let \mathfrak{p} stand for the maximal ideal of \mathfrak{o} . It was recently proved by Gras [2] that there is a congruence mod $\mathfrak{p}\Lambda$ between $f(X,\theta)$ and $f(X,\theta\psi)$ (previously, some results in the same direction had been obtained by the author [9] and Ferrero [1]). However, the proof in [2] is based on a new construction of p-adic L-functions. We shall prove the congruence directly, by using Iwasawa's original construction of $f(X,\theta)$. We note that the proof brings some new aspects to the original theory of $f(X,\theta)$ that are perhaps of independent interest.

The congruence has an application to the Iwasawa λ -invariants. Indeed, one immediately deduces an explicit relation between the λ -invariants of $f(X,\theta)$ and $f(X,\theta\psi)$ (formulated by Gras in [2, Proposition V.3]) and, from this, the so-called Riemann-Hurwitz genus formula between the λ^- -invariants of an imaginary abelian field and its *p*-extension (see [3], [6], [7], [8], [11]). We shall briefly discuss this application at the end of the paper.

2. The group algebra elements behind the power series.

Put q = p if p > 2 and q = 4 if p = 2. If the conductor f_{χ} of a character χ is not divisible by qp, then χ is said to be of the first kind. Let C_1 denote the set of all such characters χ (all characters are assumed primitive).

Making a slight change to the previous notation we will consider the

Iwasawa power series attached to a character of the form $\theta\omega$, where ω is the Teichmüller character mod q and θ is an odd character $(\neq \omega^{-1})$ in C_1 . Let $f_{\theta} = d$ or dq, where d is prime to p.

In the definition of $f(X,\theta\omega)$ (see [4], [12]), a crucial role is played by an element $\xi_n(\theta)$ of the group algebra $R_n = \mathfrak{o}[\Gamma_n]$ (n = 0,1,...), where Γ_n is the multiplicative group of those residue classes $a + dqp^n \mathbb{Z}$ for which $a \equiv 1 \pmod{dq}$. Denote by $\gamma_n(a)$ the image of $a + dqp^n \mathbb{Z}$ under the canonical projection $(\mathbb{Z}/dqp^n \mathbb{Z})^{\times} \to \Gamma_n$. Then

(1)
$$\xi_n(\theta) = -\frac{1}{2dqp^n} \sum_a a\theta(a)\gamma_n(a)^{-1} \ (0 < a < dqp^n, (a,dp) = 1).$$

Now observe that Γ_n is a cyclic group of order p^n , generated by $\gamma_n(1 + b_\theta q)$, where b_θ is any integer satisfying the conditions

(2)
$$(b_{\theta}, p) = 1, (1 + b_{\theta}q, dp) = 1.$$

It follows that we can write $\xi_n(\theta)$ in the form

(3)
$$\xi_n(\theta) = \sum_{k=0}^{p^n-1} c_k(\theta) \gamma_n (1 + b_\theta q)^{-k}$$

with

(4)
$$c_{k}(\theta) = c_{k}(n,\theta) = -\frac{1}{2dqp^{n}} \sum_{a} a\theta(a) \in \mathfrak{o}$$

 $(k = 0, ..., p^n - 1)$, where the sum is extended over the values of a for which $0 < a < dqp^n$, (a,dp) = 1 and $\gamma_n(a) = \gamma_n(1 + b_\theta q)^k$.

Now set $\Phi_n = (1+X)^{p^n} - 1$. The power series $f(X,\theta\omega) \in \Lambda = \mathfrak{o}[[X]]$ is defined by the \mathfrak{o} -algebra isomorphisms

$$\Lambda/\Phi_n\Lambda \to R_n$$
, $1 + X + \Phi_n\Lambda \to \gamma_n(1 + b_\theta q)$

as follows:

$$f(X,\theta\omega) + \Phi_n\Lambda \to \xi_n(\theta)$$
.

Thus, by (3),

(5)
$$f(X,\theta\omega) \equiv \sum_{k=0}^{p^{n-1}} c_k(\theta) (1+X)^{p^{n-k}} \pmod{\Phi_n \Lambda}.$$

We observe that $f(X,\theta\omega)$ depends upon the choice of b_{θ} ; when wishing to emphasize this dependence we say that $f(X,\theta\omega)$ belongs to a particular value of this parameter. (A natural choice would be $b_{\theta}=d$. This was fixed in [4] and [12] but does not suffice for the present purpose.)

For a p-adic integer α and for $n \ge 0$, let $s_n(\alpha) \in \mathbb{Z}$ denote the unique

number such that $0 \le s_n(\alpha) < qp^n$ and $s_n(\alpha) \equiv \alpha \pmod{qp^n}$. If p > 2, let V denote the group of (p-1)st roots of 1, and if p = 2, let $V = \{\pm 1\}$. For $k \in \mathbb{Z}$, let $\alpha_k = \alpha_k(n,\theta)$ be any p-adic integer such that

(6)
$$\alpha_k \equiv (1 + b_\theta q)^k \pmod{qp^n}.$$

By using these notations we can express $c_k(n,\theta)$ in the following form (see [12, p. 122]): If d > 1, then

(7)
$$c_k(n,\theta) = -\frac{1}{d} \sum_{\pm \eta} \sum_{i=0}^{d-1} i\theta(s_n(\eta \alpha_k) + iqp^n),$$

where, as always in the sequel, $\sum_{\substack{+\eta\\ \text{representatives }\eta}}$ denotes summation over any system of representatives η of $V \mod \pm 1$. If d=1, that is, p>2 and $\theta=\omega^u$ with u odd, $u \not\equiv -1 \pmod{p-1}$, then

(8)
$$c_{k}(n,\theta) = -\frac{1}{p^{n+1}} \sum_{\pm \eta} s_{n}(\eta \alpha_{k}) \eta^{u} + \frac{1}{2} \sum_{\pm \eta} \eta^{u}.$$

Both formulas are valid for all $k = 0, ..., p^n - 1$.

We now extend (7) and (8) to all $k \in \mathbb{Z}$ by taking them as definitions of $c_k(n,\theta)$ for the other k. Then it is readily seen that $c_k(n,\theta) = c_h(n,\theta)$ whenever $k \equiv h \pmod{p^n}$.

For further reference, let us finally record a formula needed in the proof of (7) (e.g., $\lceil 12, p. 121 \rceil$): if d > 1 then, for all $z \in \mathbb{Z}$,

(9)
$$\sum_{i=0}^{d-1} \theta(z + iqp^n) = 0.$$

3. Congruences for the group algebra elements; case p > 2.

In this section we suppose that p > 2. Let l be a prime $\equiv 1 \pmod{p}$, and let ψ be a nonprincipal character mod l having a p-power order. As p > 2, we see that ψ is even and so $\xi_n(\theta \psi)$ is defined, unless $\theta \psi = \omega^{-1}$.

PROPOSITION 1. Suppose that $\theta_l \psi \neq 1$, where θ_l denotes the l-component of θ . Choose a common value b for the parameters b_{θ} and $b_{\theta\psi}$. Then, for $n = 0, 1, \ldots$ and for all $k \in \mathbb{Z}$,

$$c_k(n,\theta\psi) \equiv c_k(n,\theta) - \theta(l)c_{k-t}(n,\theta) \pmod{\mathfrak{p}},$$

where t = t(n) is the unique rational integer such that

(10)
$$0 \le t < p^n, \ l \equiv (1 + bp)^t \pmod{p^{n+1}}.$$

PROOF. The assumption $\theta_l \psi \neq 1$ implies, in particular, that $l | f_{\theta \psi}$. Hence $\theta \psi \neq \omega^{-1}$.

Let us keep n and k fixed. First assume that $l|f_{\theta}$. Then $f_{\theta\psi} = f_{\theta} = d$ or dp with d > 1. Since the order of ψ is a p-power, $\psi(a) \equiv 1 \pmod{p}$ unless a is divisible by l. Thus we find, because $\theta_l \neq \psi^{-1}$, that $(\theta\psi)(a) = \theta(a)\psi(a) \equiv \theta(a) \pmod{p}$ for all $a \in \mathbb{Z}$. Consequently, by (7), $c_k(\theta\psi) \equiv c_k(\theta) \pmod{p}$ which proves the assertion.

Secondly let $(l, f_{\theta}) = 1$. Now $f_{\theta \psi} = ld$ or ldp with (l, d) = 1, and by using the fact that $\alpha_k l \equiv (1 + bp)^{k+t} \pmod{p^{n+1}}$ we can write

$$c_{k+t}(\theta\psi) = -\frac{1}{ld} \sum_{\pm \eta} \sum_{i=0}^{ld-1} i\theta(s_n(\eta \alpha_k l) + ip^{n+1}) \psi(s_n(\eta \alpha_k l) + ip^{n+1}).$$

To get rid of ψ , observe that among the numbers $s_n(\eta \alpha_k l) + i p^{n+1}$ (i = 0, ..., ld-1) those divisible by l are precisely $s_n(\eta \alpha_k l) + (i_n + j l) p^{n+1}$ with j = 0, ..., d-1, where i_n is defined by

$$s_n(\eta \alpha_k l) + i_n p^{n+1} = l s_n(\eta \alpha_k), \ 0 \le i_n \le l-1.$$

It follows that

$$dc_{k+t}(\theta\psi) \equiv -\sum_{\pm \eta} \sum_{i=0}^{ld-1} i\theta(s_n(\eta\alpha_k l) + ip^{n+1})$$

$$+\sum_{\pm \eta} \sum_{j=0}^{d-1} (i_{\eta} + jl)\theta(ls_n(\eta\alpha_k) + jlp^{n+1}) \pmod{\mathfrak{p}}.$$

To reformulate this congruence, note that

$$\sum_{i=0}^{ld-1} i\theta(z+ip^{n+1}) = \sum_{i=0}^{l-1} \sum_{j=0}^{d-1} (j+id)\theta(z+jp^{n+1})$$

$$\equiv \sum_{j=0}^{d-1} j\theta(z+jp^{n+1}) \pmod{p}$$

for all $z \in \mathbb{Z}$. If d > 1, we therefore infer, on recalling (9), that

$$dc_{k+1}(\theta\psi) \equiv dc_{k+1}(\theta) - \theta(l)dc_k(\theta) \pmod{\mathfrak{p}}.$$

Thus the proposition is established in this case.

Now let d = 1. Then $\theta = \omega^u$ and our congruence reduces to

$$c_{k+t}(\theta\psi) \equiv \theta(l) \sum_{\pm \eta} i_{\eta} \theta(s_{\eta}(\eta \alpha_k)) \equiv \sum_{\pm \eta} i_{\eta} \eta^{u} \pmod{\mathfrak{p}}$$

or

(11)
$$c_{k+1}(\omega^{u}\psi) \equiv -\frac{1}{p^{n+1}} \sum_{\pm \eta} (s_{n}(\eta \alpha_{k}l) - ls_{n}(\eta \alpha_{k}))\eta^{u} \pmod{\mathfrak{p}}.$$

Combined with (8) this yields

$$c_{k+t}(\omega^u \psi) \equiv c_{k+t}(\omega^u) - lc_k(\omega^u) \pmod{\mathfrak{p}}.$$

Thus the proof is complete.

The following supplement to Proposition 1 deals with the case in which $\xi_n(\theta\psi)$ is defined but $\xi_n(\theta)$ is not. Here the parameter $b_{\theta\psi}$ may be chosen to fulfil only the original conditions (see (2)).

For $z \in \mathbb{Z}$, denote by $\operatorname{ord}_p(z)$ the exponent of p in the prime decomposition of z.

Proposition 2. Let $m = \operatorname{ord}_p((l-1)/p)$. For n = 0, ..., m and for all $k \in \mathbb{Z}$,

$$c_k(n,\omega^{-1}\psi)\equiv \frac{1-l}{2p^{n+1}}\ (\mathrm{mod}\ \wp).$$

PROOF. This is in fact proved in [1, pp. 20–21]. It can also be verified easily by using above computations: since now $s_n(\eta \alpha_k l) = s_n(\eta \alpha_k)$, one finds in analogy of (11) that

$$c_{k+t}(\omega^{-1}\psi) \equiv -\frac{1-l}{p^{n+1}} \sum_{+n} s_n(\eta \alpha_k) \eta^{-1} \equiv -\frac{1-l}{p^{n+1}} \cdot \frac{p-1}{2} \pmod{\mathfrak{p}}.$$

This proves the claim.

By applying Proposition 1 to $\xi_n(\theta)$ and $\xi_n(\theta\psi)$ (see (3)) we obtain the following result.

PROPOSITION 3. If ψ is a character with $f_{\psi} = l$ and with order a power of p, and if $\theta_l \psi \neq 1$, then for $n \geq 0$,

(12)
$$\xi_n(\theta\psi) \equiv (1 - \theta(l)\gamma_n(1 + bp)^{-t})\xi_n(\theta) \pmod{\nu R_n},$$

where $b = b_{\theta} = b_{\theta h}$ and t is defined by (10).

This proposition actually gives a congruence mod pR_n between $\xi_n(\theta)$ and $\xi_n(\theta\psi)$ for any character $\psi \in C_1$ whose order is a power of p (provided that $\theta\psi \neq \omega^{-1}$). Firstly, if $f_{\psi} = l$ and $\theta_l\psi = 1$, then we apply Proposition 3 with $\theta\psi$ and ψ^{-1} in place of θ and ψ , respectively, to get

$$(13) \qquad (1 - (\theta \psi)(l)\gamma_n (1 + bp)^{-t})\xi_n(\theta \psi) \equiv \xi_n(\theta) \pmod{\mathfrak{p}R_n}.$$

Secondly, if f_{ψ} is not a prime, we can split ψ as $\psi = \psi_1 \dots \psi_r$, where the conductors of ψ_i are distinct primes. Then, on using (12) or (13) successively for each ψ_i we arrive at the desired congruence.

4. Case p = 2.

Now let p=2. Consider an even nonprincipal character $\psi \in C_1$, having order a power of 2. As above, let $\psi=\psi_1...\psi_r$ be the canonical decomposition of ψ into components ψ_i modulo prime powers. The conductor of each ψ_i is, in fact, either 4 or an odd prime l_i . If ψ_i is even, then $f_{\psi_i}=l_i\equiv 1\pmod 4$ and between $\xi_n(\theta)$ and $\xi_n(\theta\psi_i)$ there is a congruence analogous to (12) or (13), as we shall see. But if ψ_i is odd, then $\xi_n(\theta\psi_i)$ is not defined. Therefore, to derive a congruence between $\xi_n(\theta)$ and $\xi_n(\theta\psi)$ we must extend the previous considerations as follows.

Let C_1' denote the set obtained from C_1 on excluding the principal character and ω . For any even character θ in C_1' and for all $n \ge 0$ and $k \in \mathbb{Z}$, let us define $c_k(\theta) = c_k(n,\theta)$ by the equation (cf. (7))

(14)
$$c_{k}(n,\theta) = -\frac{1}{d} \sum_{i=0}^{d-1} i\theta(s_{n}(\alpha_{k}) + 2^{n+2}i);$$

then define $\xi_n(\theta)$ by (3) and $f(X,\theta\omega)$ by (5). It follows that $\xi_n(\theta) \in R_n$ and that (14), (3) and (5) hold true whenever $\theta \in C_1'$ (but note that (1) and (4) do not hold, in general, in case of even θ). The following lemma states two simple properties of $c_k(\theta)$.

LEMMA. Let $\theta \in C_1'$ and let b_θ be fixed. If $n \ge 0$ and k is any rational integer, then

(a)
$$c_k(n,\omega\theta) = c_k(n,\theta)$$
,

(b)
$$c_k(n,\theta) \equiv \sum_{i=0}^{d-1} i\theta(s_n(-\alpha_k) + 2^{n+2}i) \pmod{p}$$
.

PROOF. (a) If $f_{\theta} = d$, then $f_{\omega\theta} = 4d$ and the assertion follows from (14) since $\omega(s_n(\alpha_k) + 2^{n+2}i) = \omega(\alpha_k) = 1$. If $f_{\theta} = 4d$, then write $\theta = \omega\theta'$ and note that $c_k(\omega\theta') = c_k(\theta')$.

(b) As $\theta(-1)\theta(s_n(-\alpha_k)+2^{n+2}i)=\theta(s_n(\alpha_k)-2^{n+2}(i+1))$, we get, on putting j=d-i-1,

$$\theta(-1)\sum_{i=0}^{d-1}i\theta(s_n(-\alpha_k)+2^{n+2}i)=-\sum_{i=0}^{d-1}(j-d+1)\theta(s_n(\alpha_k)+2^{n+2}j).$$

By (14) and (9) (which holds for even θ as well), this gives the assertion.

Now let l be an odd prime and put $l^* = (-1)^{(l-1)/2}l$. Let ψ be a nonprincipal character mod l having a 2-power order. The following Propositions 4-6 correspond to Propositions 1-3 in the present case.

PROPOSITION 4. Let $\theta \in C'_1$ and suppose that $\theta_1 \psi \neq 1$. Choose a common value b for b_{θ} and $b_{\theta\psi}$. If $n \geq 0$ and k is any rational integer, then

$$c_k(n,\theta\psi) \equiv c_k(n,\theta) - \theta(l)c_{k-t}(n,\theta) \pmod{\mathfrak{p}},$$

where t = t(n) is the unique rational integer such that

(15)
$$0 \le t < 2^n, \ l^* \equiv (1+4b)^t \pmod{2^{n+2}}.$$

PROOF. The proof is similar to that of Proposition 1 and its details are omitted. In case $(l, f_{\theta}) = 1$ observe that l divides $s_n(\alpha_k l^*) + 2^{n+2}i$ (i = 0, ..., ld - 1) if and only if $i = i_0 + jl$, where $0 \le j \le d - 1$ and i_0 is defined by

(16)
$$s_n(\alpha_k l^*) + 2^{n+2} i_0 = l s_n((-1)^{(l-1)/2} \alpha_k), \ 0 \le i_0 \le l-1.$$

When transforming the expression of $c_{k+t}(\theta \psi)$ one has to use both (14) and Lemma (b).

PROPOSITION 5. Let $m = \operatorname{ord}_2((l^*-1)/4)$. For n = 0, ..., m and for all $k \in \mathbb{Z}$,

$$c_k(n,\omega\psi)=c_k(n,\psi)\equiv\frac{1-l^*}{2^{n+2}}\ (\mathrm{mod}\ \wp).$$

Proof. For the values of n and k in question,

$$c_k(\psi) \equiv \sum_{i=0}^{l-1} i\psi(s_n(\alpha_k) + 2^{n+2}i) \equiv \sum_{i=0}^{l-1} i + i_0 \pmod{\mathfrak{p}},$$

where (cf. (16))

$$2^{n+2}i_0 = ls_n((-1)^{(l-1)/2}\alpha_k) - s_n(\alpha_k).$$

This gives easily the claimed congruence for $c_k(\psi)$. Lemma (a) completes the proof.

PROPOSITION 6. As above, let ψ be a character with $f_{\psi} = l$ and with order a power of 2. Let $\theta \in C'_1$ and suppose that $\theta_l \psi \neq 1$. For all $n \geq 0$,

$$\xi_n(\theta\omega) \equiv (1 - \theta(l)\gamma_n(1 + 4b)^{-t})\xi_n(\theta) \pmod{\varphi R_n},$$

where $b = b_{\theta} = b_{\theta \psi}$ and t is defined by (15).

As in case p > 2, we actually get a congruence for more general characters $\psi = \psi_1 \dots \psi_r$ (see the remark after Proposition 3). Note, in particular, that if ψ has a factor $\psi_i = \omega$, this factor can be ignored by Lemma (a).

5. Congruences for the power series.

The definition of $f(X,\theta\omega)$ together with Propositions 3 and 6 immediately yields the following result.

Theorem 1. Let θ be an odd character of the first kind and let ψ be a character with $f_{\psi} = l$, a prime, and with a p-power order; suppose that $\theta \omega$ and $\theta \psi \omega$ are nonprincipal. Then the power series $f(X, \theta \omega)$ and $f(X, \theta \psi \omega)$ belonging to a common parameter b satisfy

$$f(X,\theta\psi\omega) \equiv h(X,\theta,l)f(X,\theta\omega) \pmod{\wp\Lambda}, \text{ if } l|f_{\theta\psi}, h(X,\theta\psi,l)f(X,\theta\psi\omega) \equiv f(X,\theta\omega) \pmod{\wp\Lambda}, \text{ otherwise,}$$

where $h(X,\chi,l) = 1 - \chi(l)(1+X)^{-\tau}$, $\tau = \tau(l)$ being the p-adic integer defined by $(1+bq)^{\tau} = \omega(l)l$.

We remind that here $f(X,\theta\psi\omega)$ does not represent a p-adic L-function if ψ is odd (a case which can occur only for p=2).

If ψ is an arbitrary character in C_1 with a p-power order, then an iterated use of Theorem 1 gives a congruence of the form

$$h'(X) f(X, \theta \psi \omega) \equiv h''(X) f(X, \theta \omega) \pmod{\mathfrak{p}\Lambda},$$

where h'(X) and h''(X) are products of certain power series $h(X,\chi,l)$. More precisely, if ψ has the canonical decomposition $\psi = \psi_1 \dots \psi_r$, then each $\psi_i \neq \omega$ gives rise to a factor $h(X,\chi,l)$ in h'(X) or h''(X) (l a prime factor of f_{ψ}).

In case $\theta\omega = 1$, Propositions 2 and 5 yield the following supplement to Theorem 1.

Theorem 2. If ψ is the character of Theorem 1, then

$$f(X,\psi) \equiv cX^{p^m-1} \pmod{\mathfrak{p}\Lambda + X^{p^m}\Lambda},$$

where $m = \operatorname{ord}_{p}((\omega(l)l-1)/q)$ and $c = (1-\omega(l)l)/2p^{m+1}$.

Again, if $\psi = \psi_1 \dots \psi_r$ with r > 1, then we may combine Theorems 1 and 2 to get a congruence of the form

$$f(X,\psi) \equiv h_0(X)g(X) \pmod{\mathfrak{p}\Lambda},$$

where $h_0(X)$ is the product of certain $h(X,\chi,l)$ and g(X) satisfies the congruence of Theorem 2.

6. Application to λ -invariants.

Denote by λ_{θ} the λ -invariant of the power series $f(X,\theta\omega)$, and put $\lambda_{\theta} = -1$ for $\theta = \omega^{-1}$. As a corollary of the previous results, we obtain a relation between λ_{θ} and $\lambda_{\theta\psi}$ whenever $\psi \in C_1$ is an even character of p-power order. This relation is due to Gras [2]. We will formulate it in a slightly different form which gives some direct information about the

structure of the so-called Riemann-Hurwitz genus formula for the λ^- -invariants of abelian fields.

Let W denote the set of all roots of 1 with a p-power order. Note that the λ -invariant of $h(X,\chi,l)$ equals p^m or 0 according to whether $\chi(l) \in W$ or not (m is defined in Theorem 2). Hence we may formulate our corollary as follows.

COROLLARY. Let θ and ψ be characters of the first kind. Suppose that θ is odd and that ψ is even and of p-power order. Let l_1, \ldots, l_r be the odd prime factors of f_{ψ} ; denote by θ_i and ψ_i the l_i -components of θ and ψ , respectively $(i=1,\ldots,r)$. Then

$$\lambda_{\theta\psi} = \lambda_{\theta} + \sum_{i=1}^{r} p^{m_i} \varepsilon_{\theta}(\psi_i),$$

where, for all i, $m_i = \operatorname{ord}_p((\omega(l_i)l_i - 1)/q)$ and

$$\varepsilon_{\theta}(\psi_{i}) = +1, \quad \text{if } \theta(l_{i}) \in W,$$

$$= -1, \quad \text{if } \theta_{i} = \psi_{i}^{-1} \text{ and } (\theta \psi_{i})(l_{i}) \in W,$$

$$= 0, \quad \text{otherwise.}$$

REMARKS. (i) By the Ferrero-Washington theorem, the μ -invariant μ_{θ} of $f(X,\theta\omega)$ is zero. If we do not assume this theorem, then Theorem 1 tells us that $\mu_{\theta}=0$ if and only if $\mu_{\theta\psi}=0$, where θ and ψ satisfy the conditions of the above corollary. A different proof for this result has been given earlier by Iwasawa (see [5, Theorem 3]).

(ii) Ribet [10] has proved the corollary in the special case p > 2, $\theta = \omega^{-1}$.

Now let F be an imaginary abelian field. Denote by F_{∞} the cyclotomic Z_p -extension of F. When considering λ_F^- , the λ^- -invariant of F_{∞}/F , we may suppose without loss of generality that the conductor of F is not divisible by qp. Then the character group X of F consists of characters of the first kind, and

$$\lambda_F^- - \delta_F = \sum_{\theta \in X^-} \lambda_{\theta},$$

where X^- denotes the set of odd characters in X and $\delta_F = 1$ of 0 according to whether or not F contains a primitive qth root of 1.

Let E be an extension of F with [E:F] = p. Suppose that qp does not divide its conductor. We can write the character group of E in the form

$$Y = \{\theta\psi^k \colon \theta \in X, \ 0 \le k \le p-1\},\$$

where ψ is a fixed even character in Y having a p-power order and the

property that, in the notation of the corollary, its l_i -components ψ_i do not belong to X (i = 1, ..., r). Then the corollary implies the following relation between λ_F^- and λ_E^- :

$$\begin{split} \lambda_E^- - \delta_E &= \sum_{\theta \in X^-} \sum_{k=0}^{p-1} \lambda_{\theta \psi^k} \\ &= p(\lambda_F^- - \delta_F) + \sum_{i=1}^r p^{m_i} \sum_{\theta \in X^-} \sum_{k=1}^{p-1} \varepsilon_{\theta}(\psi_i^k). \end{split}$$

To deduce the "genus formula" from this, one has to show that for i = 1, ..., r,

$$p^{m_i} \sum_{\theta \in X^-} \sum_{k=1}^{p-1} \varepsilon_{\theta}(\psi_i^k) = g_i(e_i - 1) - g_i^+(e_i^+ - 1),$$

where e_i denotes the ramification index of l_i in E_{∞}/F_{∞} , g_i is the number of prime factors of l_i in E_{∞} , and e_i^+ , g_i^+ are the corresponding symbols for the maximal real subfields of E_{∞} and F_{∞} . This is a straightforward application of the known relations between the decomposition laws and character groups of abelian fields.

The formula thus obtained can be easily generalized to any p-extension E/F of imaginary abelian fields (see, e.g., [7]).

REFERENCES

- 1. B. Ferrero, Iwasawa invariants of abelian number fields, Math. Ann. 234 (1978), 9-24.
- G. Gras, Sur la construction des fonctions L p-adiques abéliennes, in Théorie des nombres, Sém. Delange-Pisot-Poitou, 20e année, 1978/79, Exp. nº 22, 20 pp. Secrétariat Mathématiques: Paris. 1980.
- 3. G. Gras, Sur les invariants «Lambda» d'Iwasawa des corps abéliens, in Théorie des nombres, Publ. Math. Fac. Sci. Besançon, année 1978-79, Exp. No. 5, 37 pp.
- 4. K. Iwasawa, On p-adic L-functions, Ann. of Math. 89 (1969), 198-205.
- K. Iwasawa, On the μ-invariants of Z_I-extensions, in Number theory, algebraic geometry and commutative algebra, in honor of Y. Akizuki, pp. 1-11, Kinokuniya Book-Store, Ltd., Tokyo, 1973.
- K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tôhoku Math. J. 33 (1981), 263-288.
- Y. Kida, l-Extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519-528.
- 8. Y. Kida, Cyclotomic Z₂-extensions of J-fields, J. Number Theory 14 (1982), 340-352.
- 9. T. Metsänkylä, On the cyclotomic invariants of Iwasawa, Math. Scand. 37 (1975), 61-75.
- K. A. Ribet, p-Adic L-functions attached to characters of p-power order, in Théorie des nombres, Sém. Delange-Pisot-Poitou, 19e année, 1977/78, Exp. nº 9, 8 pp. Secrétariat Mathématiques, Paris 1978.

- 11. W. M. Sinnott, On p-adic L-functions and the Riemann-Hurwitz genus formula, Compositio Math. 53 (1984), 3-17.
- 12. L. C. Washington, *Introduction to cyclotomic fields* (Graduate Texts in Math. 83), Springer-Verlag, Berlin Heidelberg New York, 1982.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TURKU SF-20500 TURKU FINLAND