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NOTE ON A CONGRUENCE
FOR p-ADIC L-FUNCTIONS

TAUNO METSANKYLA

1. Introduction.

For a fixed prime p, let L,(s,x) denote the Kubota-Leopoldt p-adic
L-function attached to a primitive Dirichlet character x. If the so-called
first factor 6 of x is nonprincipal, then L, (s,x) possesses a well known power
series expression, say f'(X,0), due to Iwasawa [4]. In this note we consider a
congruence relation between f (X ,0) and f (X ,0y), where the character y is
of p-power order.

Let Q, denote the field of p-adic numbers and let K be a finite extension
of Q, containing the values of the characters 6 and 6y. Then f(X,0) and
f(X,0¢y) belong to the power series algebra A = o[[X]], where ois the ring
of integers of K. Let p stand for the maximal ideal of o. It was recently
proved by Gras [2] that there is a congruence mod pA between f (X ,0) and
f(X,0¢) (previously, some results in the same direction had been obtained
by the author [9] and Ferrero [1]). However, the proofin [2] is based on a
new construction of p-adic L-functions. We shall prove the congruence
directly, by using Iwasawa’s original construction of f (X,0). We note that
the proof brings some new aspects to the original theory of f (X,0) that are
perhaps of independent interest.

The congruence has an application to the Iwasawa A-invariants. Indeed,
one immediately deduces an explicit relation between the A-invariants of
f(X,0) and f(X,0y) (formulated by Gras in [2, Proposition V.3]) and,
from this, the so-called Riemann—Hurwitz genus formula between the 1~ -
invariants of an imaginary abelian field and its p-extension (see [3], [6],
[7], [8], [11]). We shall briefly discuss this application at the end of the

paper.

2. The group algebra elements behind the power series.

Putg = pif p > 2and q = 4if p = 2. If the conductor f, of a character
is not divisible by gp, then y is said to be of the first kind. Let C, denote the
set of all such characters y (all characters are assumed primitive).

Making a slight change to the previous notation we will consider the
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Iwasawa power series attached to a character of the form 6w, where w is the
Teichmiiller character mod g and @ is an odd character (# w~!)in C,. Let
fo = d or dq, where d is prime to p.

In the definition of f(X,0w) (see [4], [12]), a crucial role is played by an
element £,(6) of the group algebra R, = o[I,] (n =0,1,...), where I, is the
multiplicative group of those residue classes a + dqp"Z for which a = 1
(mod dg). Denote by y,(a) the image of a + dgp"Z under the canonical
projection (Z/dqp"Z)* — I,. Then

1) &0O)=- E};p— Y ab(@p,(@)"* (0 <a < dgp", (adp) =1).

Now observe that I', is a cyclic group of order p”", generated by 7,(1 + byq),
where b, is any integer satisfying the conditions
@ (by,p) =1, (1+byq,dp) =1.

It follows that we can write &£,(0) in the form

n—1
o) G0) =" 3 cOnn(i+ boa) ™
with
@ u(0) = exn0) = = 5z Tabl@)e o

(k=0,..., p"—1), where the sum is extended over the values of a for which
0 < a <dqgp", (a,dp) =1 and y,(a) = y,(1 + beq)*.

Now set @, = (1 + X)?"— 1. The power series f(X,0w) e A = o[[X]] is
defined by the o-algebra isomorphisms

A/®A-R,, 1+ X +DA—>7y,(1+byq)

as follows:
f(X,0w) + ®,A - &,(0).
Thus, by (3),
) fX00)="Y, GO+XP (modd,A).
k=0

We observe that f(X,0w) depends upon the choice of by; when wishing to
emphasize this dependence we say that f(X,0w) belongs to a particular
value of this parameter. (A natural choice would be by = d. This was fixed in
[4] and [12] but does not suffice for the present purpose.)

For a p-adic integer a and for n = 0, let s,(x) € Z denote the unique
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number such that 0 < s,(«) < gp" and s, () = a (modgp"). If p > 2, let V
denote the group of (p — 1)st roots of 1, and if p = 2, let V = { +1}. For
keZ,let o, = oy (n,0) be any p-adic integer such that

(6) o, = (1+ beq)* (mod gp™).

By using these notations we can express c,(n,0) in the following form (see
[12, p. 122]): If d > 1, then

d

1

1 = -
) am0)=—5 Y 3 ils,(no) + igp"),
tn i=0
where, as alwaysin the sequel, )’ denotes summation over any system of
representatives # of ¥ mod +1. ﬁy d =1, thatis, p > 2 and 0 = »* with u
odd, u £ —1 (mod p — 1), then

1 1
8) c(n0) = = 1 L salnoudn*+ 5 2 1.
p £n tn

Both formulas are valid for all k =0, ...,p"—1.

We now extend (7) and (8) to all k € Z by taking them as definitions of
¢,(n,0) for the other k. Then it is readily seen that c(n,0) = c,(n,0)
whenever k = h (mod p").

For further reference, let us finally record a formula needed in the proof
of (7) (e.g., [12, p.121]): if d > 1 then, for all ze Z,

©) dil 0(z + igp") = 0.
i=0

3. Congruences for the group algebra elements; case p > 2.
In this section we suppose that p > 2. Let | be a prime = 1 (mod p), and
let Y be a nonprincipal character mod [ having a p-power order. As p > 2,

we see that y is even and so &,(y) is defined, unless 6y = 0 ™.

ProposITION 1. Suppose that 0,y # 1, where 0, denotes the lI-component
of 0. Choose a common value b for the parameters by and bgy. Then, for
n=0,1,...and forallk € Z,

c(n,0y) = ¢ (n,0) — 0(cy—,(n,0) (mod p),
where t = t(n) is the unique rational integer such that
(10) 0<t<p", I=(1+bp) (modp"*?).

Proor. The assumption 6, # 1 implies, in particular, that I| f,. Hence
O #w™ 1.
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Let us keep n and k fixed. First assume that [| f. Then fo, = f, = d or dp
with d > 1. Since the order of ¥ is a p-power, aﬁ(a) =1 (mod p) unless a is
divisible by I. Thus we find, because 6, # Y ~1, that (6y)(a) = 0(a)y(a)
‘= 6(a) (mod p) for all a € Z. Consequently, by (7), i (0Y) = ¢, (0) (mod p)
which proves the assertion.

Secondly let (I,fp) = 1. Now fg, = Id or ldp with (I,d) =1, and by using
the fact that o,/ = (1 + bp)**t (mod p"* ') we can write

-1

Ck+¢(9¢)=— Z Z i0 (su(moud) + ip™* ) (sa(neue) + ip" ).

tn i=0

To get rid of y, observe that among the numbers s,(no,l)+ ip"*!
(i= .,1d—1) those divisible by [ are precisely s,(nol) + (i, +jl)p"*’
W1th _] = 0 .,d—1, where i, is defined by

Samoud) +i,p" " = Is,(noy), 0 < iy S 1—1.
It follows that
ld—1
des (OY) = — Z Y i0(s,(nad) +ip"* 1)

+n i=0

+§ Z iy +j1)0(Isu(noy) + jlp"**) (mod p).
n i=0

To reformulate this congruence, note that
d—1 I-1 d-1

Y ifz+ip"t)=Y ¥ (i-j-id)@(z+jp"“)

i=0 i=0 j=

d-1
= J,;01'0(2 +jp"**) (mod p)

for all ze Z. If d > 1, we therefore infer, on recalling (9), that
dey+,(0Y) = dcy44(0) — 0(1)dci(6) (mod p).

Thus the proposition is established in this case.
Now let d = 1. Then 0 = w* and our congruence reduces to

Cis:(O0) = 00) Y. ,0(s,(n0u)) = Y ign* (mod p)
. 0 10
or

1) @)= — I—,—l-f . (1)~ L, 1 (mod ).
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Combined with (8) this yields
i+t (0"Y) = €44 (@0") — loy(@*) (mod p).
Thus the proof is complete.

The following supplement to Proposition 1 deals with the case in which
£4(0y) is defined but £,(0) is not. Here the parameter by, may be chosen to
fulfil only the original conditions (see (2)).

For zeZ, denote by ord,(z) the exponent of p in the prime
decomposition of z.

ProrosiTioN 2. Let m = ord,((l —1)/p). For n=0,...,m and for all
keZ,

- 1-1
oY) = ‘2*5,;::‘1' (mod p).

Proor. This is in fact proved in [1, pp. 20-21]. It can also be verified
easily by using above computations: since now s, (1o l) = s,(no,), one finds
in analogy of (11) that

1-1 - 1-1 p-1
eS| Z St~ = — g — (mod p).
p tn 2

Cer@™ ) = - >

This proves the claim.

By applying Proposition 1 to &£,(0) and &,(0y) (see (3)) we obtain the
following result.

ProvosITioN 3. IfY is a character with f, = | and with order a power of p,
and if 0 # 1, then for n = 0,
(12) Ea(OY) = (1 — 0()y,(1 + bp)™")&,4(8) (mod pR,),
where b = by = by, and t is defined by (10).

This proposition actually gives a congruence mod pR, between &,(6) and
£a(6y) for any character Y € C; whose order is a power of p (provided that

0y # w™1). Firstly, if f, = l and 6,y = 1, then we apply Proposition 3 with
6y and y ! in place of 6 and ¥, respectively, to get

(13) (1= (09)()ya(1 +bp)~")Ea(0Y) = £,(6) (mod pR,,).

Secondly, if f, is not a prime, we can split y as y = ¢, ... {,, where the
conductors of y; are distinct primes. Then, on using (12) or (13)
successively for each y; we arrive at the desired congruence.
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4. Casep = 2.

Now let p = 2. Consider an even nonprincipal character y € C,, having
order a power of 2. As above, let ¥ =y,..., be the canonical
decomposition of ¥ into components ¥; modulo prime powers. The
conductor of each y; is, in fact, either 4 or an odd prime I;. If ; is even, then
Sfo.=1;=1 (mod4) and between ¢,(0) and £,(0y;) there is a congruence
analogous to (12) or (13), as we shall see. But if ; is odd, then &,(6y;) is not
defined. Therefore, to derive a congruence between &,(0) and &,(0y) we
must extend the previous considerations as follows.

Let C} denote the set obtained from C, on excluding the principal
character and w. For any even character 8in C} and foralln = 0Oand ke Z,
let us define c,(6) = c,(n,0) by the equation (cf. (7))

(14) and) =~ d_i; i0(su(og) + 27 2i);

then define &,(6) by (3) and f(X,0w) by (5). It follows that £,(6) € R, and
that (14), (3) and (5) hold true whenever 0 € C (but note that (1) and (4)do
not hold, in general, in case of even #). The following lemma states two
simple properties of ¢, (0).

LeMMA. Let 0 € C and let by be fixed. Ifn = 0 and k is any rational integer,
then
(@) cx(n,wb) = cx(n,0),

-1
(b) cx(n,0) = ,Zo i0(sy(— ) +2"* 2i) (mod p).

Proor. (a) If fy = d, then f,, = 4d and the assertion follows from (14)
since w(s, (o) + 2"+ 2i) = w(o) = 1. If f = 4d, then write 6 = w8’ and note
that ¢;(w8’) = ¢, (@).

(b) As 8(—1)0(s,(—ax) +2"*2i) = O(s,(o) — 2"+ (i + 1)), we get, on
puttingj =d—i—1,

o(—1):g (s, — ) + 27+ 2) = — :g: (G —d +1)0(s, (@) +2"+2)).

By (14) and (9) (which holds for even 0 as well), this gives the assertion.

Now let I be an odd prime and put I*= (—1)*"D'2[ Let y be a
nonprincipal character mod / having a 2-power order. The following
Propositions 4-6 correspond to Propositions 1-3 in the present case.

ProrosiTION 4. Let 6 € C', and suppose that 0,y # 1. Choose a common
value b for by and byy. If n 2 0 and k is any rational integer, then
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ck(nyolll) = ck(nse) - 0(l)ck_,(n,9) (mOd P),
where t = t(n) is the unique rational integer such that
(15) 0<t<2" I*=(1+4b) (mod2"*2?).

Proor. The proof is similar 1o that of Proposition 1 and its details are
omitted. In case (l,f;) =1 observe that [ divides s,(0/*)+2""2i
(i=0,...,1d—1) if and only if i =iy +jl, where 0 <j <d—1 and i, is
defined by

(16) Saload*) + 27+ 2ig = Is, (= 1)~ ay), 0 ip<1-1.

When transforming the expression of ¢, +,(6y) one has to use both (14) and
Lemma (b).

ProposITION 5. Let m = ord,((I* —1)/4). For n=0,...,m and for all
keZ,

o) = ey(n) = 20 (mod p).

Proor. For the values of n and k in question,

-1 -1
W)= 3, ilsalon) +2720) = L i+io (mod p),

where (cf. (16))
2n+ 2iO = IS,,(( - 1)('— ”lzak) - sn(ak)-

This gives easily the claimed congruence for ¢,(). Lemma (a) completes
the proof.

PROPOSITION 6. As above, let Y be a character with f, = | and with order a
power of 2. Let 0 € C} and suppose that 0y # 1. For alln = 0,

&n0w) = (1= 60(1)y,(1 +4b)7")¢a(0) (mod pR,),
where b = by = by, and t is defined by (15).

As in case p > 2, we actually get a congruence for more general
characters ¥ =y, ...y, (see the remark after Proposition 3). Note, in
particular, that if ¥ has a factor ¥; = w, this factor can be ignored by
Lemma (a).

5. Congruences for the power series.
The definition of f(X,0w) together with Propositions 3 and 6
immediately yields the following result.
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THEOREM 1. Let 0 be an odd character of the first kind and let  be a
character with fy, = |, a prime, and with a p-power order; suppose that 0w and
Oy w are nonprincipal. Then the power series f(X,0w) and f(X,00w)
belonging to a common parameter b satisfy

fX, o) = h(X,0,) f(X,0w) (mod pA), if 1| foy,
hX,00,0) f (X,0yw) = f(X,0w) (mod pA), otherwise,

where h(X,x,1) =1 — x(1)(1 + X) 7%, © = (]) being the p-adic integer defined
by (1 +bq) = w(l)l.

We remind that here f (X ,0yw) does not represent a p-adic L-function if
V¥ is odd (a case which can occur only for p = 2).

If y is an arbitrary character in C; with a p-power order, then an iterated
use of Theorem 1 gives a congruence of the form

W (X)f(X,0yw) = k"(X)f (X ,6w) (mod pA),

where h'(X) and h”(X) are products of certain power series h(X,y,l). More
precisely, if Y has the canonical decomposition ¥ =, ...{,, then each
Y, # w gives rise to a factor h(X,y,!) in h'(X) or h”(X) (I a prime factor of
f).

In case w =1, Propositions 2 and § yield the following supplement to
Theorem 1.

THEOREM 2. If Y is the character of Theorem 1, then
f(X ¥) =cX?"~1 (mod pA + XP"A),
where m = ord,((w(l)l —1)/q) and ¢ = (1 — w()l)/2p™* .

Again, if Y =y, ...¢, with r > 1, then we may combine Theorems 1
and 2 to get a congruence of the form

SXW) = ho(X)g(X) (mod pA),

where ho(X) is the product of certain h(X,x,l) and g(X) satisfies the
congruence of Theorem 2. .

6. Application to A-invariants. ,

Denote by 4, the A-invariant of the power series f(X,0w), and put
Ag= —1for 6 = w~!. As a corollary of the previous results, we obtain a
relation between Ao and Ag, whenever ¥ € C, is an even character of p-
power order. This relation is due to Gras [2]. We will formulate it in a
slightly different form which gives some direct information about the
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structure of the so-called Riemann—Hurwitz genus formula for the A~-
invariants of abelian fields.

Let W denote the set of all roots of 1 with a p-power order. Note that the
A-invariant of h(X,y,l) equals p™ or 0 according to whether x(I) e W or not
(m is defined in Theorem 2). Hence we may formulate our corollary as
follows.

COROLLARY. Let 0 and y be characters of the first kind. Suppose that 0 is
odd and that  is even and of p-power order. Let 1, ...,l, be the odd prime
Jfactors of f,; denote by 0; and \; the l;-components of 0 and y, respectively
@(i=1,...,r). Then

Aoy = Aot X, P e,

where, for all i, m; = ord, ((w(l;)l; — 1)/q) and

e)) =+1, ifol)eWw,
=-1, if6;= !/’i—l and (0y;)() e W,
=0, otherwise.

REMARKS. (i) By the Ferrero-Washington theorem, the p-invariant 4 of
f(X,0w) is zero. If we do not assume this theorem, then Theorem 1 tells us
that y, = 0if and only if y,, = 0, where 0 and y satisfy the conditions of the
above corollary. A different proof for this result has been given earlier by
Iwasawa (see [5, Theorem 3]).

(ii) Ribet [10] has proved the corollary in the special case p > 2, 6
=w™ 1

Now let F be an imaginary abelian field. Denote by F,, the cyclotomic
Z-extension of F. When considering A; , the A”-invariant of F,/F, wemay
suppose without loss of generality that the conductor of F is not divisible
by gp. Then the character group X of F consists of characters of the first
kind, and

A’I:_él": Z_lﬂ,
deX

where X ~ denotes the set of odd characters in X and ér = 1 of 0 according
to whether or not F contains a primitive gth root of 1.

Let E be an extension of F with [E: F] = p. Suppose that gp does not
divide its conductor. We can write the character group of E in the form

Y={0y*:0eX, 0sk<p—1},

-where ¢ is a fixed even character in Y having a p-power order and the
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property that, in the notation of the corollary, its /;-components ; do not
belongto X (i =1,...,r). Then the corollary implies the following relation
between Ay and A : :

p—1
A.E —'6E= Z Z lowk

feX~ k=0
r p—1
=pl; =)+ X p™ Y. X eWh.
i=1 feX~ k=1

To deduce the “genus formula™ from this, one has to show that for
i=1,...,r,

-1
P 3T ah) = sla-D -l @ -1)

where ¢; denotes the ramification index of /;in E . /F ,, g; is the number of
prime factors of /;in E,, and ¢;", g;* are the corresponding symbols for the
maximal real subfields of E, and F . This is a straightforward application
of the known relations between the decomposition laws and character

groups of abelian fields.
The formula thus obtained can be easily generalized to any p-extension

E/F of imaginary abelian fields (see, e.g., [7]).
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