SCALAR IRREDUCIBILITY OF EIGENSPACE REPRESENTATIONS ASSOCIATED TO A SYMMETRIC SPACE

HENRIK STETKÆR

1. Introduction.

Let X = G/K be a homogeneous manifold, K being a closed subgroup of the Lie group G. Denoting the algebra of all G-invariant differential operators on X by D(X), we consider for each homomorphism $\chi: D(X) \to C$ the joint eigenspace

$$\mathscr{E}_{\chi}(X) = \{ f \in C^{\infty}(X) | Df = \chi(D)f, \ \forall D \in \mathbf{D}(X) \}$$

and the natural representation of G on $\mathscr{E}_{\gamma}(X)$.

The problem of whether T_x is (topologically) irreducible has been studied for different kinds of homogeneous spaces. See f.ex. [1], [2], and the survey paper [3] for symmetric spaces, and [4] and [5] for nilmanifolds. We shall here in the case of symmetric spaces treat the corresponding problem of scalar irreducibility:

A representation T of a group G on a topological vector space E is said to be scalarly irreducible, if the only continuous, linear operators $A: E \to E$ that satisfy AT(g) = T(g)A for all $g \in G$, are scalar multiples of the identity operator on E. Such A are called intertwining operators.

The main result of this paper is that T_{χ} is scalarly irreducible for any χ on any symmetric space of the non-compact type [Theorem 2]. As a contrast T_{χ} is not always topologically irreducible: S. Helgason has in [1; Theorem 2.1 for the rank 1 case] and in [2; Theorem 9.1 in general] found a necessary and sufficient condition on χ for T_{χ} to be topologically irreducible.

Since we need results from Helgason's paper [2], this paper can be viewed as a supplement to the discussion of eigenspace representations in [2].

2. A general result.

Let G be a transitive Lie transformation group of a C^{∞} -manifold X. Let E be a closed subspace of $C^{\infty}(X)$, equipped with the topology from $C^{\infty}(X)$

[i.e. uniform convergence of each derivative on compact sets]. We consider a representation T of G on E of the following form

$$[T(g)f](x) = \mu(g,x)f(g^{-1}x) \text{ for } f \in E, g \in G, x \in X,$$

where $\mu \in C^{\infty}(G \times X)$ is given. In case $\mu \equiv 1$ we say T is the natural representation of G on E.

1. PROPOSITION. Let $K := \{g \in G | g \cdot x_0 = x_0\}$ where $x_0 \in X$. Let T be a representation of G on E as above. If $T_{|K|}$ is a cyclic representation, then T is scalarly irreducible.

PROOF. Let $f_0 \in E$ be a cyclic vector for $T_{|K|}$. We shall show that there to each continuous, linear, intertwining operator $A: E \to E$ exists a $c \in C$ such that

$$(Af)(x) - cf(x) = 0$$
 for all $f \in E$ and all $x \in X$.

Consider for $c \in \mathbb{C}$ the continuous linear functional $u: E \to \mathbb{C}$ given by

$$\langle u, f \rangle := (Af)(x_0) - cf(x_0)$$
 for $f \in E$.

By the intertwining property of A it suffices to show that u = 0 for a suitable choice of the constant c. There are two cases to consider:

$$f_0(x_0) = 0.$$

Here we have for any $k \in K$ that

$$(T(k)f_0)(x_0) = \mu(k,x_0)f_0(k^{-1}x_0) = \mu(k,x_0)f_0(x_0) = 0,$$

so by the cyclicity of $T_{|K|}$ we get $f(x_0) = 0$ for all $f \in E$. But then $\langle u, f \rangle = 0 - 0 = 0$ for all $f \in E$.

$$f_0(x_0) \neq 0.$$

Here we choose $c = (Af_0)(x_0)f_0(x_0)^{-1}$, so that $\langle u, f_0 \rangle = 0$. Since

$$\langle u, T(k) f \rangle = \mu(k, x_0) \langle u, f \rangle$$
 for all $f \in E$ and $k \in K$,

we have

$$\langle u, T(k) f_0 \rangle = \mu(k, x_0) \langle u, f_0 \rangle = 0,$$

so by (ii) we get

$$\langle u,f\rangle = 0$$
 for all $f \in E$.

3. Symmetric spaces of the non-compact type.

Combining Proposition 1 with results from [2] we get the following theorem on eigenspace representations associated to a symmetric space.

2. Theorem. Let G be a connected semi-simple Lie group with finite center, K a maximal compact subgroup of G, and D(G/K) the algebra of G-incariant differential operators on G/K.

The natural representation of G on the joint eigenspace

$$\{f \in C^{\infty}(G/K) | Df = \chi(D)f, \forall D \in D(G/K)\}$$

is scalarly irreducible for any homomorphism $\chi: D(G/K) \to \mathbb{C}$.

Theorem 2 is an analogue to Theorem 9.1 of [2] which gives a necessary and sufficient condition on χ for the representation to be (topologically) irreducible.

PROOF. We use the (standard) notation from § 2 of [2] since our proof of Theorem 2 is based on that paper. In particular we let X = G/K and parametrize the joint eigenspaces by \mathfrak{a}_c^* : According to [2; p. 208] the joint eigenspaces for D(G/K) have the form.

$$\mathscr{E}_{\lambda}(X) = \{ f \in C^{\infty}(X) \mid Df = \Gamma(D)(i\lambda)f, \ \forall D \in \mathbf{D}(X) \},\$$

where $\Gamma(D)$ is a certain polynomial function on \mathfrak{a}_c^* and where λ runs through \mathfrak{a}_c^* .

We fix $\lambda \in \mathfrak{a}_c^*$ for the rest of the proof; we may and will assume that λ is simple (Cfr. p. 208 of [2]).

For $b \in B = K/M$ we introduce $e_b \in C^{\infty}(X)$ by

$$e_b(x) := \exp[(i\lambda + \rho)A(x,b)]$$
 for $x \in X$.

It is known, Cfr. [1, p. 94], that $e_b \in \mathscr{E}_{\lambda}(X)$, and so the space

$$\mathcal{H}_{\lambda} := \{x \to \int_{B} e_b(x) F(b) db \mid F \in L^2(B) \}$$

is contained in $\mathscr{E}_{\lambda}(X)$. Since λ is simple we get from the proof of Theorem 9.1 of [2] that \mathscr{H}_{λ} is dense in $\mathscr{E}_{\lambda}(X)$, and so that span $\{e_b | b \in B\}$ is dense in $\mathscr{E}_{\lambda}(X)$.

The natural action of K on e_b is $k \cdot e_b = e_{kb}$ so we see that $T_{|K|}$ is a cyclic representation of K on $\mathscr{E}_{\lambda}(X)$, any e_b being a cyclic vector.

All that remains is to refer to Proposition 1.

REFERENCES

- 1. S. Helgason, A duality for symmetric spaces with applications to group representations, Adv. in Math. 5 (1970), 1-154.
- 2. S. Helgason, A duality for symmetric spaces with applications to group representations, II: Differential equations and eigenspace representations. Adv. in Math. 22 (1976), 187–219.
- 3. S. Helgason, Invariant differential operators and eigenspace representations, in Representation theory of Lie groups (Proc. SRC/LMS Res. Sympos., Oxford, 1977), ed. G. L. Luke (London Math. Soc. Lecture Note Ser. 34), pp. 236-286. Cambridge University Press, Cambridge, 1979.
- 4. J. Jacobsen and H. Stetkær, Eigenspace representations of nilpotent Lie groups, Math. Scand. 48 (1981), 41-55.
- J. Jacobsen, Eigenspace representations of nilpotent Lie groups, II, Math. Scand. 52 (1983), 321–333.

MATEMATISK INSTITUT AARHUS UNIVERSITET NY MUNKEGADE 8000 ÅRHUS C DENMARK