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SCALAR IRREDUCIBILITY
OF EIGENSPACE REPRESENTATIONS
ASSOCIATED TO A SYMMETRIC SPACE

HENRIK STETKZR

1. Introduction.

Let X = G/K be a homogeneous manifold, K being a closed subgroup
of the Lie group G. Denoting the algebra of all G-invariant differ-
ential operators on X by D(X), we consider for each homomorphism
x:D(X) — C the joint eigenspace

€,(X) ={feC*(X)|Df = x(D)f, VD e D(X)}

and the natural representation of G on &,(X).

The problem of whether T, is (topologically) irreducible has been studied
for different kinds of homogeneous spaces. See f.ex. [1], [2], and the
survey paper [3] for symmetric spaces, and [4] and [5] for nilmanifolds.
We shall here in the case of symmetric spaces treat the corresponding
problem of scalar irreducibility:

A representation T of a group G on a topological vector space E is said to
be scalarly irreducible, if the only continuous, linear operators A:E — E
that satisfy AT (g) = T(g)A for all g € G, are scalar multiples of the identity
operator on E. Such A are called intertwining operators.

The main result of this paper is that T, is scalarly irreducible for any x on
any symmetric space of the non-compact type [ Theorem 2]. As a contrast
T, is not always topologically irreducible: S. Helgason has in [1; Theorem
2.1 for the rank 1 case] and in [2; Theorem 9.1 in general] found a
necessary and sufficient condition on x for T, to be topologically
irreducible.

Since we need results from Helgason’s paper [2], this paper can be
viewed as a supplement to the discussion of eigenspace representations

in [2].

2. A general result.
Let G be a transitive Lie transformation group of a C*-manifold X. Let

E be a closed subspace of C*(X), equipped with the topology from C*(X)
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[i.e. uniform convergence of each derivative on compact sets]. We consider
a representation Tof G on E of the following form

[T@)f1(x) = p@e.x)f (g 'x) for feE,geG, xeX,

where pe C*°(G xX) is given. In case u =1 we say T is the natural
representation of G on E.

1. ProrosITION. Let K: = {g€ G|g - xo = xo} where xo€ X.'Let T be a
representation of G on E as above. If T is a cyclic representation, then T is
scalarly irreducible.

Proor. Let f € E be a cyclic vector for 7/x. We shall show that there to
each continuous, linear, intertwining operator A: E — E exists a c € C such
that

(Af)(x)—cf(x)=0 forall feE and all xeX.
Consider for c € C the continuous linear functional u: E — C given by
{u,f > := (Af )(xo) — ¢f (xo) for f€E.

By the intertwining property of A it suffices to show that u =0 for a
suitable choice of the constant c. There are two cases to consider:

(@) 4 Jo(xo) = 0.
Here we have for any ke K that .
(T(k) fo)(xo) = n(k,xo) folk ™" x0) = p(k,xo) fo(xo) = 0,

so by the cyclicity of T'x we get f(xo) = 0 for all f € E. But then {u,f) =
0—-0=0forall feE.

(B) “ folxo) # 0.
Here we choose ¢ = (Afy)(X0) fo(xo) !, so that {u,f,> = 0. Since
u,T(k)f> = p(k,xo)<u,f) forall fe E and ke K,
we have
<u, T(k) fo) = nlk,xo) ufo) =0,
so by (ii) we get
{u,f> =0 forall feE.
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3. Symmetric spaces of the non-compact type.
Combining Proposition 1 with results from [2] we get the following
theorem on eigenspace representations associated to a symmetric space.

2. THEOREM. Let G be a connected semi-simple Lie group with finite center,
K a maximal compact subgroup of G, and D(G/K) the algebra of G-incariant
differential operators on G/K.

T he natural representation of G on the joint eigenspace

{fe C*(G/K)|Df = x(D)f, VD e D(G/K)}
is scalarly irreducible for any homomorphism y: D(G/K) — C.

Theorem 2 is an analogue to Theorem 9.1 of [2] which gives a necessary
and sufficient condition on x for the representation to be (topologically)
irreducible.

Proor. We use the (standard) notation from § 2 of [2] since our proof of
Theorem 2 is based on that paper. In particular we let X = G/K and
parametrize the joint eigenspaces by a¥: According to [2; p. 208] the joint
eigenspaces for D(G/K) have the form.

&.(X)={feC*X)|Df =T (D)(iA) f, VDe D(X)},

where I'(D) is a certain polynomial function on a¥ and where 4 runs
through a*.

We fix A € o for the rest of the proof; we may and will assume that 4 is
simple (Cfr. p. 208 of [2]).

For b e B = K/M we introduce e, € C*(X) by

e,(x) := exp[(iA + p)A(x,b)] for xe X.
It is known, Cfr. [1, p. 94], that e, € &;(X), and so the space
H#,:= {x > [z e,(x)F(b)db|F € I>(B)}

is contained in &,(X). Since A is simple we get from the proof of Theorem
9.1 of [2] that 4, is dense in &,(X), and so that span {e,|b € B} is dense in
Bi(X).

The natural action of K on e, is k - ¢, = e, s0 we see that T}y is a cyclic
representation of K on &,(X), any e, being a cyclic vector.

All that remains is to refer to Proposition 1.
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