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MEASURABLE SUBGROUPS
AND NONMEASURABLE CHARACTERS

SADAHIRO SAEKIY AND KARL STROMBERG

In the first section we prove that certain continuous homomorphic
images of locally compact abelian (LCA) groups must be Borel measur-
able. In particular, we obtain as a corollary that each LCA group G is
Borel measurable as a subgroup of its Borel compactification bG. This
vastly improves the 1965 result of N. Th. Varopoulos [11] which states
that G is necessarily Haar measurable in bG.

The remainder of the paper is devoted to a study of subgroups and
characters of LCA groups G that are nonmeasurable with respect to one or
another class of regular Borel outer measures on G. Here the term character
means any homomorphism of G into the circle group T= {ze C:lz| =1}.
All of the subgroups that we produce are obtained as kernels of characters.
On p. 133 of Graham and McGehee [1] it is left as an open question
whether a measure v € M(G) for which each character of G is v-measurable
must be discrete. Our Theorem 2.6 shows that the answer is affirmative for
every LCA group G. More dramatically, it follows from our Theorem 2.2
that each nondiscrete metrizable G has a single character that is u-
measurable only for discrete ue M(G). In Theorem 2.4 we give a very
simple structural condition that is both necessary and sufficient in order
that a nondiscrete separable metrizable LCA group possess a character
whose kernel is universally nonmeasurable in the sense that if it is u-
measurable for some regular Borel outer measure u, then p must be
discrete. ‘

Theorem 2.5 gives two simple characterizations of those LCA groups
which have a character whose kernel is both dense and not Haar
measurable. We conclude the paper with two results that show the intrusive
and pervasive properties of certain dense nonmeasurable sets in arbitrary
locally compact (LC) groups. These include as special cases certain
‘properties of Lebesgue nonmeasurable subgroups of R that seem to have
gone unnoticed until the recent paper of A. Simoson [8].

(1) Partially supported by NSF Grant DMS-8320479.
Received June 15, 1984; in revised form September 25, 1984,
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1. Borel measurability of subgroups.

Let f: G, — G, be a continuous group homomorphism from a LCA
group into another. Then, for each y € G, (the dual group of G,), y°fisa
continuous character of G, that is, y ° fe G,. The mapping f*: G, > G,
defined by f*(y) =y f is called the adjoint of f. It is a well-known and
easy fact that f is one-to-one if and only if £*(G,)is dense in G,,.

THEOREM 1.1. Suppose that G, and G, are two LCA groups, that
f: Go— G, is a continuous group homomorphism, and that f* maps G,
onto Go. Then f(G,) is Borel measurable in G,.

To prove this result, we need the following

LemMA 1.2. In addition to the hypotheses of the theorem, suppose that D is
an abelian group, that g : Gy — D is a group homomorphism, that the kernel of
g is open and o-compact, and that E is an independent subset of D. Then
flg~*(KE))]is Borel measurable in G,, where { E) denotes the subgroup of D
generated by E. ‘

Proor. Put H = g~ 1(0). For each x in g~ }((E)), there exists a unique
integer-valued function m, on E, with finite support, such that

1) g(x) = Y m.(e)e, and
ecE
2) 0 < m,(e) < ord (e) if ord (e) < 0.

Given neZ*, define
3) Fn ={xeg !KE)): ZElmx(e)I =n}.

Then g~ *({E))is the union of all E, for n 2 0, so it will suffice to prove that
each f(E,)is Borel measurable in G,. Since E, = g~!(0) = H and H is -
compact, f(E,) is o-compact and therefore Borel measurable in G,.

Fix a natural number n and an element x of E,. Let e,,...,e, be the
distinct elements e of E with m,(e) + 0. For each j = 1,2,...,r, we define a

function y; on E and a complex number g; by setting
exp [2ni/ord (¢;)]  if ord (e;) < oo,
exp [xi/(3n)] otherwise,

“) A 7](21) =q; = {

and y,(e) =1 if e # e;. Since E is an independent set in D, y; extends to a
character of D, which we denote by the same symbol y; (cf. (A.7) of [3]).
Since g is a homomorphism with H = g~*(0) open, y;° g is a continuous
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character of G,. Since f* maps G, onto G, by hypothesis, it follows that
there exists a character u; € G, such that f *(w;) = uj° f = v;° g. Notice that
u; annihilates f (H), and that if ye g~*((E)), then

) ui(f ) = 7;&1)) = v;(m,(e))e;) = ap>®
by the definition of y; and a;.

Now put
(6) Ve ={z€ Gy :lu(z) —u;(f (X)) <la;—1IV;}.

Then V, is open in G; and f(H +x)c V,N f(E,). (Recall that u;
annihilates /' (H), that E, is a union of cosets of H,and that xe E,.) If y e E,
satisfies f'(y) e V,, then

lapse) — alm=el = lu;(f () — w;(f ()
< |a,-—1| forall j=1,2,...,r

by (5) and (6); hence m,(e;) = m,(e;) for all j by (2), (3), and (4). Moreover,
we have

n= e;jlmy(e)l > j; Im(e;)l = n

by (3) since x,y € E,. Hence m(e) = m,(e) for all e€ E, so g(y) = g(x), that
is, y € H + x. Thus we have proved that V, N f(E,) = f(H + x).

Finally let {H + x;: i € I'} be the distinct cosets of H which are contained
inE,, let F, = {x;:ie I}, and write ¥, for V. Thus E, = H + F, by (3), and
V;N f(E,) = f(H + x;) for all i e I. Given a compact subset K of H, put
(M B = B,(K) = f(E,) N f(K + F,).

Notice that f'is one-to-one since f*(G,) = G,. Therefore we infer from (7)

that

®) VN B=[%nfEN]NSK+F,)
=fH+x)Nf(K+F,)=f(K+x).

Since K + x; is compact, its continuous image f (K + x;) is compact in G,.

Since V, is open in G4, it follows from (8) that f(K + x;) = ¥, N B~ for all
iel. Therefore we have

©) FK+F,) = qf(K+xi)=[i€UIV,.]nB‘,'

whence f(K + F,) is a Borel set in G,. Since K was an arbitrary compact
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subset of the g-compact set H, we conclude that f(E,) = f(H + F,) is a
Borel set in G,. This completes the proof. .

Proor oF THEOREM 1.1. Let G,, G; and f be as in the hypotheses of
Theorem 1.1. Choose and fix any g-compact open subgroup H of G,. We
imbed G,/H into a divisible abelian group D [3, (A.15)]. Notice that D can
be decomposed into a weak direct sum i1 Gi» where each G; is
(isomorphic to) either Q or Z(p*) for some prime p = p; [3, (A.14)]. For
eachk 2 1 and i€ I, define x; ;€ G; = D by

k1 ifG,=Q,
Xi,i = -k : ©
p *(modl) if G;=2Z(p®).

Then the set F, = {x,;:i €I} is independent, and D is the countable union
of all (F,) fork=1,2,....

Let g: Gy — Go/H denote the quotient mapping. We shall regard g as a
mapping from G, into D in an obvious way. By Lemma 1.2, f (g~ 1 ({(F,)))
is Borel measurable in G, for each k 2 1. Since

f(Go)=flg” (D)) = Uf(g (F))s

it follows that f(G,) is Borel measurable in G,, as desired.

Now let G be an arbitrary LCA group with dual G = T, and let I'; denote
the group I' with the discrete topology. By definition, the Bohr
compactification of G, denoted by bG, is the dual group of I',. If f denotes
the natural mapping of G into bG, then f* is nothing but the identity
mapping I'; - I'. As an immediate consequence of Theorem 1.1, we
therefore obtain the following

CoRrOLLARY 1.3. Every LCA group is Borel measurable in its Bohr
compactification.

Although the original proof of this corollary in [2] was erroneous,
Graham and Ramsey have recently sent us a new version with a pristine
proof.

REemARrks. (a) The surjectivity of f* in the hypotheses of Theorem 1.1 is
‘not superfluous. Let G be any nondiscrete LCA group. Then G contains a
subgroup S which is nonmeasurable with respect to Haar measure on G, as
will be shown in the next section. If § is equipped with the discrete topology,
then the identity mapping f: S — G is continuous (and one—to-one), but
f(S) = S is not Borel measurable in G.

(b) The above proofs show that the Borel measurable sets mentioned in
1.1-1.3 are all countable unions of sets each one of which is the intersection
of a closed set with an open set.
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2. Nonmeasurable subgroups and characters.
Let u be a nonnegative countably additive Borel measure on a locally
compact Hausdorff space X . Recall that such a measure u is called regular if

(i) wu(K) < oo for all compact subsets K of X,
(i) pu(A4) =inf{u(U): Uis openand A = U} for all Borel sets 4 in X, and

(iii) p(U) = sup {u(K): K is compact and K = U} for all open sets U in X
(cf. (12.39) of Hewitt—Stromberg [4]).

If u(A) is defined by the right-hand side of (ii) for each subset 4 of X, then
the resulting set-function u is an outer measure on X. We denote by .#, the
o-algebra of all u-measurable subsets of X.

Now let G be a LCA group and H a subgroup thereof. We denote by
I*(H) the family of all nonnegative regular Borel measures u on G for
which every coset of H is a locally u-null set (cf. [9]). The H-order of xe G
is defined to be the order of x + H as an element of G/H. A subset K of G is
said to be independent modulo H (or H-independent) if (a) KN H = &,
and (b) whenever x,,...,x, are distinct elements of K, n,,...,n, are
integers, and n,x; +... +n,x,€ H, then n;x;e H, forall j = 1,2,...,r.

The following lemma is a modification of Theorem 1 of [6] and is
essentially proved therein. For the convenience of the reader, we shall give a
sketchy proof.

LemMA 2.1. Let H be an F, subgroup of a metrizable LCA group G and
A a subset of G such that A€ #, and 0 < p(A) <o for some pel*(H).
Then there exists an H-independent Cantor set K in G and xy € G, with
K + xo = A, such that all the elements of K have the same H-order.

Proor. For each natural number r and y € G, put
A(r,y)=AN{xeG:rxey+H}.

Since A is y-measurable and H is an F,, A(r,y) is y-measurable.

Suppose first that u(A4(r,y)) > 0 for some r > 1 and some ye G. Let g be
the smallest such r, and let y, be any corresponding element of G. Notice
that g =2 since uel*(H). Choose and fix any x,€ A(q,yo). Then
w(A(r,rx)) = 0 for r = 1,2,...,q — 1 by our choice of g. Since

0 < pu(A(g,0)) <0,
it follows from the regularity of s that A(g,y,) \ { 2| A(r,rx)} contains

a compact set K, with u(K,) > 0. Replacing K, by the support of the -

/

*e
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measure ul K, we may assume that each relatively open nonvoid subset of
K, has positive u-measure. Notice that u is a continuous measure since
uel*(H), so K, is a compact perfect set. Moreover, each element of
‘Ko — xo has H-order g by construction, and K, — x, has the following
property: whenever V,,V,,...,V,, are finitely many, pairwise disjoint,
relatively open nonvoid subsets of K, — X, then there exist x; € ¥; such that
{x1,...,Xn} is H-independent (cf. Lemma 2 of [6]). It is now easy to
construct an H-independent Cantor set K = K, — x, (cf. Lemma 5 of [7]).

Finally assume that u(A(r,y)) = 0 for all natural numbersrand all y e G.
Then

AN {xeG:rxeH for some re N}

contains a compact perfect set K, with u(Ky) > 0. One checks that
K, contains a totally disconnected perfect Kronecker set K such that
{K) N H = {0}, where as before (K denotes the subgroup of G generated
by K.

Tueorem 2.2. Let H be a nonopen F, subgroup of a metrizable LCA group
G, and D any subgroup of G with Card D < ¢ = Card R. Then there exist a
character of G which annihilates D + H and which is nonmeasurable with
respect to all nonzero members of 1+ (H).

Proor. Choose and fix a o-compact open subgroup G, of G. Let X~

" denote the family of all H-independent Cantor sets K in G, such that the

elements of K all have the same H-order rx. We shall first show that
Card X = c.

Indeed, H NG, is a o-compact nonopen subgroup of G, by the
hypotheses, so it has Haar measure zero (otherwise, H N G, would be open
by Steinhaus’ Theorem [10]). It follows from Lemma 2.1 (applied to G,)
that G, contains an (H N G,)-independent (hence H-independent) Cantor
set with the desired property. Therefore Card #" = c since each Cantor set
K is homeomorphic to K x K and has cardinality equal to c. On the other
hand, G, is s-compact and metrizable, so the family of all Borel subsets of
Gy has cardinality < c (cf. (10.25) of [4]). Thus we have Card " = c.

Now we use the same symbol ¢ to denote the least ordinal number having
c predecessors. Observe that this set of predecessors admits a partition into
¢ disjoint subsets each having ¢ elements. Therefore we can index X" as
{K,:a < c} in such a way that each member of X" appears with c different
indices (i.e., Card {a:a < ¢ and K, = K} = ¢ for each K € &"). For each
a < c,letr,denote the common H-order of the elements of K,. We proceed
by transfinite induction to select x, € K,(a < ¢) as follows.
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Suppose that b < ¢ and that the elements x, have been chosen for all
a <b. Put

Ey, =D+ ({x,:a <b}),

so that E, = D if b = 0. Then Card E, < c¢. We claim that K, contains an
element x, such that kx, ¢ E, + H for all natural numbers k < r,. Indeed,
notice that Card K, = ¢ and that Card (N x E,) < c. So, if our claim were
false, there would exist a natural number k < r, and y € E, such that

Card{xeK,:kxey+ H} = c.

So kx; —kx, e H for some different elements x; and x, of K,, whence
kx; e H by the H-independence of K,. Since k <r,, this contradicts
the definition of r,. Thus we can find an element x,e K, with the
desired property, which completes our transfinite induction. Notice that
the set E = {x,:a < ¢} is independent modulo D + H and that each x,
has (D + H)-order r,.

Now define T(r)={zeT:z' =1} for each natural number r and
T(c0)=T. Lety: E - T be any function such that

y({x,: K, = K}) = T(r) for every Ke i".

(Recall that each such K appears c times in the list {K,:a < ¢} and that
r, =rg if K, = K.) By the last remark and (A.7) of [3], y extends to a
character of G which annihilates D + H. It remains to show that vy is
nonmeasurable with respect to all nonzero members of I*(H). Put

S=y"Ye": 0t <n},

and assume by way of contradiction that S is y-measurable for some
nonzero u € I'* (H). Choose any compact subset A of G with u(A4) > 0. Then
either u(ANS) >0 or u(4\ S)> 0. It follows from Lemma 2.1 and
our definition of ¢ that there exist @ < ¢ and y € G such that either
K,+ycAnSor K,+yc AN\ S. But y(K,+y)=T(r,)y(y) is a coset
of the nontrivial subgroup T(r,) of T, and neither y(S) nor y(G \ S) can
contain such a coset by the definition of S. This is of course absurd and so
the proof is complete. )

LEMMA 2.3. Suppose in addition to the hypotheses of Theorem 2.2 that G
contains a o-compact open subgroup G, such that either

(i) each nonzero element of Go/(Go N H) has infinite order, or

(i) (H+ (px G))N Gy = D+ H for some prime p, where p % G
= {px:x€G}.
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Then there exists a character of G whose kernel both contains D + H and is
nonmeasurable with respect to all nonzero members of I* (H).

Proor. Let X = {K,:a < c} be as in the proof of Theorem 2.2.

In case (i), it is obvious that r, = oo for all a < c. Therefore the character
y constructed in the proof of Theorem 2.2 has the property that y(K,) = T
foralla<c. If Ae #, and 0 < p(4) < oo for some pel*(H), then A
contains a translate of some K, by Lemma 2.1. Hence y(4) = T for all such
A. Accordingly neither ker y nor its complement can contain any set 4 as
above, so ker y is nonmeasurable with respect to every nonzero member of
I*(H).

In case (ii), we modify the proof of Theorem 2.2 as follows. Let b < cand
let E, be as there. Assume by way of contradiction that for each x € K, there
exists a natural number k < p such that kxe E,+ H + (p X G). Since pis a
prime, this means that K, < E, + H + (p X G). By a cardinality argument,
we can therefore find a y € E, and a subset F of K, such that Card F = cand
Fcy+H+ (pxG). Choose any y, € F. Then F —y, « H + (p X G). But
F—-y,<cK,—K, =Gy, so F-—y;=cD+H by (ii). We again use a
cardinality argument to obtain d € D and a set F; = F such that Card F,
=c and Fy—y,<cd+H. Hence F|—F, = (F,—y,)— (F,—y,) = H.
Since F, is an infinite subset of K, this contradicts the H-independence of
K,. It follows that the set E = {x,:a < c} in the proof of Theorem 2.2 can
. be chosen to be independent modulo D + H + (p X G). So there exists a
character y of G which annihilates D + H + (p x G) and which satisfies
y(K,) = T(p) for all a < c. It is now easy to see that kery has the desired

property.
A subset of G is called a wuniversally nonmeasurable set if it is
nonmeasurable with respect to all nonzero members of I*({0}).

THEOREM 2.4. Let G be a nondiscr'ete, o-compact, metrizable LCA group,

and :
G(n)={xeG:nx 30} forn=1.2,....

Then the following two conditions are equivalent:
(@) G has a character whose kernel is a universally nonmeasurable set.
(b) For each prime p, G(p) is either open or discrete.

Proor. First assume that there exists a prime p such that G(p) is neither
open nor discrete. The mapping x — px : G — G induces a continuous one-

to-one homomorphism G/G(p) =+ G in an obvious way. Since G(p) is
nonopen, G/G(p) is nondiscrete and therefore carries a nonzero continuous
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regular Borel measure u 2> 0 supported by a compact set. Being a
continuous one-to-one image of G/G(p), the set p x G = {px : x € G} carries
such a measure v as well.

Now suppose that S is a universally nonmeasurable subset of G. Then
p*x G ¢ S (otherwise, S would be v-measurable), so there exists x, € G
such that px,¢ S. Since G(p) is a nondiscrete LC group, we also have
S N [xo+ G(p)] + &. Pick any element s from this nonvoid intersection.
Then ps = px, ¢ S by our choices of s and x,. Accordingly no subsemigroup
of G can be universally nonmeasurable. Therefore we have proved that (a)
implies (b). (Notice that neither the s-compactness nor the metrizability of
G has been used in the above argument.)

Now suppose conversely that (b) obtains. We shall split the proof of (a)
into two cases. In each of these two cases, we shall first make use of the o-
compactness hypothesis to obtain a certain structural condition on G. As
soon as this is done, the o- compactness of G will play no role in our
construction of a character with the desired property.

Cask 1. Suppose that G(p) is discrete for every prime p. Then we claim
that the torsion part of G, denoted by G,, is (at most) countable. Indeed,
assume this is false. Since G, is the countable union of all G(n) for
n=2,3,..., it follows that G(n) is uncountable for some n. But G(n) is a
closed subgroup of the o-compact group G, so G(n) is nondiscrete. Since a
Haar measure on G(n)is a member of I * (H) where H = {0}, it follows from
Lemma 2.1 that G(n) contains an independent Cantor set K such that all of
the elements of K have the same order g. Let p be any prime divisor of g.
Then (g/p) X K is a perfect subset of G(p), which contradicts our Case 1
hypothesis. Hence G, must be countable.

We replace the countability of G, by the weaker hypothesis that G is a
nondiscrete metrizable LCA group such that the F, subgroup G, does not
contain any perfect set. Then I'* ({0}) = I (G,), so Lemma 2.3 with H = G,
and D = {0} yields a character of G with the desired property.

Cask 2. Finally assume that G(p) is open for some prime p. Since G is o-
compact, it follows that G/G(p) is countable, whence so is the subgroup
p % G of G. In particular, if G, is any o-compact open subgroup of G(p),
‘then Card [(p X G) N G,] < c. Thus the desired result follows from Lemma
2.3 with H = {0} and D = (p X G) N G,.

Now we proceed to study the existence or nonexistence of dense
subgroups of LCA groups G which are nonmeasurable with respect to 4, a
Haar measure on G. The existence of such subgroups is known in some
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special cases (see, €.g., p. 227 of [3]). Recall that G is called an I-group if
each neighborhood of 0 in G contains an element of infinite order.

THEOREM 2.5. For a nondiscrete LCA group G, the following conditions
are equivalent to each other:

(a) G has a character whose kernel is both dense in G and not A-measurable.
(b) G contains a dense proper subsemigroup.
(c) Either G is an I-group, or p X G is nonopen for some prime p.

Proor. Recall that p x G = {px: x € G} for all p.

First suppose that G is an I-group. Then G contains a closed metrizable
subgroup I which is an I-group by (2.5.5) of [5]. Choose a sequence (V,);
of compact symmetric neighborhoods of 0 € G so that 2V, , = V, for all n
and I N P = {0}, where P = [ V,. Then P is a compact subgroup of G
and G/P is a metrizable I-group (cf. (8.7) of [3]). Let H denote the torsion
part of G/P. Then H is a nonopen F, subgroup of G/P and every nonzero
element of (G/P)/H has infinite order. Thus Lemma 2.3 yields a character y
of G/P whose kernel both contains H and is nonmeasurable with respect to
all nonzero members of I (H).

Let g: G — G/P be the quotient mapping. We claim that ker (y° g) is
nonmeasurable with respect to each nonzero member of I*(g™!(H)).
Indeed, assume that ker(ycg) is u-measurable for some nonzero
uel* (g '(H)). Then there exists a compact subset K of G such that
u(K) > 0 and either

KnNnker(yoeg)=@& or Kcker(yecg).

Define v e M(G/P) by v(E) = u(K N g~ 1(E)) for Borel sets E in G/P. It is
evident that v is carried by g(K) and either

gK)Nkery =& or g(K) < kery.

Thus kery is v-measurable. But 0 3 ve I* (H) since v(g(K)) = u(K) > 0
and pueI'* (g~ !(H)). This contradicts our choice of y and so confirms our
_claim. Since g~'(H) is a nonopen F,-subgroup of G, it follows from
Steinhaus’ theorem [10] that Ael*(g~'(H)). Therefore ker(ycg) is
nonmeasurable with respect to Al V for every nonvoid open subset V of G;
in particular, ker(y © g) must be dense in G. This proves that every I-group
has properties (a) and (b).
To complete the proof, we suppose that G is not an I-group. Then

G, = U{G(n):neN}
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contains a neighborhood of 0 in G, and so Baire’s category theorem shows
that the subgroup G(n) is open for some ne N. Let g = q(G) be the least
such n. Notice g > 1 since G is nondiscrete. Now suppose that G contains a
proper dense subsemigroup S. We claim that S is actually a subgroup.
Indeed, G(g) is open; so given s € S, there exist x € G(g) and t € S such that
x —s = t.Then —gs = qt,whence —s = (q — 1)s + gt € S. Thisconfirms our
claim that Sis a (dense) subgroup. Let T, denote the torsion part of the circle
group T. Since T, is divisible, we can easily construct a non-constant
character y of G such thaty = 1 on S and y(G) < T,. Plainly ker y is a proper
dense subgroup of G with countable index. No such subgroup D of G can be
A-measurable. (Indeed, assume that D is A-measurable. Since D has a
countable index in G, D must contain a compact set having positive 1-
measure. Then D is open in G by Steinhaus’ Theorem and so equal to G.)
Thus we have proved that (b) implies (a).

Now assume that there is a prime p such that p X G is nonopen. Notice
that each nonconstant character y of G which annihilates p x G must satisfy

Y(G)=T(p)={zeT:zF=1).

If (p x G)™ is open in G, choose any such character y such that y((p X G)~)
= T(p). Given x € G, there exists y € (p X G)~ such that y(y) = y(x), Then

x e (y +kery) c (kery)™ + kery = (kery)~.

Thus kery is dense in G and its index is p; hence, as before, it is not -
measurable. If (px G)~ is nonopen, Lemma 6 of [6] assures that G
contains a compact subgroup Q such that G/Q is metrizable and such that
R = (p X G)™ + Q is nonopen. (Notice that R is closed, being the algebraic
sum of a closed set and a compact set.) Thus G/R is a nondiscrete metrizable
LCA group and all of its nonzero elements have order p. Therefore Lemma
2.3 applies to G/R with H = D = {0}, and yields a character y of G/R such
that ker y is nonmeasurable with respect to all nonzero members of I'* ({0}).
So, just asin the I-group case, we infer that ker (y ° g) is dense in G but is not
A-measurable, where g: G — G/R is the quotient mapping. Our proof that
(c) implies (a) is complete.

Finally assume that (c) fails to hold, i.e., that p X G is open for all primes
p. We need to show that there exists no character as in (a). To this end,
factor ¢ = q(G) as q = p%:... pk, where the p; are distinct primes and the k;
are natural numbers. Let y be any character of G with dense kernel. Then

(x + G(g)) N (kery) + & for each xeG.
Hence there exists y = y, € G(g) such that y(x+y) =1. But gy =0, so
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y(gx) = y(q(x + y)) = 1. Since x € G is arbitrary, this proves that =1 on
G. .

NowputH = G(q) N (]} (p; % G), and notice that H is an open subgroup
of G by the present hypotheses. Since y has finite order, y(H) is a finite
subgroup of T. Choose the largest natural number n and he H such that
y(h) = exp [2ni/n]. Let p denote any one of the p;. By the definition of H,
there exists y € G such that py = h. Since H is open and ker y is dense in G,
we can find z e H such that y — z e kery. Then

y(y) = 7(z) = exp [2nim/n] for some me N
by the definition of n. Therefore
) exp [2xi/n] = y(h) = 7(py) = exp [2nipm/n].

Evidently n divides g, and (1) holds for all p = p; (and some m = m,). It
follows immediately that n =1, that is, y =1 on the open subgroup H.
Since ker y is dense in G, we conclude that y =1 on G. In other words, the
constant character is the only character of G whose kernel is dense in G,
provided (c) fails to hold. Thus (a) implies (c), which completes the proof.

Itis a well-known fact that every A-measurable character of a LC group is
continuous (cf. (22.19) of [3]). Since each nondiscrete LCA group has a
discontinuous character, it follows immediately that each such group hasa
A-nonmeasurable character. The following theorem provides a stronger
result.

THEOREM 2.6. Let H be a nonopen F, subgroup of a LCA group G, D a
subgroup of G with CardD < ¢, and 0 & veI*(H). Then there exists a
character of G whose kernel both contains D + H and is nonmeasurable with
respect to v.

/

Proor. Choose and fix a compact subset 4 of G with v(4) > 0. Replacing
v by vl 4, we may and do assume that v(G) < co.

Since H is an F, and v(x + H) = 0 for all x € G, it follows from Lemma 6
of [6] that G contains a compact subgroup P such that G/P is metrizable
and such that v(x + P + H) = 0 for all x € G. (First choose any o-compact
open subgroup G, of G so that v(G \ G,) = 0. Then choose a compact
subgroup P of G,, with metrizable G/P, so that v(x + P+ (H N G,;)) =0
forall xe G.) Letg: G —+ G/P be the quotient mapping, and let u € M(G/P)
be the measure defined by u(E) = v(g ™ }(E)) for all Borel subsets E of G/P.
Plainly g(H) = g(P + H) is a nonopen F, subgroup of G/P, uis a member
of I'* (g(H)),and u(g(A4)) = v(4 + P) > 0. So the proof of Lemma 2.1 yields
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acompact subset B of G/P and y, € G/P such that the elements of B all have
the same g(H)-order, B + y, < g(A4), and u(B + y,) > 0.

Choose and fix any o-compact open subgroup G, of G/P which contains
B U{y,}, and put Dy = g(D) + {{yo}>. Let ¥ and y be as in the proof of
Theorem 2.2 with G, H, and D replaced by G/P, g(H), and D, respectively.
Then yog is a character of G which annihilates D+ H. Choose
any compact subset K of g~ '(B+y,) with v(K)> 0. (Notice that
Vg~ (B+yo)) = u(B+yo) >0.) We claim that y(g(K)) contains a
subgroup of T of order > 1.

Indeed, g(K) is a compact subset of B + y, and u(g(K)) = v(P + K) > 0.
It follows from the proof of Lemma 2.1 and the definition of J¢" that there
exists a < ¢ such that K, + y, = g(K). But y, € D, < kery, so

T(ra) = V(Ka‘f‘)’o) < (y og)(K),

which confirms our claim. Thus the argument at the very end of the proof
of Theorem 2.2 shows that ker (y © g) is not v-measurable, as desired.

ReMarks. (a) In all of the above results, there is enough freedom of
choice of the function y on the set E to produce 2° distinct characters whose
kernels are nonmeasurable in one of various senses.

(b) It should be noted that some A-nonmeasurable characters have A-
measurable kernels; even kernels that reduce to {0}. For instance, consider
G = R. Let B be a Hamel basis for R (over Q) which contains 1. Any one-to-
one function f: B — B \ {1} extends to a one-to-one endomorphism of R
(still called f) which takes no nonzero rational value. Then the formula

7(x) = exp[27if (x)] Vx € R

defines a character of R whose kernel is {0}. Plainly y is discontinuous, so it
is not A-measurable.

(c) Let G be a LCA group, and let G, be the group G with a LC group
topology T which is strictly stronger than the original topology of G.
Regard M(G,) as a subalgebra of M(G) in an obvious way [1]. Then we
claim that M(G,) consists of exactly those measures u e M(G) for which
every character in (G,) is u-measurable. This gives an affirmative answer to
the problem stated on p. 133 of [1].

Indeed, choose and fix any g-compact open subgroup H of G,. Then H is
a nonopen F, subgroup of G. Given pue M(G), write u = u’+v, where
W € M(G,)and v 1 M(G,). Choose a countable subgroup D of G such that u’'
is concentrated on D + H. If u¢ M(G,), then |y is a nonzero member of
I'* (H), so Theorem 2.6 provides a character y of G whose kernel contains
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D + H but is not v-measurable. Since H is open in G,, 7y is in (G,)" but its
kernel is obviously not y-measurable. This confirms our claim.

The corollary of our next result reveals a kind of pervasiveness of
nonmeasurability that is carried by all Haar nonmeasurable dense
subsemigroups.

TuHeEOREM 2.7. Let G be a LC group, A a left Haar measure on G,and S a
subset of G. Suppose that there exist a dense subset D of G and a A-measurable
set A in G such that

(%) A(A N (DS)) < A(4) < .
Then S is a locally A-null set, in particular, S is A-measurable.

Proor. By the definition of the outer measure A and ( * ), there exists an
open set U in G such that A N (DS) < U and

(1) A(A N (DS)) S AU) < MA).

It follows from the regularity of A that A \\ U contains a compact set K
with positive A-measure. Notice that K N (DS) = & and A(K~*) > 0.

Now let H be an arbitrary o-compact open subgroup of G which
contains K. We claim that there exists a countable subset C of D~ such
that

2) M@K)\ (CK))=0 forall yeD ' NH.
Indeed, write H = U:’, , H,, where the H, are compact subsets of H with

H,c< (H,.,)° for all n 2 1. For each n, choose a countable subset C, of
D~ N H such that

3) MH, 0 (C,K)) =sup 4(H, N (FK)),
where the supremum is taken over all countable subsets F of D~! N H.
Define C to be the union of all C, for n 2 1. Itiseasy to check that C satisfies
2).

Now notice that A((yK) \ (CK)) is a continuous function of ye€ G. In
fact, this is an immediate consequence of the fact that y — , fis continuous
from G into L, (G) for each fe L,(G). Since H is open and D (hence D~ !)is
dense in G, it follows from (2) that A((xK) \ (CK)) = Oforall xin H. Let f
and g be the characteristic functions of B = H \ (CK) and of K™%,
respectively. Then we have

(f*8)(x) = [of (xy)g(y~*)dy
= A(x"'B)NK) = A((xK) N B).



MEASURABLE SUBGROUPS AND NONMEASURABLE CHARACTERS 373

= M(xK) N[H \ (CK)]) =0
for all x in G. (Notice that K = H, so (xK) N H = & if x¢ H). Therefore
“) MK™1) - AH \ (CK)) = f (f *g)(x)dx =0,

which combined with A(K~*!) # 0 implies A(H \ (CK)) = 0.

Finally notice that C<= D! and K N (DS) = &. Therefore HNS
< H \ (CK), and so A(H N S) = 0. Since H was an arbitrary o-compact
open subgroup of G which contains K, we conclude that S is a locally A-null
set, as desired.

COROLLARY 2.8. Let S be a A-nonmeasurable dense subsemigroup of a LC
group G. If A€ M, has positive finite A-measure, then

ANS &M, and L(ANS)=A(A\ S)=A(A).

ProoF. Suppose A € .#; and 0 < A(4) < co. Put D ='S U {e}, where e is
the identity of G. Then DS = S since S is a semigroup, so

MANS) = A4 N (DS)) = MA)

by Theorem 2.7; hence A(ANS)=4A(4). If ANSe.#,, then
(ANS) (4NS) would contain a nonvoid open set (cf. Hewitt—Ross [3;
(20.17)]). Since S is a dense subsemigroup of G, it would follow that S = G,
which contradicts the nonmeasurability of S. Thus we have proved that
A NS¢ .#;. Finally assume that A(4 \\ S) < A(A). Then there exists an
openset Usuchthat A \ S =« Uand A(U) < A(4). ThenB=A\ Ue #,,
0 < A(B) < o0,and B N S = B, which all together contradicts what we have
just proved. Thus A(4 \ §) = A(4).

REeMARK. It is unknown whether or not every compact group has a
subgroup that is not Haar measurable. It would suffice to find a subgroup
having a countable infinite index.
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