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REPRESENTATION THEOREMS FOR MULTI-VALUED
(REGULAR) !-AMARTS

DINH QUANG LUU

1. Introduction.

Representation and convergence theorems play a crucial role in the
study of multi-valued asymptotic martingales (amarts). Representations of
multi-valued (regular) martingales, quasi-martingales and uniform amarts
have been considered in [ 7] and [8], while convergence theorems for multi-
valued martingales and I'-amarts have been presented in [6], [5], and [9].
The main purpose of this paper is to apply these above results to prove
some representation theorems for multi-valued (regular) I!-amarts, given
in Sections 3 and 4. A brief summary of definitions and notations will be
given in the next section.

2. Mesaurability, integrability and conditional expectations
of multi-functions.

Throughout this paper we shall use definitions and notations, given in
[6] and [9]. Namely, let (Q,s/,P) be a probability space, # a sub o-field of
&, E a real separable Banach space and K (E) the class of all closed convex
bounded nonempty subsets of E. Thus the Hausdorff topology of K (E) is
defined by the following complete metric

(2.1) hX,Y)= max{su};{)d(x,Y), sulgd(y,X)}.

A multi-function X:Q — K (E) is called (weakly) #-measurable, write

Xep(#,E) with p(Q,E) = pu (L ,E) if {w; X(w)NV # &} e for every

open subset V of E. Therefore, if Sx(#) denotes the set of #-measurable

selections of X, then the Castaing representation theorem (see [ 3, Theorem

II1-9]) shows that an X : Q — K (E) is #-measurable if and only if X admits
"a Castaing representation, i.e. a sequence { f*};2, in Sy(%) such that for

each weQ the sequence { f(w)}2; is | - [ -dense in X (w).

An X € u(#,E) is called integrably bounded, if the function
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o - 1 X)) = h(X (), {0})
is integrable. If this occurs, then we write X € £!(%,E) with
L (QE) = £} (o ,E),

where two elements are considered to be identical, if they are equal each
other almost everywhere (a.e.). Furthermore, the integral of X over Q is
defined as the set

‘S)XdP {‘S)f feSy
where Sy = Sx(s#), and if A€o/ then
§XdP = {1,XapP,
A Q

where 1, denotes the characteristic function of A.
Further, if we define for two any X,Y € ! (Q,E) the following distance

2.2) H[X,Y] = ‘S) h(X (@),Y ())dP,

then (Z1(Q,E),H) becomes a complete metric space.

Finally, let &(X,#) denote the %-conditional expectation of
XeZ(Q,E).

For further informations on measurability, integrability or conditional
expectations of multi-functions we refer to ([3, Chapter III]), [1] or [6],
respectively.

3. Representation theorems for multi-valued L' -amarts.

Hereafter, let {7,> be an increasing sequence of sub o-fields of &/ with
o, 1 . Asequence (X,) in £1(Q,E)is called to be adapted to (), if
each X, is o/ ,-measurable. All sequences considered are assumed to be
adapted to («,> and taken from Z!(Q,E). Let (P) be any but fixed
property of {X,>. Call a sequence  f,) of E-valued functions a P-selection
of (X,, write { f,> e PS({X,)), if each f, is an &/ ,-measurable selection of
X, and {f,> has the property (P). It is desirable to get general theorems
which guarantee the existence of P-selections and represent (X, in terms
of PS({X,)).

Call (X,> a martingale (M), if for allm 2 neN X,= X,(m), where

Xn(m) = J(Xm,&ln)
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denotes the «,-conditional expectation of X,. Thus, it seems to be
reasonable to call {X,> an I!'-amart (I! A), if

(3.1) lim sup H[X,(m),X,] = 0.
n—oc0 mz2n

It has been shown in [9, Theorem 3.2] that (3.1) is equivalent to the
existence of a (unique) martingale {(M,» with

(3.2) lim H[X,,M,] = 0.

Moreover, if this occurs then (M, ) is given by
(3.3) lim H[X,(m),M,] =0 (neN).

Consequently, a sequence < f,> of E-valued functions is an I!-amart if and
only if { f,> can be essentially written in a form

(3.4) fo=a(f) +p(fn) (neN)
where {q(f,)) is a martingale and {p(f,)) an L!-potential, i.e.

(3.5) lim I p(f£,)ll, = 0.

n— oo

To formulate the main theorem we shall need the following additional
notations:

Let {(X,) be an I!-amart, {p,) a positive L' -potential.
Define
[LASKX )] = {{ fip e LASKX,)); Ip(f)ll < pya.e. (neN)},
QUIASKX,))) = {0 ) = <q(f)>;{fi> e LASKXD)},
mMLASKX,»)) = {t"(Kf>) = fis {fu> e LASKX D)}

The main purpose of this section is to prove the following general
representation theorem for multi-valued I!-amarts.

THEOREM 3.1. A sequence {X,) is an L'-amart if and only if there is a
positive I'-potential {p,» such that the following conditions are satisfied:

(@) Sy(k) = n*([FAS(KX, D)) (keN),
(b) Q(L'AS(KX,))) = Q([L'AS(KX,»)]%),

where S,(m) = S x,(m) (n,meN).
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To prove the necessity of the conditions we shall need the first two of the
next lemmas. However the last one will be applied to prove the sufficiency
of the conditions. Thus, we begin with

LEMMA 3.2. (see [7, Corollary 2.5]). If {X,) is a martingale, then there is
asequence {{ fi>}2 | of M-sélections of { X, such that for eachk, { f}}:% 1 is
a Castaing representation of X;.

This result with its complete proof will be published in the reference
mentioned above. But let us repeat here the main idea of the proof. Indeed,
given an ¢ > 0 and f'; € S, (k), one can find, in view of the proof of Theorem
6.5, [6], a quasi-martingale { f,) such that each f,€S,(n); f, = f} and

(3.6) n; I fin+1)-f£l, <e.

Hence, { £, is an I*-amart selection of (X, ). Therefore, by (3.3), (3.4), and
(3.5) (see also [ 10, Theorem 1.1]), < f,> can be written in the form (3.4) with
{q(f,)> e MS({X,>), noting that each S,(n) is [*-closed. Consequently, by
(3.6)

Ifi=atfl = I fi—q(f)l; e

This implies that n*(MS({X,)>)) is I*-dense in S,(k) for each keN.
Combining this fact with Theorem IIL.9 in [3], we get the lemma.

LEMMA 3.3. Let #,< # be two sub o-fields of of; Xe X! (#B,,E);
Ye %! (B,E)and ¢ a B ,-measurable positive real-valued function. Then for
each fe Sy(#,), there is some ge Sy(R) such that

(3.7) lf—E®(g)| < h(X,8(Y,%,))+ o ae.

and hence
Ilf—E* (@)l < H[X,8(Y,8,)] + § @dP.
Q

Consequently, if Y is B ,-measurable (B, = &) then there is some g€ Sy (&)
such that

(3.8) lf—gl <hX,Y)+¢ ae.

and hence

If—gll, < H[X,Y] + { @dP.
Q
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~ ProoOF. Let #, = #; X ;Y; ¢ and f be as in the hypotheses of the lemma.
It suffices to prove (3.7). First, since &(Y,%#,) is %#,-measurable, by
Theorem II1.9 in [3] there is a sequence {g'}2, in Sz y 4,)(%#,) such that
{g'}i2 , is a Castaing representation of &(Y,4%,), i.e.

(3.9) E(Y,#)(0) = cl ({g'(@);ieN}) (weQ).

Now, applying Theorem 5.3 in [6] to &(Y,%,), we have
Ssva,)(#B1) = cC1{E*'(g); g€ Sy(#)}.

Thus, for each ie N, one can choose a sequence {g"}{2 ; in Sy(£) such that

(3.10) lim || E#1(g") — g'll, = 0 (ieN).

j=®

But as from every L'-convergent sequence one can extract,an almost surely
convergent subsequence, so by (3.10), one can suppose without any loss of
generality that

g(w)ecl {E*(g')(w);jeN} (weQ).

This with (3.9) implies that the sequence {E®!(g)}{., is a Castaing
representation of &#(Y,4). Renumbering the sequence }g"}- ; and taking
the resulting sequence {g,},%;, we define 7:Q — N by

1) =inf {neN; | f (@) — E*(g,) ()|
Sd(f (), 8(Y,8,) )+ (@)} (we).

It is easily checked that 7 is a well-defined 4 ,-measurable function. Hence
8(.) = gy,(.) is a #-measurable selection of Y and

| £ (@) — E* (g)()
= ”f(w)"Egll: i 1{t=n}gn](w) I
n=1

= lf@= § 1e-nE* @)@

5 3 e 1/ @) - F g)@) | @eQ).

But by definition of ,
I £ (@) - E* (g,)(@)| < d(f(@),&(Y,B,)®)) + ¢(®), (@e{t=n},neN).
Then
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@)~ F @)1 5 3 10ond @.EXF)@) + p(@)]
= d(/ )£ (%8, )) + 9(©)
< X ©),8("B)@)] +9(@).

This proves (3.7) and hence (3.8), etc. Therefore, the proof of the lemma is
completed.

LEMMA 3.4. Let X,Y € #1(#,E), then
(3.11) H[X,Y] = h(Sx(®), Sy(®))
where h(.,.) denotes also the Hausdorff metric defined on K (L} (#,E)).

Proor. Let X,Ye X (B,E); f € Sx(#) and ¢ > 0. By Lemma 3.3, (3.8)
there is some ge Sy(4) such that, in particular,

lf—gl, < H[X,Y] +e.

Hence d(f,Sy(#)) < H[X,Y] +e.
But fe Sy(#)and ¢ > 0 were arbitrarily taken, so that the last inequality
implies

sup d(f,Sy(#)) < H[X,Y].
fESx(p ) (f Y( )) = [ ]
Therefore, by symmetry one has

sup d(g,5x(#)) < H[X,Y].
sup d(g,S(®#)) < H[X,Y]

This yields
(3.12) h(Sx(#), Sy(#) < H[X,Y].
To prove the converse inequality, we note first that for each 4 € # we have
H[X,Y]=H[1,X,1,Y]+H[1,X,1,Y]
and
h(Sx(#),5y(®)) = h(S1 x(B), 51 ,v(B)) + h(S,, x(B), S, y(®B)).

Hence by definitions (2.1) and (2.2) one can suppose without any
restrictions that

h(X (), Y(w)) = Jcs;{l(p) d(x,Y(w)) (weQ).
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Thus, by using Theorem 2.2, [6], we get
H[X,Y]= S sup d(x,Y(w))dP

xeX(w)

= S S d(f (@), Y (w))dP

= sup int S I f(w) — g(w) dP
feSx(B) geSy(B)

=, S d(fSy(Q))
SeSx(#

= h(Sx(W),Sy(@)).

'Hence by (3.12) we get (3.11) and the lemma, noting that both Sy(%),
Sy(B)e K (L (#,E)).

Proor orF THEOREM 3.1. Suppose first that (X,)> is an [!-amart, then
there is a (unique) martingale (M, ) such that (3.2) is satisfied. Thus if we
put ‘

Pa(@) = h[X (@), M,(@)] +1/2" (weQ, neN),

then {p,) is a positive L' -potential. We shall show that {p,) satisfies (a) and
(b). To prove (a), we fix ke N and f} € S, (k). Since (M,) is a martingale,
by Lemma 3.2 there is a sequence {g}}2; of M-selections of (M, such
that for each me N, {g},};2, is a Castaing representation of M,,. Let define
7:Q— N by

() = inf{ieN; fi(@) — gi(@) | £ d(fi(®), Mi(w)) + 1/2%}

and

gi(w) = ZN -8k (@) = g (@) (weQ).

It is easily checked that 7 is .o/ ,-measurable. Hence g, is an </ ,-measurable
selection of M, and

(3.13) | (@) — gu(@)]l < pi() a.e
Now put

&n= Z 1{1:=i}g; (n 2 k)
ieN

and
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8n=8gn(k)(=E%~(g,) (m < k).

Obviously, {g,> is an M-selection of (M,». Next, applying (3.8) to each
triple M,,X, and g,, there is a sequence < f,) such that f,e S,(n) and

I f.(@) — gu(@) |l £ palw) a.e. (neN).
This follows that { £, is an ! A-selection of {(X,> with

<q(fa)> = <gw> and {p(fo))> = {fu—8w-
Hence f,e[L'AS({X,))]¢"”. But in view of (3.13) one can assume that

S =S¥ so that
[ = fiu= " f)) e T ([ AS(KX,))])

which proves (a). To prove equality (b), it is sufficient to show the following
inclusions

(3.14) MS((M,)) = Q([L'AS(KX,)]")
and
(3.15) Q(L'AS(KX,»)) = MS({M,)).

To see (3.14), we fix {g,» e MS({M,)>). The above argument shows that
there is some < £, € [L! AS({X,>)]¢* such that

q(fn)) =<gw,

and hence

& = QK fw) =<a(£)) € QL' ASKX,))] ).

This proves (3.14). To establish (3.15) we fix { f,> e ! AS({X,>). Then by
(3.3), (3.4), and (3.5), we get

Ja(m)e X, (m) (m=neN),
ll_I'n H[Xn(m)aMn] =0 (neN),

lim I fam)—g(f)l; =0 (meN).
Hence q(f,)€ Sy, (n) (neN). This shows that

Q1) = <4(f2)> e MS(KM,»).

. This implies (3.15) which with (3.14) shows equality (b) and the necessity of
the conditions.
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To prove the sufficiency of the conditions (a-b), for each ke N we put
(3.16) k= QL AS((X,))]%).
(i) By (a), u* is non-empty.
(i1) It is easily checked that by (3.16), u* is convex bounded.
(i) We claim that u* is .o ,-decomposable.

Indeed, let { 1>, {f2) e [[LAS({X,>)]* and A4 € o,. By definition of
o -decomposability, we have to show that

14q(fi) + Laeq(fR) € 4",

and
Jn € Sm(m) (m < k).
Hence, by the uniqueness of decomposition (3.4) for any I -amart, we get

{fmy € L'ASKX,)),

a(fn) = 14q(f2) + Leea(f7) (2 k),

4(f) = E¥~(q(£)) (m < k).
But by (b),

QK £>) = <a(f)) € Q[ AS(KX,»)]%),
so that '
Lafd+ 14 f2=alfe)
= 1" (Q({ £,)))
€ TH(Q[LAS(X,))]P)) = p.

This proves the <7 ,-decomposability of u*.

Combining these properties (i—iii) of u* with Theorem 3.1 and Corollary
1.6, [6], we infer that there is a unique multi-function M, e £} (o#,,E) such
that

(3.17) Sy, (k) = c1(u*) (keN).

It is easily seen that by Theorem 5.3, [6], the definition (3.16) and the
equality (3.17), we get

Sm,k+1)k) = C1{E+(h),he u*+1}
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= cl(u")
= Sy, (k) (keN).

Equivalently,
Mk = Mk(k+1) (keN).

This is equivalent to that (M,) is a martingale. Finally, by the above
construction of the martingale (M,> and Lemma 3.4, one can establish the
following conclusions

H[XkaMk] = h[Sk(k), Cl (.uk)]
= h[Sk(k),x"]

Ifi—a(fols

= su
< ﬂ.)e[L‘AS&x_»] P>

< {lplldP—>0, ask t co.
Q

Thus (X, must be an I!-amart. This completes the proof of the theorem.

Next, combining the condition (a) of the previous theorem with
Theorem II1.9, [ 3], one can establish easily the following result.

COROLLARY 3.5.If (X, is an L -amart, then there is a sequence {{ f1>}{%
of L' A-selections such that for each k € N, the sequence { fi}2 , is a Castaing
representation of X.

Further, in connection with Lemma 3.2, the inspection of the proof of
Theorem 3.1 leads to the following representation theorem for multi-
valued martingales.

THEOREM 3.6. {X,) is a martingale if and only if the following conditions .
hold:

a) there is a sequence {< f,>}{Z | of M-selections of { X ,» such that for each
keN, {fi}i2, is a Castaing representation of X,,

b) QL AS({X,)) = MS({(X,)).

ProoF. First, suppose that (X, ) is a martingale. Then by Lemma 3.2, (a)
is satisfied. Further, since (X, is a martingale, then {(X,) is an [!-amart
with

M,= X, (neN)
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where (M, is the martingale associated with the [}-amart (X,>, taken in
the sense of (3.2). Therefore, the condition (b) given here is equivalent to the
following condition

QL' AS(KX,») = MS(M,)).

But this is true, by virtue of the proof of the inclusions (3.14) and (3.15).

Conversely, suppose that (a—b) are satisfied, then by using the same
arguments given in the proof of the sufficiency of Theorem 3.1, we infer
that there is a martingale (M, such that

Sm, (k) = cL{n“(MS(KX,)))} (neN),
which implies
M, c X, a.e. (keN).
But by virtue of (a), X, = M, a.e. and hence
X, = M, a.e. (keN).

Therefore, since {M,) is a martingale, then so is {X,). This completes the
proof of the theorem.

4. Regularity and convergence of multi-valued ['-amarts.
Call a sequence <{X,)> a regular ['-amart (RL'A), if there is some
X e Z1(Q,E) such that

4.1) lim H[X,,&(X,2,)] = 0.

Consequently, by (3.2), every regular I!-amart is an ['-amart. More
precisely, (4.1) is equivalent to (3.2), where the martingale (M, is regular.
Note that for the vector-valued I!-amarts, regularity and I'-convergence
are equivalent. But for the multi-valued case, only H-convergence implies
regularity. We shall present at the end an example of a multi-valued regular
martingale in %} ([0,1],1,) which fails to be convergent even in the Pettis
distance (cf. [9]). But before giving further relations between regularity
and convergence of multi-valued I!-amarts we prove a general repre-
sentation theorem for multi-valued regular I*-amarts. Three basic lemmas,
given in the previous section will be frequently used in the proof of the
theorem.

THEOREM 4.1. (X, is a regular I'-amart if and only if the following
conditions are satisfied:
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(a) sup § I x,dP < o0,
neN Q
(b) Si(k) = T*(RLEAS(KX,)]) (keN),
(€) QRI!AS(KX,>)) = Q[REASKX,))P™),

for some positive L'-potential {p,).

Proor. Suppose first that (X, is a regular *-amart, then by definition
there is some X € £1(Q,E) such that (4.1) is satisfied. Thus, if we put
M,=6(X,«,)and

pn=h(X,,M,)+1/2" (weQ, neN),

then by (4.1), {p,> is a positive [!-potential. We shall show that {p,)
satisfies the conditions (a-b—c) required in the theorem. Indeed, the
condition (a) is easy. To see (b), we fix ke N and feS,(k). Applying
Lemma 3.3, (3.7) to X, X, and f one can find some ge Sy such that
(4.2) Il fi — E*x@g)ll < p, a.e.

and obviously, (E¥(g)> e RMS({(M,)).

Next, applying again Lemma 3.3, (3.8) to each triple M,,, X, and E¥~(g),
there is thus a dequence {f,) such that each f, is an ./,-measurable
selection of X, and

I f,— E*(g)ll < p, a.e.

Hence, { f,> e [RI!AS({X,»)]".
But in view of (4.2) one can take f, = f}, so

fi=fi=n*(f>) e T ([(RLAS((X,))]")

which proves (b). To prove (c), let { f,> e RI!AS({X,>). By (3.3), (3.4), and
(3.5) we get

QK fw) = <4(/,)> e RMS(M,)).

Again, applying Lemma 3.3, (3.8) to each triple M,, X, and q(f,) we infer
that there is an element ¢ f;) € [RL'AS({X,>)]¢* such that

(S = <a(f)>.

Consequently,

QK fw) =<4l =<a(f2)> = QK f2)) e Q([RLAS(K X))

This shows (c) and the necessity of the conditions.
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Conversely, suppose that the conditions (a—b—c) are satisfied for some
positive L'-potential {p,». Let us define

4.3) p = {ge L'(QE);{E"(g)) € Q([RL'AS({X,»)]¢")}.

(i) By (a), uis I!-bounded.

(i) By (b), u is nonempty and by (c) with (4.3), u is convex.

(iii) Wenow show that u is I'-closed. Let {g'}2, be a sequence in u which
is I'-convergent to some ge I}(Q,E), that is

(4.4) lim llg"—gll, = 0.

n— oo

Thus, by definition (4.3), there is a sequence {{fid}2, in
[RI!AS({X,>)]¢? such that for each ie N

CE*(g")> € Q[RL'AS(KX,))]%)

and
4.5) sup | 1t — E%(g)ll, < Ip, I, (neN).
ieN
First, obviously /"€ S,(n) (ne N). We shall show that { /"> is I!-convergent

to g. Combining (4.4), (4.5) with properties of operators E<»(-), we get

lfr—gll, < I 2= E¥@g)ll, + | E¥(g") — E#»(g)ll, + | E¥~(g) — g I,
<lp,l,+ ||g"—g||1‘+ | E#»(g) —gll,

which yields
limll 7 —gll, =
Hence { f™>e RIAS((X,>) with {g(f™)> = (E¥"(g)>’ Therefore, by (c),
CE"(g)) € Q([RIXAS((X,))]<).

Hence by (4.3), g€ u, which implies the !-closedness of p.

(iv) Finally, we claim that uis «/-decomposable, i.e. if g ,g%e u and A € of
then

1,8'+1,8%eu (Ae ).

But in view of (iii), it suffices to prove the above assertion for all
AeLJkeN.szlk. To see this, fix A € o, for some ko€ N. Find {fLyand (f2)
in [RIZAS(¢X,>)]<* such that

(4.6) Ifi—E*"@)ll, < lp,ll, (i=1,2).
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Define

Li=lafi 41,2 (n2ko)
and
fm € Sm(m) (m < kO)

It is easily checked that < f,> e RI*!AS({X,)) and
llm “f;,— (1Agl + ].Acgz)lll = 0.

Hence
CE"(148" + 14:8%)) € QRL'AS(KX,)).
Therefore, by (c)
CE¥"(1,48" +14:8%)> € Q([RL'AS({X,))]%).
This with (4.3) implies
1,8 '+ 1,8%€u
which proves the o/-decomposability of p.
Now applying Theorem 3.1, [6] to u, there thus exists some X € £} (Q,E)
such that
4.7) Sx=u.

It follows from (4.7), (4.3), condition (b), and Lemma 3.4 that
lim H[X,,6(X,«,)] = 0.

This proves (4.1) and the sufficiency of the conditions which completes the
proof of the theorem.

Combining condition (b) of the theorem and Theorem II1.9, [ 3], one can
establish easily the following result.

COROLLARY 4.2. If {X,> is a regular [*-amart, i.e. (4.1) is satisfied for
some X € #! (Q,E). Then there is a sequence {{ f,>}i%, inRL'AS({X,)) and
a sequence { [, }:2 , in Sy stch that

(a) for eachke N U {c0}, { fi}{2, is a Castaing representation of X, (with
Xo=X)and

(b) lim || fi — i Il, =0 (ieN).

n— o
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Combining the proof of the theorem with the proof of Theorem 3.6 we
get the following representation theorem for multi-valued regular
martingales.

THEOREM 4.3. A sequence (X, is a regular martingale if and only if the
following conditions are satisfied:

(a) sup § 1, 4P < o,
ne Q

(b) there is a sequence {{ fé:>}i2 1 of RMS({X,>) such that each { f}}2  is
a Castaing representation of X, and

© QRLASKX,»)) = QRMS(KX,))).

It is known that if a sequence (X,) is H-convergent, then (X,) is a
regular I'-amart. A simple example in ([9, Example 4.3]) shows that there
is a regular martingale in #!([0,1),1,) which fails to be H-convergent.
Now define for two any X,Y € Z!(Q,E) the Pettis distance

H,(X.Y) = sup §|8*(x*,X) — 6*(x*,Y)|dP (cf. [9]).
x*eU*

where U* is the unit ball of the strong dual E* of E and 6*(.,Z) is the
support function of Z € K .(E). Note that the Pettis distance H,,(X,Y)is not
generally a metric but a quasi-metric on Z!(Q,E). Further, Property 1.1
[9] shows that every H-convergent sequence is H,,-convergent. Thus, the
same example mentioned above gives us an H,,-convergent regular
martingale which fails to be H-convergent.

A natural question arises what are relations between H,-convergence
and regularity of multi-valued I}-amarts. We are unable to answer to this
queation for a general real separable Banach space E. We get, however, the
following result.

THEOREM 4.4. Suppose that either the strong dual E* of E or E has the
Radon-Nikodym property, then every H,-convergent I*-amart is regular.

Proor. Let {(X,> be an I!-amart which is H,-convergent to some
XeZHQ,E). Let (M, be the martingale satisfying (3.2). Then

lim H,[X,,X] =0

n—ow

implies
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lim H,[M,,X] = 0.

n-*o

By Property 1.1 [9], this yields
¢l {M,dP =cl {XdP (Ae o,, neN).
4 1

Suppose first that E* has the Radon-Nikodym property, then by Stegall’s
theorem [12], E* must be separable. Hence, Theorem 5.4, (4°), [6] implies

M,=&(X,s,) (neN).

Now suppose that E has the Radon-Nikodym property. The last equality
implies

K
§IM,IldP =sup Y llc1 | M,dPll
A i=1 A;
k
=sup ) lc1{ XxdPlI
ST 4

<§lxldp (4eo,, neN),
A

where the supremum is taken over all finite o/,-measurable partitions
{A;,A,,...,A;} of A. Therefore, the martingale {(M,) is uniformly
integrable. Hence, by (3.2), so is (X,). Now, applying either directly
Corollary 3.4, [9] to the !-amart {(X,) or the martingale limit theorem
given by Rennov [11] (see also Chatterji [4]) to each element of
Q(I}!AS({X,>)) we infer that by Theorems 3.1 and 4.1, (X,> must be a
regular ' -amart. This completes the proof of the theorem.

Finally, the following counter example completes the considerations
given in [9] and in the paper.

CouNTER-EXAMPLE 4.6. (see [6], Example 3.4). Let ([0,1), &, P) be the
Lebesgue measure space on [0,1). Define a multi-function F: [0,1) - K, (l,)
by

4.9) F)el;lxl £1,¢x,e,> =0 if w,=0 (ne N)}

where =)' 27", is the binary expansion of we [0,1) and <e,>
denotes the usual basis for I,. Thus, by (4.9) Hiai and Umegaki [6] have
shown that Fe £} ([0,1),l,). Now define for each ne N the finite g-field

Ap=0_{[27"k—1),27"k);k =1,2,...,2"} * Bpo;)= .
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We claim that the regular martingale {&(F,«,)) fails to be even H,,-
convergent. To see this, let define M,,,M¢: U, ) — K (l,) by

M,(A) =cl{F,dP,
A

Mp(4) =cl{ FdP (A€Z, = U,s})
A

and .
Z, = {M,(4); AeZ,},
Zp={Mp(A);A€X,},
where
F,=&(F,«,) (neN).

First, we note that since each ¢, is finite, each F, is a simple function. Thus
by the embedding theorem 3.6, (2°), [6], one can regard each F, as an E-
valued Bochner integrable function (for definition of E, see [9]).
Consequently, it follows from [13] that each Z,, is relatively compact in E
hence in K(I,) with respect to the Hausdorff metric h(.,.) given by (2.1).
We shall show now that Zis however not relatively compact in {K.(l,),h).
Indeed, let us define

A, ={we[0,1);w,= 0},
f;, = e,,lA; (nEN).
It is not hard to check that

(®) 5*(en,cl ; FdP) =0 (neN),
(ii) < f,» is a sequence of .&/-measurable selections of F. Consequently,

h (clj FdP, cl} FdP> > |6*(e,,,cll§ FdP) — 5*(e,,,cl} Fap)|
= [6*(encl | FdP)

> <e..,l§f.,dP> =1/4 (n # m).

Hence the sequence (M(4,)> in K,(I,) contains no subsequence h-
convergent. This implies that X cannot ve relatively compact in K (I,).
Thus by properties of (Z,» and Z it follows from Property 1.1, [9] that



22 DINH QUANG LUU

(F,> cannot be H,-convergent to F. Further, {F,) cannot be H,-
convergent to any other Ge £ ([0,1),1,) (see the proof of Theorem 4.4).
This completes the proof of the example.
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