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MEASURE DETERMINING CLASSES OF BALLS
IN BANACH SPACES

ULLA DINGER

0. Introduction.

Consider two Borel probability measures on C([0,1])— the Banach space
of all real-valued continuous functions on [0,1] with the supremum norm.
This paper is related to the following question. Are the measures equal,
when they agree on all open balls with centres in a closed supporting linear
subspace of C([0,1]) and radius one? Since any separable Banach space is
isometrically isomorphic to a closed subspace of C([0,1]) (see [2, p. 185])
we will work in the setting of general separable Banach spaces.

Based on R. O. Davies’ construction (in [7]), R. B. Darst shows in [6]
that there exists a compact metric space K and two singular Borel
probability measures on K which agree on all closed balls (hence, by
approximation, on open balls). This implies the existence of two singular
Borel probability measures u and v on C(K) satisfying the condition

(Cy) {for every a € C(K) there exists a 6 > 0 such that
0

u(B,(@)) = v(B,(a)), 0 <r<3.
Here B,(a) denotes the open ball with centre a and radius r.
However, in [4] C. Borell shows that two Gaussian probability measures
on a separable Banach space coincide whenever the condition (C,) holds.
Throughout this paper, unless otherwise stated, E will denote an
arbitrary real separable Banach space. E’ denotes the topological dual of

E, #(E) the class of Borel sets in E and P(E) the class of Borel probability
measures on E. For ue P(E), 0 <r<+o, M Q E, let

() = {ve P(E); v(B,(a)) ~ u(B,(a)),ae M},
2§ (4) = {ve P(E); v(B,(a)) = n(B,(@)),ae M, 0 <s<r},
25 () = {ve P(E); v(Bs(a)) = u(Bs(a)),ae M, s> 0}.

In the case M = E, we omit the index M.

Received June 6, 1984.



24 ULLA DINGER

The question whether 2°(u) = {u} is true or not has been treated by
J. Hoffmann-Jergensen in [8]. He gives an affirmative answer for a large
class of Banach spaces including L,, 1 < p < oo, C(K), and c,. The answer
is also in the affirmative for L,, as was proved by J. P.R. Christensen in [5].
Furthermore, Christensen obtains far stronger results, when E is a Hilbert
space. In particular he gets 2"(u) = {u}.

In this paper a.o. we show that 2%(u) = {u}, if 4 has a finite Laplace
transform. If

E = Co([0,1]) = {x& C([0,1]);x(0) = 0},

and u is concentrated on the set {x € C([0,1]); x is absolutely continuous,
x' € L,([0,1])} we show that 2"(u) = {u}. Actually, we will prove
generalizations of this, using Fourier methods.

The Fourier transform of u € P(E) will be denoted f, that is

@) = i!exr>(l'<x,§>)du(x), {EE.

For p e P(E), its Laplace transform, ji:E'— ]0,+ oco], is defined by

i) = gexr)((x,é))du(x), (eE.

Below it is basic that two Borel probability measures in a separable Banach
space with the same Fourier transform must be equal.

1. The space c,.
We start with a result about the Banach space
co = {x = {x,}7;x,€R, x,- 0 asn—o0}
equipped with the supremum norm [ x|l = max| x,l.
THeOREM 1.1. Let E = ¢, and let
M = {xeco;x, ¥ 0 only finitely many n}.
Then 2y () = {1},

ProOF. Suppose v e 2,(u).
We want to show that v(¢) = fi(¢) for each & e c,. Recall that

co=1 ={x={x}7;YIx, <o0}.
Define
M, ={xeco;x, =0 Yk >n} (neN)
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and
G, = {xeco;lxil <r Vk>n} (neN).
Below we identify R" and its image in ¢, under the map
(%15 eees Xpg) ™ (X1,...,%,,0,0,...).

By using the Fubini theorem it now follows that

J u(B, ) exp iixkék) dx

J( jla,(x)()’)dﬂ(J’)> exp(iixkék)dx

Co

= [ (JlB'(y)(x)exp(iixk€k>dx>dﬂ(}’)

coNG, "

Yntr yi+r

= i < J J exp(iixkék>dxl...dx,,)du(y)

COan Yn—T Yy —r

- 2"( Il (ﬂ%)) j exp(iiykék)lc,(y)du(y).
k=1 k 1

0

Thus the measures du, = 1 du and dv, = 15 dv satisfy f1,(£) =7,(¢) for
each ¢ = (¢,,...,£,,0,...) € M,. Since M, = M, ,, and G, increases to ¢,
as n tends to infinity, this implies that fi(£) = V(&) for each £ € M. Finally,
noting that M is norm dense in ¢ = I; we are done.

2. Measures with finite Laplace transform.
THEOREM 2.1. If there exists a §: E' - ]0,+ o[, such that

) < +oo, lal < 5(),

then 2 (4) = {u}.
CoroLLArY 2.1. Let u,v € P(E). The condition
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u(B; N B,) = v(B; N B,), all open balls By, B,
implies that p = v.

Proor oF COROLLARY 2.1. To begin with, we have u(B,(0)) > 0 for n
larger than an appropriate N. Thus, for n > N we can define u,,v, € P(E)

by

_ HB,0)NA4)

wd) ==y > A¢2E)

and v, analogously.
Evidently, v,e 2°(u,). Since u, has bounded support, it follows from

Theorem 2.1. that u, =v,. Thus u(B,(0) N A) = v(B,(0) N A) for each
A € #(E). By letting n tend to plus infinity, this yields that u = v.

Given peP(E), let (X;) be a sequence of independent identically
distributed E-valued random variables (i.i.d.) with distributions Py, = p,
and set X, = n~ (X, +...+ X,). Note that

P(X,e A) =Py , ,x(nA) =Py *.. %Py (nd)=p*.. *pund).

For each open convex subset 4 of E the limit lim,_,n " 'log P(X,€ A)
exists in [ — 00,0] and is denoted by /,(A).

DeriniTiON. The Cramér transform of u is defined by
Au(x) = —inf {l,(4);x € A, A open convex},
Ay E—[0,+00].
LemMA 2.1. If ve 2%(u), then A, = A,.
PRrooF. As |, increases on its domain of definition
Au(x) = —inf {l,(B);x € B, B open ball}.

Thus the lemma follows, if

P(X,eB) = P(Y,eB), all open balls B, ne N,

where the (X;) [(Y;)] isi.i.d. with Py = p [Py="]
For an arbitrary 7 € P(E) we have

p * 1(B) = [ u(B — y)dr(y) = [v(B — y)dz(y) = v * 1(B).
Hence
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p % u(B)=v % u(B) = p * v(B) =v * v(B).
This yields
P(X,eB)=u *...%* u(nB) =v *... % v(nB) = P(Y,€ B),
and the lemma is proved.

DerintTiON. For g1 E'— [ — 00, + 0],
g*(x) = sup ((x,¢) (%), g*:E~[~o0, +o0]

is called the Legendre transform of g.

Lemma 2.2. ([1, Theorem 3.2].) Let ue P(E). Then

(log @)* = ,.
This is a generalization of a theorem by Cramér (1938) and Chernoff
(1952).

Given pe P(E), logji is a convex function on E' and — oo < log/i
# + co. Moreover, it is lower semicontinuous in any topology compatible
with the duality between E and E’. Hence

1) (log g)** = log i (see[1, p. 608]).

Proor oF THEOREM 2.1. Assume v € 2% (u).
By (1), Lemmas 2.1, and 2.2 we obtain

logfi =A% = A¥ =log¥.
In particular,

§exp (af)dp = [exp(@f)dv < + o0

for every fixed £ € E’' and each real « satisfying lal < 8(¢). By analytic
continuation to the strip {x +if;lal < 8(¢), fe R} we especially have
(&) = ¥(¢), which proves Theorem 2.1.

3. Measures supported by a Gaussian reproducing kernel Hilbert space.
Before formulating the next theorem, we recall some basic facts about
Gaussian measures. In this we follow the terminology developed by C.
Borell in [3].
A Borel probability measure y on R is said to be a centred Gaussian
measure on R, if there exists a b = 0, such that $(t) = exp (—bt?) for each
te R. A measure y € P(E) is said to be a centred Gaussian measure on E, if
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the image measure £(y) is a centred Gaussian measure on R for every £ € E'.
The class of all centred Gaussian measures on E is denoted by % (E).

Lety e 9, (E) be fixed and denote by E5(y) the closure of E"in L,(y). For
every n € E)(y), the measure 5y has a barycentre A(y) € E, that is

CAM),E> = §(x,Enx)dy(x), EeE'.
Themap A: E (y) — E islinear and injective. We denote its range by ¢ (y).
For brevity we write R = A~ *(h), h e #(y). #(y)is a Hilbert space with the
scalar product

Chiky, = [ hkdy, hke#(y).

H(y) is called the reproducing kernel Hilbert space (RKHS) of y.
The closed unit ball O(y) of »#(y) is a compact subset of E. Moreover,
supp (y) = #(y) and for any he #(y) the measures y(- —h) and y are
mutually absolutely continuous.

Lemma 3.1. (Borell [4, Lemma 2.2, Theorem 2.2.]) Assume y € 4,(E).
Then

(1) 7(B,(»)) £ 7(B,(0)), yeE, r>0

—exp(=31y12), yeE
o 9B, ) ~ =) vek

where
”ynz _ <ysy>y’ yeH(y)
' +00, yeEN\ H#().

THEOREM 3.1. Suppose e P(E). If there exists a y € 9o(E) such that

u# @) =1,
then 25" (u) = {u}.

Proor. For ve P(E) and ¢ € E’ we have

; v(By(2))exp (i{z,¢))dy(z) = ‘SE< j exp (i<z,é>)dv(2))dv(y)-
B,(y)
Now using Lemma 3.1 we get, by dominated convergence,

lim s j V(B (2))exp (i€2,))dy(2)
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= ISS exp (i{y,&)exp(— 4 [y 12)dv(y).

Thus, if ve 257 (u) it follows that

‘SZCXP (i<y,&>)exp (=1 y13)dv(y)

= ;CXP (i<y,&)exp(— 411y 12)du(y), E€E.

Since the measures exp (— 4 Il yl12)dv and exp(—4 Il y2)du have the same
Fourier transform, they are equal. Finally, as u(s#(y)) =1 and v is a
probability measure, this implies that v = u. This proves Theorem 3.1.

We notice that if every ue P(E) is concentrated on the RKHS of an
appropriate y € %,(E), then E is isomorphic to a Hilbert space (see [12]).
Furthermore, we have

THEOREM 3.2. Suppose E is a Hilbert space and suppose that for any
we P(E), there exists a y € 4y(E) such that u(#(y)) = 1. Then E is finite-
dimensional.

In view of Theorem 3.2, Theorem 3.1 does not imply any of
Christensen’s results on Hilbert spaces (see [5]).

Before the proof of Theorem 3.2 we give an application of Theorem 3.1
to real-valued stochastic processes. For future reference, however, we first
prove the following simple lemma.

LemMa 3.2. If M is dense in E, then 25" (1) = 25" ().

Proor. Let ve 25" (u). Take a € E arbitrarily but fixed.
There is an at most countable set S < ]0,r[, such that

v(0B,(a)) = u(dBy(a)) =0, seJ0,r[ \'S.

Here 0 denotes the boundary operator.
If a, is any sequence in M converging to a and se ]0,r[ \\ S, then, by
dominated convergence,

(B,@) = lim v(B,(a,)) = lim u(B(a,) = u(B.(a).
It follows that v(B,(a)) = u(B,(a)) for each se]0,r], which proves the

lemma.

In the following W denotes the Wiener measure in Co([0,1]) (cf. [11]).
Then W e 94(Co([0,1])) and the RKHS of W is
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HW)= ix’ )ds;x' € L, ([0, 1])} see [9, p. 121]).
0

Consider a real-valued stochastic process X = (X(t))y<,<; such that
(t,w)~ X (t,w) is measurable and

(*) 1
§X2(t)dt < +o0 as..
0

X induces a random vector in L,([0,1]), again denoted by X.
For given r > 0 we define

fx(a) = P({lSX(s ds—a(t)l <r, 0 <t <1}), ae Cy([0.1]).

THEOREM 3.3. The random variable fy determines the law of X.
More explicitely, suppose Y is another real-valued stochastic process
' possessing property (*), If fy(a) = fy(a)a.s.[W], then u = v, where pand v
denote the distributions of X and Y in L,([0,1]), respectively.

Proor. Define u: L,([0,1]) > Co([0,1]) by

uf)(t) = g:f(s)ds.

Let y, [v,] be the distribution of u° X [uc Y] in Co([0,1]). Then, fyx = fy
means that

1(B,(@) = v(B,(@) a.5. [W].
We need the following lemma.
LemMA 3.3. Let E = Cy([0,1]). Suppose M € B(C,([0,1])) and
W(M) =1.
Then 2(u) = 2="(u) for each ue P(E).

Proor. Choose functions h, € 5 (W) with the property

h(i27") = (1), i=1,...,2",
lh, ()l <1, 0t<1,

and set
M =N (M —qh,;qe]0,,[ NQ, neN).

Since the measure W (- — h) is absolutely continuous with respect to W for
each he # (W) and W(M) =1, W (M) = 1. Therefore, since



MEASURE DETERMINING CLASSES OF BALLS IN BANACH SPACES 31

supp (W) = # (W) = Co([0,1]),

M is dense in C,([0,1]). According to Lemma 3.2 it is enough to show that

W) € 25w, i

Suppose v € 24,(u). Take z € M arbitrarily but fixed. As before, thereis an
at most countable set S = ]0,r[ such that v(dB,(z)) = u(éB,(z)) = 0 for
each se J0,r[ \\ S.

Let se€]0,r[ \'S be fixed. Choose a sequence g,€]0,r[ NQ, neN,
which converges to r — s as n tends to plus infinity. Then

nlgg 13,(z+qnh")()’) =1p, ), ye Co([0,1]) \ 0B(z).

By dominated convergence this yields
v(By(z)) = lim v(B,(z + q,h,)) = Lim p(B,(z + q,h,)) = p(B.(z)),

as z + g,h,€ M for each n. Hence ve 2 f{(y), which proves the lemma.
Proor oF THEOREM 3.3. By applying Lemma 3.3 we have
Hu(By(2)) = vi(By(2)), z€ Co([0,1]), 0<s=r.
Observing that u(L,([0,1])) = (W) we have
w(H (W) = u(L,([0,1])) =1.

It follows from Theorem 3.1 that u, = v,. Butu(B) € 2(C,([0,1])) for every
Borel subset B in L,([0,1]) ([13, p. 103]) and, consequently, u = v. This
proves Theorem 3.3.

Finally, to prove Theorem 3.2 we will discuss some rather general
properties for Gaussian measures in Hilbert spaces.

Let H be a real separable Hilbert space with inner product {-,-». A
bounded linear operator 4 on H is said to be a Hilbert—Schmidt operator if

T de, 12 < +00

for some (and then for each) orthonormal basis (e,) of H.
For each y € 4,(H) there exists a unique positive self-adjoint Hilbert—
Schmidt operator A4,, such that

§<x,2)2dy(z) = l4,x11?, xe H =H'.

Conversely, for each positive self-adjoint Hilbert—Schmidt operator 4
there exists a unique y € 4,(H) such that A = 4,. In fact 4, = S}/?, where
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S, is the covariance operator of y. These results are well known and can be

found, for example, in [11]. Moreover, #(y) = range 4,.
Further, if 4 is an operator as above, it has a spectral representation

A(r) = Z/l,,( *3€n) €n,

where (e,) is an orthonormal sequence in H, 4, > 0, and ) A2 < + 0.

It follows that (4,e,) is an orthonormal basis for #°(y) if A = 4,, and
(Anen)~ = A, 'e,. To avoid trivialities we assume dim J#(y) = + o0.

In [10], J. Kuelbs shows that for any orthonormal basis (a,) in H#(y)

x =), a,(x)a, as.[y].

t-MS

THEOREM 3.4. Suppose ue 4,(H), dim 3¢ (1) = + co. If
Au = 20n< : ’en>en
1

is the spectral representation of A,, the following are equivalent
(a) tﬂiolere exists ay € 9o(H), such that u(#(y)) =1,
(b) Yo, < +o0,
1
(c) AL is a Hilbert—Schmidt operator.
It is obvious that Theorem 3.4 implies Theorem 3.2.

Proor. The equivalence (b)<>(c) follows immediately from the
definition.

(c)=> (a): Of course, A}/ is also positive and self-adjoint. Thus there
exists a y € 9o(H) with A, = A}. Then

A, =

n—MS

0,{/2< : ,en>en'
Define
3 2
o) = ; <—y’ae—">—, yeH.

It follows that

range 4, = {y;p(y) < +0}.
However,

§odu = ;a,,< +00.
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Hence, ¢(y) < + o0 a.s. A[u], which means that u(#(y)) = 1.
(@)=>(b): Let

o0

=2 Al S fo

1

be the spectral representation of 4,.

Set b, = 4, f,. Then (b,) is an orthonormal basisin #(y) and b, = 1] 'f,
(here the ~ sign refers to y as the underlying measure). Without loss of
generality we may assume that E = supp (y), so that (f,) is an orthonormal
basis in E.

Since Il - I, is a p-measurable seminorm which is finite a.s. [],

C = {lIxl2du(x) < +oo (see [11]).

By using x = ) | d,(x)a, a.s. [u], where a, = g,e,, d, = o, 'e,, we get
hxldue) = 3§ Coibyd3 dutx) = 332 [ Cfy?dute) = 3 WA

This yields

a0

n,

© 1/2
_<__C”2<Zl,2,> < + 0.
1

This completes the proof of Theorem 3.4.

0 1/2 1/2
ak<ek,f;l>2 é (n Z %(ekaf;t>2> (n A‘r% <eln/;|>2>

M8

1 1

ReMARK. Above we have only investigated different ball problems for
Borel probability measures. However, Theorems 1.1, 2.1, and 3.1 still hold,
if we work with finite positive Borel measures (abbr. #(E))
defining 2}, (u), 25" (u), 25 (u) as before but now replacing P(E) by
A (E). This is obvious for Theorems 1.1 and 2.1. In the proof of Theorem
3.1 we get v(- N3 (y)) = u. From the inner regularity of v it follows that
v(5#(y)) = v(E) and we are through.

Interestingly enough, the above definition leads to new non-trivial
problems. For example, if u,ve #(E) and u(B) = v(B) for all balls of
radius smaller than a fixed r < + 00, itis not at all obvious that u(E) = v(E).
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