DOUBLE POINTS OF COMPOSITIONS OF PROJECTIONS

JOHAN P. HANSEN AND SIMON VYRDAL

0. Introduction.

Let $X \subseteq \mathbf{P}^{M}$ be a variety and let $\pi_{L}: X \to \mathbf{P}^{N}$ be the linear projection with center L.

Double point and ramification schemes for π_L are defined by the following construction (see [5], [7]).

Let G denote the Grassmannian of lines in P^M and let $\Sigma_L \subseteq G$ denote the Schubert variety of lines in P^M intersecting L. Let Δ_X denote the diagonal of $X \times X$. There is a morphism $X \times X \setminus \Delta_X \to G$ which maps a pair of points to the line they span. Let $(X \times X)^{\sim}$ be the closure in $X \times X \times G$ of the graph of this morphism. Let $g: (X \times X)^{\sim} \to G$ be the projection on the Grassmannian. Let P(X) be the inverse image of $\Delta_X \subset X \times X$ by the projection $\pi: (X \times X)^{\sim} \to X \times X$. The double point scheme $\widetilde{D}(\pi_L) \subseteq (X \times X)^{\sim}$ is defined to be $g^{-1}\Sigma_L$. One has that points in $\widetilde{D}(\pi_L)$ are those pairs (x_1, x_2) with $x_1 \neq x_2$ and $\pi_L(x_1) = \pi_L(x_2)$, together with those tangent directions in P(X) on which the induced tangent map vanishes. The ramification scheme $\widetilde{R}(\pi_L)$ is defined to be $P(X) \cap \widetilde{D}(\pi_L)$.

$$\begin{array}{c|c} (X\times X)^{\sim} & \xrightarrow{g} & G \\ & \swarrow & & & & & \\ P(X) & & g^{-1}\Sigma_L = \tilde{D}(\pi_L) & \xrightarrow{} & \Sigma_L \\ & & & & & \\ & & & & \\ P(X) \cap g^{-1}\Sigma_L = \tilde{R}(\pi_L) & \end{array}$$

Define the double point class $D(\pi_L)$ and the ramification class $R(\pi_L)$ in A.(X) to be

$$D(\pi_L) = (\operatorname{pr}_1 \circ \pi)_* ([\tilde{D}(\pi_L)])$$

$$R(\pi_L) = (\operatorname{pr}_1 \circ \pi)_* (\tilde{R}(\pi_L)],$$

where $\operatorname{pr}_1: X \times X \to X$ is projection on the first factor and $[\tilde{D}(\pi_L)]$ (respectively $[\tilde{R}(\pi_L)]$) is the rational equivalence class of $\tilde{D}(\pi_L)$ (respectively $\tilde{R}(\pi_L)$).

Received August 20, 1983; in revised form January 2, 1985.

Let $L' \supseteq L$ be linear subspaces such that L' does not meet X. A point in $\tilde{D}(\pi_l)$ can be thought of as a line l with two points $x_1, x_2 \in X$ on it such that l meets L'.

The morphism

$$(\pi_L \times \pi_L) \circ \pi : (X \times X)^{\sim} \to X \times X \to \mathbf{P}^N \times \mathbf{P}^N$$

maps such a point $(x_1, x_2, l) \in \tilde{D}(\pi_L)$ to $(\pi_L(x_1), \pi_L(x_2)) \in P^N \times P^N$. The condition that $\pi_L(x_1) = \pi_L(x_2)$ is equivalent to either

(1)
$$x_1 = x_2$$
, i.e. $(x_1, x_2, l) \in \tilde{R}(\pi_L)$

or

(2)
$$l \text{ meets } L, \text{ i.e. } (x_1, x_2, l) \in \widetilde{D}(\pi_L).$$

This gives the set-theoretic identity:

$$(*) \tilde{D}(\pi_{I'}) \cap ((\pi_L \times \pi_L) \circ \pi)^{-1} (\Delta_{\mathbf{P}^N}) = \tilde{D}(\pi_L) \cup \tilde{R}(\pi_{I'}).$$

In the next section we will give scheme-theoretic and cycle-theoretic versions of (*) and finally an identity in rational equivalence among the double point and ramification classes of π_L and π_L .

In particular, if $\pi_L: X \to P^N$ and $\pi_L = \pi_P \circ \pi_L: X \to P^{N-1}$ are generic linear projections where P is a point, we obtain the formula

$$\boldsymbol{D}(\boldsymbol{\pi}_{I'}) \cdot \boldsymbol{h} = \boldsymbol{D}(\boldsymbol{\pi}_{L}) + \boldsymbol{R}(\boldsymbol{\pi}_{I'})$$

in A. (X), where h is the class of a hyperplane.

This formula was proved by K. Johnson in [5], where he also gives applications.

All schemes are projective defined over an algebraically closed field. A variety is a reduced and irreducible scheme.

1. Results.

A. Scheme-theoretic version. With notation as above, consider the following diagram:

theoretic version. With notation as above, am:
$$\tilde{D}(\pi_L) = \begin{pmatrix} \tilde{D}(\pi_L) & \tilde{$$

THEOREM 1. Let $X \subseteq \mathbf{P}^{\mathbf{M}}$ be a variety, $L \subset L'$ linear subspaces of $\mathbf{P}^{\mathbf{M}}$, $L' \cap X = \emptyset$, and let π_L, π_L' denote the corresponding linear projections of X. Then

i)
$$(\tilde{D}(\pi_L) \cap ((\pi_L \times \pi_L) \circ \pi)^{-1} (\Delta_{\mathbf{P}^N})) \cap P(X) = \tilde{R}(\pi_L)$$

ii)
$$(\widetilde{D}(\pi_L) \cap ((\pi_L \times \pi_L) \circ \pi)^{-1} (\Delta_{P^N})) \setminus P(X) = \widetilde{D}(\pi_L) \setminus P(X)$$
 as schemes.

PROOF. As P(X) is a subscheme of $((\pi_L \times \pi_L) \circ \pi)^{-1} (\Delta_{P^N})$ and

$$\widetilde{D}(\pi_L) \cap P(X) = \widetilde{R}(\pi_L)$$

as schemes, assertion i) is obvious.

One has

$$((\pi_L \times \pi_L) \circ \pi)^{-1} (\Delta_{P^N}) \setminus P(X) = \tilde{D}(\pi_L) \setminus P(X).$$

It suffices to prove this assertion in case $X = P^M \setminus L$. This case can be verified directly by equations. The identity reflects the fact that two different points have the same image under projection from L if and only if their secant line meets L. Now ii) follows by intersecting with $\tilde{D}(\pi_L)$ which contains $\tilde{D}(\pi_L)$.

B. Cycle-theoretic version.

Definition. We shall call the linear projection $\pi_L: X \to P^N$ generic if the following conditions are satisfied:

- i) $\widetilde{D}(\pi_L)$ is equidimensional with $\operatorname{codim}(\widetilde{D}(\pi_L), (X \times X)^{\sim})$ = $\operatorname{codim}(\Sigma_L, G)$
- ii) $\tilde{R}(\pi_L)$ is equidimensional with $\operatorname{codim}(\tilde{R}(\pi_L), P(X)) = \operatorname{codim}(\Sigma_L, G)$.

It is well-known ([9, Transversality lemma (1.3)]) that these conditions are satisfied for all L in a non-empty Zariski open subset in the appropriate Grassmannian.

Let P be the image of L' under π_L . Consider the product morphism

$$\pi_P \times \pi_P : (\mathbf{P}^N \setminus P) \times (\mathbf{P}^N \setminus P) \to \mathbf{P}^{N-1} \times \mathbf{P}^{N-1}$$

where π_P is linear projection from P. Define C_P to be $(\pi_P \times \pi_P)^{-1}(\Delta_{P^{N-1}})$, i.e. pairs of points collinear with P. C_P is irreducible and smooth and $\Delta = \Delta_{P^N} \setminus (P, P) \subseteq C_P$ has codimension 1.

The morphism $(\pi_L \times \pi_L) \circ \pi : (X \times X)^{\sim} \to \mathbf{P}^N \times \mathbf{P}^N$ maps

$$\left(\left(\pi_{L} \times \pi_{L}\right) \circ \pi\right)^{-1} \left(\Delta_{P^{N-1}}\right) = \left(\left(\pi_{L} \times \pi_{L}\right) \circ \pi\right)^{-1} \left(\pi_{P} \times \pi_{P}\right)^{-1} \left(\Delta_{P^{N-1}}\right)$$

to
$$(\pi_P \times \pi_P)^{-1}(\Delta_{P^{N-1}}) = C_P$$
.

The restriction of $(\pi_L \times \pi_L) \circ \pi : (X \times X)^{\sim} \to P^N \times P^N$ to $\tilde{D}(\pi_L)$ is therefore a morphism

$$\alpha: \widetilde{D}(\pi_L) \to C_P$$

and
$$\alpha^{-1}(\Delta) = \widetilde{D}(\pi_I) \cap ((\pi_L \times \pi_L) \circ \pi)^{-1}(\Delta_{P^N}).$$

THEOREM 2. Let $X \subseteq \mathbf{P}^M$ be a variety, and let π_L and π_L denote generic linear projections from linear subspaces $L \subset L'$ with dim $L' = \dim L + 1$. Then

$$\alpha^*[\Delta] = [\tilde{D}(\pi_L)] + [\tilde{R}(\pi_L)]$$

as cycles on $\tilde{D}(\pi_L)$.

PROOF. From Theorem 1 and the above formula for $\alpha^{-1}(\Delta)$ we have

$$\begin{bmatrix} \alpha^{-1}(\Delta) \end{bmatrix} = \begin{bmatrix} \tilde{D}(\pi_L) \cap \left((\pi_L \times \pi_L) \circ \pi \right)^{-1} (\Delta_{P^N}) \end{bmatrix}$$

=
$$\begin{bmatrix} \tilde{D}(\pi_L) \end{bmatrix} + \begin{bmatrix} \tilde{R}(\pi_L) \end{bmatrix}$$

as cycles because no component of $\tilde{D}(\pi_L)$ is contained in P(X) since π_L is generic.

As $\Delta \subset C_P$ is of codimension 1,

$$[\alpha^{-1}(\Delta)] = \alpha^*[\Delta].$$

C. In rational equivalence. Let $A \cdot (X)$ denote the Chow homology group, i.e., the group of algebraic cycles on X modulo rational equivalence on X, see [2].

The space C_P is the total space of the bundle

$$p: \mathcal{O}_{\mathbf{p}^{N-1}}(1) \oplus \mathcal{O}_{\mathbf{p}^{N-1}}(1) \to \mathbf{P}^{N-1}.$$

LEMMA. The class of Δ in $A^1(C_p)$ is the first Chern class of $p^*(\mathcal{O}_{p^{N-1}}(1))$.

Proof. The projections

$$\mathscr{O}_{\mathbf{P}^{N-1}}(1) \oplus \mathscr{O}_{\mathbf{P}^{N-1}}(1) \xrightarrow{\operatorname{pr}_1} \mathscr{O}_{\mathbf{P}^{N-1}}(1)$$

on the factors give rise to two global sections s_1 , s_2 of $p^*(\mathcal{O}_{\mathbf{P}^{N-1}}(1))$. Then $\Delta = s^{-1}(0)$, where s is the global section $s_1 - s_2$, see [3].

We have in the notation of the introduction

THEOREM 3. Let $X \subset \mathbf{P}^{\mathbf{M}}$ be a variety, $L \subset L'$ linear subspaces with $\dim L' = \dim L + 1$ and let π_L and π_L' be the corresponding linear projections. Then

$$\mathbf{D}(\pi_{I'}) \cap c_1(\mathcal{O}_X(1)) = \mathbf{D}(\pi_{I}) + \mathbf{R}(\pi_{I'})$$

in A.(X).

Proof. From Theorem 2 and the Lemma we conclude that

$$\left[\widetilde{D}(\pi_L)\right] \cap \alpha^* c_1 \left(p^* \mathcal{O}_{P^{N-1}}(1)\right) = \left[\widetilde{D}(\pi_L)\right] + \left[\widetilde{R}(\pi_L)\right]$$

in $A \cdot (\tilde{D}(\pi_L))$.

Let $\operatorname{pr}_1: X \times X \to X$ be the projection on the first factor. Then

$$\alpha^* p^* \mathcal{O}_{\mathbf{P}^{N-1}}(1) = \pi^* \operatorname{pr}_1^* \mathcal{O}_X(1)$$

on $\tilde{D}(\pi_L)$.

Therefore

$$\left[\widetilde{D}(\pi_{L})\right] \cap \pi^* \operatorname{pr}_1^* c_1(\mathcal{O}_X(1)) = \left[\widetilde{D}(\pi_L)\right] + \left[\widetilde{R}(\pi_L)\right]$$

and

$$(\operatorname{pr}_1 \circ \pi)_* [\tilde{D}(\pi_L)] \cap c_1(\mathcal{O}_X(1)) = (\operatorname{pr}_1 \circ \pi)_* [\tilde{D}(\pi_L)] + (\operatorname{pr}_1 \circ \pi)_* [\tilde{R}(\pi_L)].$$

2. Remarks.

a. A relation of the same type as in Theorem 3 goes back to Severi [10]. Specifically, let $X \subset P^{2n}$ be an *n*-dimensional variety with a finite number, d, of transversal double points. Let $P \in P^{2n}$ and H be a hyperplane containing P. Then he proved that for generic P and H,

$$2\tilde{d}=2d+\omega_n,$$

where \tilde{d} is the number of transversal double points for the image $\pi_P(X \cap H)$ of the hyperplane section $X \cap H$, and ω_n is the number of n-planes, tangent to X at smooth points, which contains P. Catanese [1] has given a modern account of Severi's work.

b. The first author has for morphisms $f: X \to Y$ and $g: Y \to V$ given a scheme theoretic relation among the double points of f and the ramification and double points of $g \circ f: X \to V$, see [4].

Let X, Y, V be quasi-projective schemes defined over an algebraically closed field and let $f: X \to Y$ and $g: Y \to V$ be morphisms. Following Laksov [8], we have double-point Z(f), $Z(g \circ f)$ and ramification schemes $R(g \circ f)$ of f and $g \circ f$. They are subschemes of $(X \times X)^{\sim}$, the blow-up of $X \times X$ along the diagonal, and Z(f), $R(g \circ f)$ are subschemes of $Z(g \circ f)$.

Consider the composition

$$(f \times f) \circ \pi : (X \times X)^{\sim} \to X \times X \to Y \times Y,$$

where $\pi: (X \times X)^{\sim} \to X \times X$ is the blow-up morphism. The composition $(f \times f) \circ \pi$ maps the double-point scheme $Z(g \circ f) \subseteq (X \times X)^{\sim}$ into $Y \times_V Y$. Let

$$h: Z(g \circ f) \to Y \times_V Y$$

denote the restriction of $(f \times f) \circ \pi$.

The main result of [4] is the following

THEOREM. Let $\operatorname{Im}(Z(f) \perp R(g \circ f))$ denote the subscheme of $Z(g \circ f)$ defined by the product of the defining ideals of Z(f) and $R(g \circ f)$ in $Z(g \circ f)$. The diagram

$$Z(g \circ f) \xrightarrow{h} Y \times_{V} Y$$

$$\cup \qquad \qquad \cup$$

$$Im(Z(f) \perp R(g \circ f)) \rightarrow \Delta_{Y}$$

is cartesian.

The last author has treated double points of compositions of linear projections in his Master's Thesis [11].

REFERENCES

- F. Catanese, On Severi's proof of the double point formula, Comm. Algebra 7 (1979), 763–773.
- W. Fulton, Rational equivalence on singular varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 147–167.
- A. Groethendieck, La théorie des classes de Chern, Bull. Soc. Math. France 86 (1958), 137– 154.
- 4. J. P. Hansen, Double points of compositions, J. Reine Angew. Math. 352 (1984), 71-80.
- 5. K. Johnson, Immersion and embedding of projective varieties, Acta Math. 40 (1978), 49-74.
- G. Kempf and D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153–162.
- S. L. Kleiman, The enumerative theory of singularities, in Real and complex singularities (Proc. Ninth Nordic Summer School, Oslo, 1976), ed. P. Holm, pp. 297-396. Sijthoff and Noordhoff International Publishers, Alphen aan den Rijn, 1977.
- 8. D. Laksov, Residual intersection and Todd's formula for the double locus of a morphism, Acta Math. 140 (1978), 75-92.
- 9. R. Piene, Polar classes of singular varieties, Ann. Sci. École Norm. Sup. (4) 11 (1978), 247–276.
- 10. F. Severi, Sulle intersezioni delle varieta algebriche e sopra i loro caratteri e singolarita projettive, Mem. Accad. Sci. Torino, serie 2 (1902), 61-118.
- 11. S. Vyrdal, Linear projections, double-point and ramification classes, Master's Thesis, Aarhus, 1982.

MATEMATISK INSTITUT AARHUS UNIVERSITET NY MUNKEGADE 8000 AARHUS C DENMARK