MATH. SCAND. 58 (1986), 119-124

DOUBLE POINTS OF COMPOSITIONS
OF PROJECTIONS

JOHAN P. HANSEN AND SIMON VYRDAL

0. Introduction.

Let X S PMbea variety and let n; : X — P" be the linear projection with
center L.

Double point and ramification schemes for n; are defined by the
following construction (see [5], [7]).

Let G denote the Grassmannian of linesin PMandlet £, S G denote the
Schubert variety of lines in PM intersecting L. Let 4, denote the diagonal
of X x X. There is a morphism X x X \ 45 — G which maps a pair of
points to the line they span. Let (X x X)~ be the closure in X X X x G
of the graph of this morphism. Let g: (X X X)~ — G be the projection
on the Grassmannian. Let P(X) be the inverse image of Ayc X x X
by the projection n:(X X X)~— X x X. The double point scheme
D(n;) S (X x X)~ is defined to be g~! ;. One has that points in D(ny)
are those pairs (x,,x,) with x; # x, and =n;(x,) = n.(x,), together with
those tangent directions in P(X) on which the induced tangent map
vanishes. The ramification scheme R(n.) is defined to be P(X) N D(ny).

XxX)y: —2 G
720N S
P(X) g_lzL=ﬁ(7TL)—"’ZL

S ul

P(X)Ng~'Z, = R(ny)
Define the double point class D(n;) and the ramification class R(x,) in
A.(X) to be
D(n) = (pryom) ([D(WL)])
R(n.) = (pry° 75)* (R(TCL)])a

where pr;: X x X » X is projection on the first factor and [D(n,)]
(respect1vely [R(nL)]) is the rational equivalence class of D(m)
(respectively R(r)).
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Let ' 2 L be linear subspaces such that I does not meet X. A point in
D(n}) can be thought of as a line  with two points x,,x, € X onit such that
I meets L.

The morphism

(mpxm)en: (X xXX)" > XxX—>PVxpN

maps such a point (x,,x,,l) € D(n;) to (my(x,),7.(x;)) € P¥ x PV, The
condition that 7, (x;) = 7 (x,) is equivalent to either

(1) Xy =Xz, 1€ (x1,Xp,l) € ﬁ(nﬂ)
or
() Imeets L, i.e. (xq,X,,l) € D(n,).

This gives the set-theoretic identity:
(*) 5(nn)n((annL)°7t)_l (4pv) =ﬁ(nL)UR(nE)-

In the next section we will give scheme-theoretic and cycle-theoretic
versions of (x) and finally an identity in rational equivalence among the
double point and ramification classes of n;, and 7.

In particular, if n,: X - PY and n,=mnpomn,: X - PV~ are generic
linear projections where P is a point, we obtain the formula

D(ny) h=D(ny)+ R(ny)

in A.(X), where h is the class of a hyperplane.

This formula was proved by K. Johnson in [5], where he also gives
applications.

All schemes are projective defined over an algebraically closed field. A
variety is a reduced and irreducible scheme.

1. Results.
A. Scheme-theoretic version. With notation as above, consider the

following diagram: |
Dy -
Q

(rexmp)em)  dp) < (XxX)

L XWy

AI;N c PN x PN
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TueoreM 1. Let X S PM be a variety, L = L linear subspaces of P,
LNX = &, andlet n;,n, denote the corresponding linear projections of X .
Then

i) Dy N(ryxmy)on) *(4p))N P(X)=R(r,)
ii) (D(rp) N (G, xmp)om) ™ (4pw) \ P(X) = D(n,) \ P(X)
as schemes.
ProoF. As P(X) is a subscheme of ((n, X n,)° m)~*(4 pv) and
Pr)NnPX)=R(n,)

as schemes, assertion i) is obvious.
One has

((an ”L)°7t)_1(ApN) \ P(X) = D(m,) \ P(X).

It suffices to prove this assertion in case X = P™ \ L. This case can be
verified directly by equations. The identity reflects the fact that two
different points have the same image under projection from L if and only if
their secant line meets L. Now ii) follows by intersecting with D(xn ) Which
contains D(r).

B. Cycle-theoretic version.

DEerintTION. We shall call the linear projection 7, : X — P¥ generic if the
following conditions are satisfied:

i) D(n.) s equidimensional with codim(D(z,), (X x X)~)
= codim(Z,,G)
ii) R(r,)is equidimensional with codim(R(r,), P(X)) = codim(Z,,G).

It is well-known ([9, Transversality lemma (1.3)]) that these conditions
are satisfied for all L in a non-empty Zariski open subset in the appropriate
Grassmannian.

Let P be the image of L under n;. Consider the product morphism

npX mp: (PY \ P)x (P¥ \ P)— PN~1x pN-1

where 7, is linear projection from P. Define Cp to be (mp X p) ™ (4 pr-1),
i.e. pairs of points collinear with P. C, is irreducible and smooth and
-4 = Apy\ (P,P) E Cp has codimension 1.
The morphism (n;, X n;)on: (X x X)~ — PN x P¥ maps
((mpxmp)om) (A pn-1) = ((rp X mp) o 1)~ (mp X 7p) ™" (A pr-1)

to (mp x nP)_l(APN—I) = Cp.
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The restriction of (mpxmy)em: (X xX)” >P"xPY¥ to D(n)) is
therefore a morphism

a: D) - Cp
and a~1(4) = D(n,) N((ny x m ) o m) ™ (4 pn).

THEOREM 2. Let X S PM be a variety, and let n;, and n |, denote generic
linear projections from linear subspaces L< L with dim L = dim L+ 1. Then

a*[4] = [D(ny)] + [R(np)]
as cycles on D(n},).
Proor. From Theorem 1 and the above formula for «~!(4) we have
[a~ 1 ()] = [D,) N ((ryx mp)om) 1 (dpw)]
= [D(m.)] + [R(n )]

as cycles because no component of D(n;) is contained in P(X) since n;, is
generic. '
As 4 = Cp is of codimension 1,

[a™!(4)] = «*[4].

C. Inrational equivalence. Let A . (X') denote the Chow homology group,
i.e., the group of algebraic cycles on X modulo rational equivalence on X,
see [2].

The space Cp is the total space of the bundle

P:Opn-1(1) @ Opn-2(1) > PN 71,
LemMa. The class of 4 in A*(Cp) is the first Chern class of p* (0 px-1(1)).
Proor. The projections

Opr-1(1) ® O pn-1(1) B3 O pu-1(1)

on the factors give rise to two global sections sy, 5, of p* (@ pv-1(1)). Then
4 = s71(0), where s is the global section s; — s,, see [3].

We have in the notation of the introduction

THEOREM 3. Let X = PM be a variety, Lc L linear subspaces with
dim L = dim L + 1 and let n; and 7|, be the corresponding linear projections.
Then

D(n;) N ¢y (0x(1)) = D(np) + R(np)
in A.(X).
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Proor. From Theorem 2 and the Lemma we conclude that

[D(m )] Noa*cy(p*Opn-1(1) = [D(np)] + [Rin )]

in A.(D(xp).
Let pry: X x X — X be the projection on the first factor. Then

a*p* Opn-1(1) = n*prf Ox(1)

on D(n -
Therefore

[D(r )] Nr*pric,(0x(1) = [D(r.)] + [R(r )]
and
(pry© n)*[ﬁ(nu)] n Cl(wx(l)) = (pry°m), [5(7%)] + (pry° @), [E(nu)]-

2. Remarks.

a. A relation of the same type as in Theorem 3 goes back to Severi [10].
Specifically, let X = P?" be an n-dimensional variety with a finite number,
d, of transversal double points. Let ‘P € P** and H be a hyperplane
containing P. Then he proved that for generic P and H,

2d = 2d + w,,

where d is the number of transversal double points for the image
np(X N H) of the hyperplane section X N H, and w, is the number of n-
planes, tangent to X at smooth points, which contains P. Catanese [1] has
given a modern account of Severi’s work.

b. The first author has for morphisms f: X —» Y and g: Y — V given a
scheme theoretic relation among the double points of f and the
ramification and double points of go f: X — V, see [4].

Let X,Y,V be quasi-projective schemes defined over an algebraically
closed field and let f: X —» Y and g:Y — V be morphisms. Following
Laksov [8], we have double-point Z(f), Z(g°f) and ramification
schemes R(g° f) of f and go f. They are subschemes of (X x X)~, the
blow-up of X x X along the diagonal, and Z(f), R(g° f) are subschemes
of Z(ge f).

Consider the composition
(fxflem:(XxX)" > XxX->YxY,

where 7: (X X X)~ - X x X is the blow-up morphism. The composition
(fxf)on maps the double-point scheme Z(gef)S (X x X)~ into
Y x v Y. Let
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h:Z(go f)— Yx, Y

denote the restriction of (fx f)° n.
The main result of [4] is the following

THEOREM. Let Im(Z(f) 1L R(g° f)) denote the subscheme of Z(g° f)
defined by the product of the defining ideals of Z(f) and R(ge°f) in
Z(go f). The diagram

Z@Eof) o Yx, ¥
U U
Im(Z(f) L R@g°f)) ~ 4y
is cartesian.

The last author has treated double points of compositions of linear
projections in his Master’s Thesis [11].
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