INFINITE LOCALLY FINITE HYPOHAMILTONIAN GRAPHS

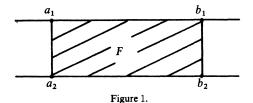
MONIKA SCHMIDT-STEUP

An enumerably infinite graph G is called *hypohamiltonian*, if it has no two-way infinite hamiltonian path, but every vertex deleted subgraph G-v has such a path. Thomassen [4] gives examples of infinite hypohamiltonian graphs. Each of these graphs has a vertex of infinite degree. An infinite graph is called *locally finite* if every vertex has finite degree. Thomassen raised the question if there exist infinite hypohamiltonian graphs that are locally finite. In this paper we show:

THEOREM. There exists a planar infinite locally finite hypohamiltonian graph.

The terminology of this paper is that of [4]; additionally, we write e = (v, w) if e is an edge in G with endvertices v and w.

To prove the theorem, we first show that there exists a graph fragment with the following properties:



Definition 1. Let F be a finite graph-fragment with four marked vertices a_1, a_2, b_1, b_2 as shown in Figure 1. F is *suitable*, if the following holds:

- 1. (i) There exists a hamiltonian path from a_i to b_i , i = 1, 2, in F.
- (ii) There exists a hamiltonian path in F from a_1 to a_2 .
- (iii) There are two disjoint paths, one from a_1 to b_1 and the other from a_2 to b_2 covering together all vertices of F.

- 2. (i) There exists no hamiltonian path from a_1 to b_2 or from a_2 to b_1 in F.
- (ii) There exists no hamiltonian path from b_1 to b_2 in F.
- (iii) There are no two disjoint paths in F, one from a_1 to a_2 and the other from b_1 to b_2 covering together all the vertices of F.
- (iv) There are no two disjoint paths, one from a_1 to b_2 and the other from a_2 to b_1 covering together all the vertices of F.
- 3. F v contains at least one hamiltonian path with endvertices either a_1 and b_2 or a_2 and b_1 , for each v in V(F).

We say a path ω in F is of type (1,i), if ω is hamiltonian and $a_j, b_j, j \in \{1,2\}$, are endvertices of ω . A path ω in F is of type (1,ii), if ω is hamiltonian and a_1, a_2 are endvertices of ω . Two paths γ_1 with endvertices a_1, b_1 and γ_2 with endvertices a_2, b_2 in F are said to be a pair of type (1, iii), if they are disjoint and cover together all vertices of F.

To show that such a fragment exists indeed, we use the graph shown in Figure 2, where H_F^1 and H_F^2 , are certain subfragments as defined below.

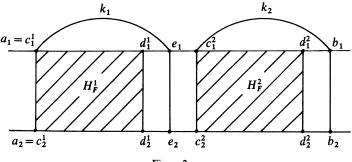


Figure 2.

Definition 2. A finite fragment H_F with marked vertices c_i , d_i , i = 1,2, has property E, if the following three conditions hold:

- 1. (i) There exists a hamiltonian path from c_i to d_i , i = 1, 2, in H_F .
- (ii) There are two disjoint paths, one from c_1 to d_1 and the other from c_2 to d_2 covering together all vertices of H_F .
- 2. (i) There does not exist a hamiltonian path from c_1 to d_2 or from c_2 to d_1 in H_F .
- (ii) There does not exist a hamiltonian path from c_1 to c_2 or from d_1 to d_2 in H_F .
- (iii) There do not exist two disjoint paths, one from c_1 to c_2 and the other from d_1 to d_2 covering together all the vertices of H_F .
- (iv) There do not exist two disjoint paths, one from c_1 to d_2 and the other from c_2 to d_1 covering together all the vertices of H_F .

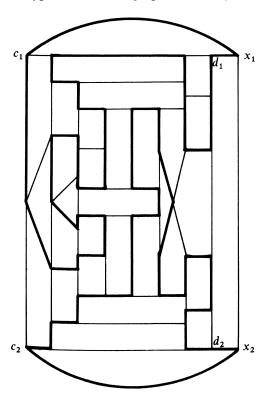
- 3. In $H_F v$, $v \in V(H_F)$ arbitrarily chosen, at least one of the following statements holds:
 - (i) There is a hamiltonian path from c_1 to d_2 or from c_2 to d_1 .
- (ii) There are two disjoint paths, one from c_1 to d_2 and the other from c_2 to d_1 covering together all the vertices of $H_F v$.
- (iii) There are two disjoint paths, one from c_1 to c_2 and the other from d_1 to d_2 covering together all the vertices of $H_F v$.
 - (iv) There exists a hamiltonian path from c_1 to c_2 .

LEMMA 1. The fragment F shown in Figure 2 is suitable.

We omit the proof, because it is mainly a matter of routine, using the fact that H_F^i , i = 1,2, has property E.

To prove that condition (2) of Definition 1 holds, it is convenient to consider $F - \{k_1, k_2\}$ first, and then to show that the addition of k_1, k_2 does not lead to one of the forbidden paths.

Let K be the graph of Figure 3, which is isomorphic to the hypohamiltonian graph K' of Figure 4 found by Hatzel [1]. This is the



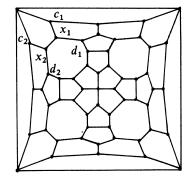


Figure 4.

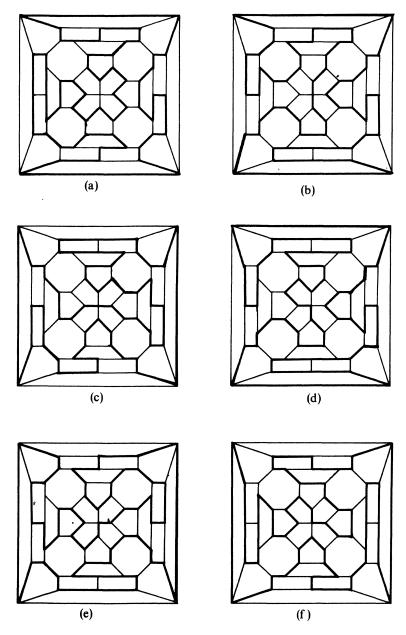


Figure 5, a-f.

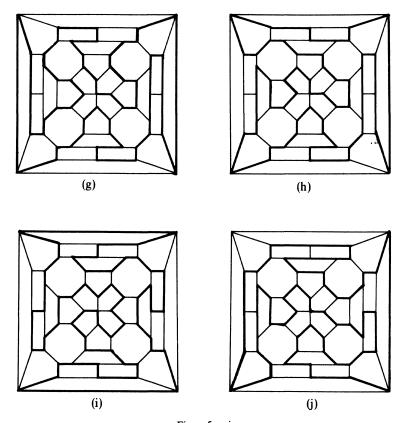


Figure 5, g-j.

smallest known example of a hypohamiltonian graph that is planar. We will demonstrate now that K contains a fragment with property E. Let c_i , d_i , x_i , i=1,2, be the vertices marked in Figure 3, and let K_F be the fragment resulting from K by deletion of the vertices x_1 and x_2 and the corresponding edge. We get:

LEMMA 2. K_F has property E, where c_i, d_i , i = 1, 2, are the marked vertices.

Proof. We have to show that the conditions (1)–(3) of Definition 2 hold.

- (1): (i) holds, because K is hypohamiltonian; the paths demanded in (ii) are contained in the two cycles shown in Figure 3.
- (2): The existence of these paths would always yield a hamiltonian cycle in K.
- (3): To prove this, we take the presentation K' of Figure 4. Figure 5 (a)—(j) presents a hamiltonian circuit in K'-v, for each $v \in V(K')$ (up to

symmetries; see [1]). All but the cases (d) and (i) are already presented in [1]. It is left to the reader to check that in each case one of the required paths exists. Considering all possible symmetries, one gets the assumption.

Letting now K_F play the role of H_F and using Lemma 1 we see that the corresponding fragment F is suitable.

After having shown the existence of a suitable fragment, we now are able to prove the Theorem.

Let G be the graph of Figure 6, where each A_i , i=1,2,3,..., is a suitable fragment. We shall show that G is hypohamiltonian. Let $a_j^i, b_j^i, j=1,2, i=1,2,3,...$, be the marked vertices of the fragment A_i , as indicated in Figure 6. Let δ be a two-way infinite path in G.

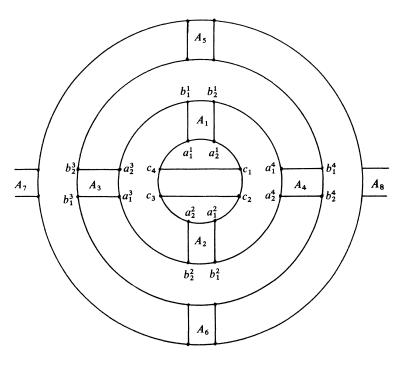


Figure 6.

If $\delta \cap A_i$ consists of all the vertices of A_i , then $\delta \cap A_i$ is a path of type (1,i) or (1,ii), or a pair of paths of type (1,iii). We shall show now that it is not possible to extend these paths to a hamiltonian path in G. There

exists an $i \in \{1,2,3,...\}$ such that the intersection $\delta \cap A_i$ is not a pair of type (1,iii), because otherwise $(G - \{c_1,c_2,c_3,c_4\}) \cap \delta$ would consist of four infinite components, which is impossible.

Without loss of generality, let $n \equiv 1 \pmod{2}$ for Lemma 3 and Lemma 4.

Lemma 3. (i) If $\delta \cap A_n$ is a path of type (1,i), then $\delta \cap A_{n+1}$ does not contain a pair of type (1,iii) as subgraph.

(ii) $\delta \cap A_n$ and $\delta \cap A_{n+1}$ are not of type (1, ii), both.

The proof is easy and therefore left to the reader.

If δ contains all vertices of A_n and A_{n+1} , we have to distinguish between three different cases for the intersections $\delta \cap A_n$ and $\delta \cap A_{n+1}$. All other cases are symmetric. We shall show now that in none of these cases δ is a hamiltonian path.

Lemma 4. (i) If $\delta \cap A_n$ is a path of type (1,i) in A_n with endvertices a_1^n and b_2^n and if $\delta \cap A_{n+1}$ is a path of type (1,i) in A_{n+1} with endvertices a_1^{n+1} and b_1^{n+1} , then δ is not a hamiltonian path in G.

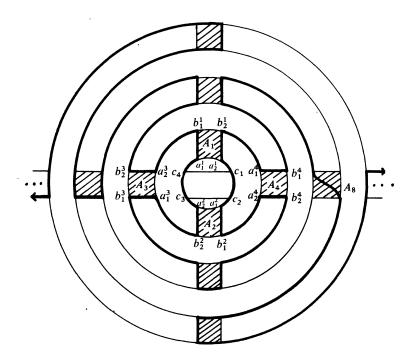
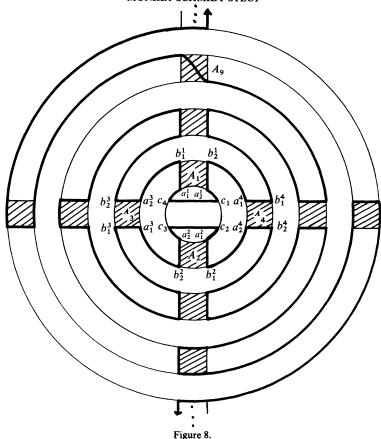


Figure 7.



(ii) If $\delta \cap A_n$ is a path of type (1, ii) in A_n and $\delta \cap A_{n+1}$ is a pair of type (1, iii) in A_{n+1} , then δ is not a hamiltonian path in G.

(iii) If $\delta \cap A_1$, 1 = n, n + 1, is a hamiltonian path in A_1 with endvertices a_j^1 and b_j^1 , $j \in \{1,2\}$, then δ is not a hamiltonian path in G.

For the proof consider the possibilities for $\delta \cap A_{n+2}$ and $\delta \cap A_{n+3}$ in (i). This yields a contradiction to Definition 1. Part (ii) can be reduced to case (i) and (iii) can be proved by induction.

Now, it follows immediately:

LEMMA 5. The graph G is not hamiltonian.

It remains to show:

LEMMA 6. The graph G - v is hamiltonian for each $v \in V(G)$.

If $v \in \{c_j | j = 1, ..., 4\}$ holds, it is easy to determine a hamiltonian path in G - v. If $v \in V(A_i)$ for some $i \in \{1, 2, 3, ...\}$, there exists a hamiltonian path in $A_i - v$ from a_1^i to b_2^i or from a_2^i to b_1^i , by Definition 1. One has to distinguish between two different cases:

- (a) $i \equiv 0 \pmod{4}$ or $i \equiv 3 \pmod{4}$
- (b) $i \equiv 1 \pmod{4}$ or $i \equiv 2 \pmod{4}$.

Figure 7 (Figure 8) indicates the hamiltonian path in case $v \in V(A_8)$ $(v \in V(A_9))$. The detailed proof of Lemma 6 is straightforward and therefore left to the reader.

Lemma 5 and Lemma 6 yield the assumption of the Theorem. Obviously, G is planar, since the fragment F is planar. There are only vertices of degree 3 or 4 in G.

COROLLARY. There are infinitely many planar infinite locally finite hypohamiltonian graphs.

The Corollary is proved by applying Theorem 4.1 of [4] to G and to an arbitrary finite planar hypohamiltonian graph H. Obviously, G and H are satisfying the conditions of Theorem 4.1. of [4], and since there are infinitely many planar hypohamiltonian graphs [4], the Corollary holds.

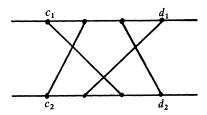


Figure 9.

Remark. Deleting an edge and its endvertices from the Petersen-graph, as shown in Figure 9, yields a fragment P which has property E (compare [2], [3]), but is not planar. The use of this fragment as H_F yields a nonplanar hypohamiltonian locally finite graph.

ACKNOWLEDGEMENTS. The result presented in this paper is part of the author's Ph.D. thesis. The author would like to thank Professor Dr. T. Zamfirescu for his supervision.

REFERENCES

- 1. W. Hatzel, Ein planarer hypohamiltonscher Graph mit 57 Knoten, Math. Ann. 243 (1979), 213-216.
- V. Klee, Which generalized prisms admit H-circuits? in Graph theory and applications (Proc. Conf., Western Michigan Univ., 1972), eds. Y. Alavi, D. R. Lick, A. T. White, (Lecture Notes in Math. 303), pp. 173-179. Springer-Verlag, Berlin - Heidelberg - New York, 1972.
- 3. S. P. Mohanty and Daljit Rao, A family of hypohamiltonian generalized prisms, in Combinatorics and graph theory (Proc. Calcutta, 1980), ed. S. B. Rao, (Lecture Notes in Math. 885), pp. 331-338. Springer-Verlag, Berlin Heidelberg New York, 1981.
- 4. C. Thomassen, Planar and infinite hypohamiltonian and hypotraceable graphs, Discrete Math. 14 (1976), 377-389.

UNIVERSITÄT DORTMUND ABTEILUNG MATHEMATIK 4600 DORTMUND 50 W. GERMANY