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AUTOMORPHISM GROUPS OF COMPACT
KLEIN SURFACES WITH ONE BOUNDARY
COMPONENT

E. BUJALANCE

Abstract.

We obtain in this paper the minimum genus of a compact Klein surface
with one boundary component, which has a given group of automor-
phisms, and we give upper bounds depending of the genus for the order of
the groups of automorphisms.

1. Introduction.
In this paper we study the automorphism groups of compact Klein surfaces
with one boundary component [see 1].

In section 2 we give some results on groups of automorphisms of Klein
surfaces. In section 3 we characterize the existing epimorphism from a non-
Euclidean crystallographic (N.E.C.) group onto a cyclic group having as
kernel the group of a surface. In section 4 we obtain the minimum genus of
a compact Klein surface with one boundary component, which has a given
group of automorphisms and we get Klein surfaces reaching the minimum
genus. In section 5 we give upper bounds depending of the genus for the
order of the groups of automorphisms and we get groups of automor-
phisms reaching the bounds.

2. Compact Klein surfaces and N.E.C. groups.

By an N.E.C. group [see 10], we shall mean a discrete subgroup I' of the
group of isometries of the non-Euclidean plane D = C* with compact
quotient space D/I', including isometries that reverse orientation,
reflections and glide-reflections.

N.E.C. groups are classified according to their signature (see § 3 of [5]).
The signature of an N.E.C. group I has the form

(*) (g,i,[ml,...,m,], {(nu,...,nlsl), cees (nkl,'-'snksk)})'

Received January 20, 1984; in revised form May 27, 1985.



46 E. BUJALANCE

If I' has this signature, then D/I" is a compact surface of genus g with k
holes; it is orientable if the sign is “+”, and non-orientable if the sign is
“—”. The integers m,,...,m,, are called the periods and represent the
branching over interior points of D/I' in the natural projection from D
onto D/I'. The brackets (n;y,...,n;) are the period-cycles and the integers
Ry, ..., Ny, represent the branching around the ith hole.

The group I' with signature (*) has the presentation given by generators
xp i=1,...,7), ¢ (i=1,...k), ¢j (i=1,...,k, j=0,...,5), a;,b;
(if sign “+7), d; (if sign “—"") (j =1,...,g), and relations

. _-l .
xtr=10=1,...,1), ¢5=¢e coe; (i=1,...,k),
2 2 . . ,
ci,f—l = cij = (cl'..i"lcij)nu =1 (l = 1’-'-aka] = 0,..-,5,‘),
Xy...X. e ...egaybyaytbyt.a bya; bt =1 (if sign “+7),

Xy...X.q...ed3...d2 =1 (if sign “=").
From now on, we will denote by x;, e;, ¢;j, a;, b;, d; the above generators
associated with an N. E. C. group.

(2.1). DeFiNTiON. We shall say that an N.E.C. group I is the group of a
surface with one boundary component if it has signature (g,+,[—],
{(=)}), “+” for orientable, and “—" for non-orientable surfaces.

From now on, we will abreviate by K.S. a compact Klein surface with
one boundary component.

(2.2). THEOREM (Preston [8]). Let X be a K.S. of algebraic genus greater
or equal than 2. Then X can be represented in the form D/I", where I is the
group of a surface with one boundary component.

(2.3). THeorREM (May [6]). Let I' be the group of a surface with one
boundary component; then G is a group of automorphisms of the Klein surface
D/T ifand only if G ~ I"'/T", where I'' is an N.E.C. group suchthat I’ I".

If I' is an N.E.C. group with signature (*), then I' has associated a
fundamental region of the non-euclidean plane (see § 6 of [10]) whose area
is

T k §;
2n(ag+k—2+ Y A-1m)+3% Y > (1-1/ny),
i=1 i=1 j=1
a being 2 for sign “+ and 1 for sign “—" (see Theorem 1 of [9]), that we

denote |I'l. Moreover, if G ~ I'"/I', then order(G) =IrIl/II"].

(2.4). THEOREM. Let G be an automorphism group of a K.S. Then G is
cyclic if the order of G is odd, and G is cyclic or dihedral if its order is even.
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ProoF. If G is a group of automorphisms of a K.S. and C is the boundary
component, then each g € G must map C onto itself. Thus G induces a
finite group of automorphisms of the circle, which must be cyclic or
dihedral. This group is an isomorphic copy of G, since, by standard
methods of analytic continuation, any element of G which fixes the whole
boundary component must be the identity.

As it will be seen in section 4, given a dihedral or cyclic group, there is a
K.S. which has that group as an automorphism group.

3. Homomorphism of a surface.

(3.1). DeFintTION. A homomorphism 6 of an N.E.C. group I in a finite
group G is an orientable surface homomorphism (0.s.h.), if 6 is an
epimorphism and ker @ is the group of an orientable surface with one
boundary component.

(3.2). DEFiNITION. A homomorphism 6 of an N.E.C. group I in a finite
group G is a non-orientable surface homomorphism (n.s.h.) if 6 is an
epimorphism and ker @ is the group of a non-orientable surface with one
boundary component.

It follows immediately from section 2 that G is an automorphism group
of a K.S. if and only if there are an N.E.C. group I" and a homomorphism
0: I > G which is an o0.s.h. or an n.s.h.

(3.3). ProposITION. Let G be a cyclic group of order greater than 2, and I’
an N.E.C. group. The existence of either an o0.s.h. or an n.s.h. fromI' in G
implies that the signature of I' has only one period-cycle which is empty if the
order of G is odd. If the order is even, then all period-cycles are empty.

Proor. If the order of G is odd, from (2.3) of [2] the signature of I" has
only one empty period-cycle.

If the order of G is even and there is either an o.s.h. or an n.s.h.
0:I'>G=2Z/(N), we will show that if we assume the existence
of some non-empty period-cycle, we will get a contradiction. Let
(ny,n,,...,n) be a non-empty period-cycle belonging to I', let
C05Cy,...,C be the generating reflections of the period-cycle and let e be
the element relating ¢, with c,. Then the following relations hold in I':

e lcpec, =1,
2
c§=c§=c§=...=c, =1,

(coc)™ = ... = (Cs-16)™=1.
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There are two cases:

Case 1. Suppose that the reflections ¢y, ¢;,...,c, donot belong to ker 6.
Then, as N is even and 6 is a homomorphism, necessarily

0(co) = 0(cy) = ... = 0(c,) = N/2;
SO C¢Cy, €1 Ca,...,Cs—1 Cs Delong to ker 8, and as
(cocr)M=...=(cs-16)"=1,

by (2.1) of [3], there will be periods in the signature of ker 8, and ker 0 is
not the group of a surface with one boundary component. Therefore 0 is
neither o.s.h. nor n.s.h.

Cask 2. Suppose that at least one of the reflections ¢, c;,...,c, belongs
to ker@. Let c; € ker .

We can distinguish several subcases:

i) Let j # 0 # s # j. Then we have that ¢;_, and c;,, ¢ ker0, since if
they belonged to ker 0, by (2.2) of [3] there would exist a period-cycle with
the element n; or n;, , in ker 6.

On the other hand, n; = 2, since if n; is odd, we should have that
cj—1 € ker0, as (cj—; c;)"=1, andif n; # 2 and even, the value n;/2 should
appear among the period-cycles of ker @ associated to the reflections
¢j, Cj—1CjCj—1. In the same way, we prove that n;,; = 2.

Let g be the least number for which (c;_; ¢;)? € ker . We consider

I'/ker0 = {f,ker 0, p, ker9,..., B, ker0,..., Byker 6},
where

Bi=cj+1s B2=¢j-1Ci+15 B3 =¢Cj-1Cj41Ci—15--1 B2g = (Cj=1¢j+1)"-

From §4 of [5] and §6 of [10], we get that given I' there is a
fundamental region for I" which is a polygon P = y;_;%;y;+; A, where 4
denotes the other sides of the polygon.

Moreover, c, is the element of I' fixing the side y, (where k =j—1,
J» j+1). So a fundamental region for ker 6 is

P’=ﬁ1PU...Uﬂ2qPU...UﬂNP.

Now, it is not difficult to show that the sides of P’

B1 (71), ﬂz(?;), veey ﬂzq(YJ)
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generate a hole in the surface obtained if we consider the identification
produced in the fundamental region P’ by the equivalence relation given by
ker 6.

Thenin P'/ker @ there will be N/2q holes. As we can only have one hole
in P'/ker 8, weget N = 2gand I'/ker 0 ~ Dy,,, and this is impossible since
I'/ker 0 ~ Z/(N).

i) If j =0 or s, and s # 0, then, as in the above subcase, we have that
¢,_1 and ¢, are not in ker 0, and n; = n, = 2.

Let k be the least natural number for which ¢* € ker @ and let I' be the
least natural number for which (e*"'c,e **1c,) e kerf (let e° =1).
Then we can consider

I'/ker 6 = {B,ker0, B, ker0,..., B, ker0,...,Byker 6},
where
ﬂl =hy, B = hyhy, B3 = hyhyh,,..., By = (hyhyY, and

hy = & teg_ye ¥, hy=e"te, e e e e e
A fundamental region for ker @ is
P =B,PU...UB, PU...UByP,
where P is a fundamental region for I', which is a polygon
Y071 Cys-17s€' D

where C and D are the other sides of the polygon, and e is the element qf r
transforming ¢’ into &. So, after a lengthy and straightforward calculation,
we have that the sides of P’

ﬁ1()’o), ﬁl(?s)a ﬂZ('YO)’ BZ(?:)!"" BZr('YO)’ BZr(‘)’s)

generate a hole in the surface obtained if we consider the identification
produced in P’ by ker 6. As we can only have one holein P'/ker 6, we have
N =2r, and I'/ker6 ~ Dy, impossible since I'/kerf = Z/(N). The
remaining possibility afteri)andii)is s = j = 0. Then the period-cycle of I'
we are considering is empty.

Finally, from 1) and 2), it results that the period-cycles of I' have to be
empty.
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(3.4). ProposiTioN. Let G >~ Z/(N).

a) If N is odd and T is an N.E.C. group of signature (g,+,[my,...,m.],
{(=)}), then there is no n.s.h. from I' onto G.

b) If T is an N.E.C. group of signature (g,—,[my,...,m.], {(= )i=1,...x})s
then there is no o.s.h. from I' onto G.

Proor. If N is odd there is a homomorphism 0: I' —» G, 6 being either
ano.s.h.orann.s.h. So G ~ I'/ker0; as ker 0 < I, by (2.4) of [2], ker 6
and I'" will have the same sign in their signatures, and hence in case a), there
is no n.s.h. and in case b) there is no o.s.h.

We will show that b) also holds if N is even. In fact, if N is even, there is
an i € {1,...,k} such that 8(e;) = q;, ¢; < N and g; prime with N, since if
thereis no i € {1,...,k} with 6(e;) verifying the above conditions, then by
(2.3) of [3] there would appear more than one period-cycle in the signature
of ker#.

Given this e;, there is an r; such that (e})) = 1.

Let (d,) = 5. If 5= N, then the glide-reflection d, belongs to ker 8, so
the signature of ker 0 will have the sign “—"". If § # N, then 0(e]N =9d,)
= N, therefore e[{¥—3)d, is a glide-reflection belonging to ker 8, so the
signature of ker 6 will have the sign “—"".

In both cases there is no o.s.h. from I' onto G.

(3.5). ProrosiTioN. Let G ~ Z/(N), and let I be an N.E.C. group of
signature (g,+,[my,...,m.], {(=)i=1,...x})- Then there exists an o.s.h.
0:I — G ifand only if
i) k=1
i) lLe.m. (my,...,m)=N.

ili) If N is even, the number of periods divisible by the maximum power of 2
dividing N is odd.

Proor. First we will show the conditions are necessary.

Assume that there is an o.s.h. §: I' > G. Then:

i)If Nisodd, by (3.3) k = 1. We will see that the case N evenand k > 1 is
impossible.

As Ois an o.s.h., ker 0 has exactly one period-cycle in its signature, and
by (2.3) of [3] there is only one reflection of the generators of I' in ker 0,
and the remaining reflections of the generators of I' are such that their
squares belong to ker6.

Let c; e kerf. Then necessarily 6(c) =N and 6(c;)=N/2 for all
ie{l,....k}, i#j.
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Let e; be the element of the generators of I associated with the period-
cycle of c;. Then 0(e;) = gq;, q; < N and prime with N, since otherwise, by
(2.3) of [3], there would be more than one period-cycle in the signature
of ker 0. Therefore there is an r; such that 0(e}) = 1.

Let us consider the elements e}i¥/2¢; with i # j. These elements are glide-
reflections belonging to ker®, because 6(ejN/>c;) = N. Therefore the
signature of ker @ will have the sign “—", and hence 6 is not an o.s.h.

ii) As 0 is an o.s.h., ker 6 has no periods in its signature, so 8(x;) must
have order m; modulo ker 6.

Byi), k =1, and by (2.3) of [3], 6(e;) must have order N modulo ker 6,
since otherwise there would be more than one period-cycle in the signature
of kerf. As x;x,...x,e; =1, 0(x;x,...x,e;)=N. So 0O(e,) divides
l.c.m. (my,...,m,);andasm]IN forall i=1,...,7, L.e.m. (my,...,m)) = N.

iii) ker @ is the group of an orientable surface and I'/ker 8§ ~Z/(N); so
from the formulas of the areas of the fundamental regions of I" and ker 8
(see section 2), we have that |ker8!|/IT'l = N, and so

g1 =2g—1+ )Y (1-1/my)
N &

(where g’ is the genus of ker §) and
2¢ =1+2gN—-N+ Y (N—N/m).
i=1

Therefore iii) holds.

The conditions are sufficient: Suppose that I' has i), ii), and iii).
We define 6:I' - 2/(N) in the following way: 0(c;) =N, 6(a;) =N,
8(b;) = N, for j=1,...,g. By b) of Theorem 4 of [4] we are able to give
0(x;), i=1,...,7 and O(e,) values such that 8(x, x;...x.e;) =N, 0(x;)
has order m; for i = 1,...,7, and 6(e,) has order N.

By [2] and [3], ker@ is the group of an orientable surface with one
boundary component, and so 6 is an o.s.h.

(3.6). PropositioN. Let G =~ Z/(N), and let T’ be an N.E.C. group with
signature (g,—,[my,...,m.], {(=)i=1,...x}). Then there exists an n.s.h.
0:T - G ifand only if

) miN,i=1,..,1
ii) IfT has sign “+" then N is even and k > 1.
) k=1 if Nisoddand I has sign “—".
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iv) If N is even, I' has sign *“—", and k = 1, then the number of periods
divisible by the maximum power of 2 dividing N is odd, and there exists
an i€ 1,...,t such that m; }y N/2.

PROOF. Let us suppose that there exists an n.s.h. 8: I' - G. Then:

i) As @ is an n.s.h., ker 0 has no periods in its signature, and 0(x;) must
have order m; modulo ker@; so m|N foralli=1,...,1.

ii) If I has sign “+”, then by (3.4) N cannot be odd. If N is even and
k =1, by (2.2) of [3], the unique reflection among the generators of I'
must belong to ker 6, since ker 8 has to have a period-cycle. So ker 6 has
no glide-reflections among its generators, and so ker 6 has sign “+ ” in its
signature. In this case 6 cannot be an n.s.h.

iii) Immediate from (3.3).

iv) If N is even, I' has sign “—" and k = 1, then one of the relations
appearing among the generators of I' is did3...d?x,...x.e; =1, and
0did;...d2x,...x.e;)=N. As k=1, by (2.2) of [3] the unique
reflection ¢, among the generators of I' has to belong to ker 6, and the
element e, of the generators of I' associated with ¢; must have order N
modulo ker 8, since otherwise there would be more than one period-cycle
in the signature of ker 6. So 6(e;) has order N.

Now 0(d3d}...d?x,...x.e;) =N and O(e,) has order N; then the
number of periods divisible by the maximum power of 2 dividing N is odd.

Consider 0(d?)=2q;, i=1,...,g. The order of 6(d?) in Z/(N) is
an integer p; such that p;/ N/2, and as 0(e;) has order N, there is an m;
such that m,JN/2, since Nll.cm.(my,...,m,p,,...,p,) and
0(did3...d2x,...x.e;)=N.

If I' verifies i)-iv) we define the homomorphism 6: I' - Z/(N) in the
following way: If I has sign “+",

0(e,) =1, O(ex) = — (1 + f: N/m,-), ;) =N fori>2,
i=1

0(x;) = W’ 0(a;) = Na o) = Na
6(c,) =N, 0(c;) =N2 fori> 1.

If I’ hassign ““—" and k > 1, wedefine 0(e;), 6(x;), and 0(c;) in the same
way as above, and 8(d) =N, i=1,...,g.
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If I' has sign “—" and k=1, we define 0(c;)=N, 6(d,) =N for
i=2,...,8. From b) of Theorem 4 of [4], we are able to give values
to 0(x;), i=1,...,7, 0(d,) and O(e,), such that 8(d?x,...x.e;) =N,
6(x;) having order m;, 6(e;) having order N, and 0(d?) having order N/2.
By [3], ker@ is the group of a non-orientable surface with one boundary
component, and therefore 0 is an n.s.h.

4. Minimum genus.

(4.1). THEOREM. Let G ~Z/(N), N =gf1qf:...q%, g, <q,<...<gq,
primes. Then the minimum genus g’ of aK.S. X with an automorphism group
isomorphic to G depends of the prime factors of N, and its value is:

g = T 2 if By =1, P2#0, X orientable,
g = ‘I_lzfi if N=gq,, qy#2, X orientable,
g=1 if N=2, X orientable,

,_ N N . .
g=5 7R if By #1, X orientable,

, N ey .
g=N- ™ +1 if X is non-orientable.

1

Proor. If X is orientable, f, =1 and B, # 0, we consider an N.E.C.
group I'" of signature (0, +,[q;,N/q,], {(—)}); this group fulfils the
condition of (3.5); so there exists an orientable K.S. X =D/I" of genus g’
with an automorphism group I"'/I" isomorphic to G. Then, by section 2,

IITI—',IT = order (G)= N,

and so
2-1_; 1 a4
N g N

implies
g’:.l_v__ﬂ__.q_l::_l_
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Now, let us see that g’ is the minimum genus. If we take any other N.E.C.
group I" with the condition of (3.5), then

Bolo2g-14 3 (1-1m)
i=1

implies
, N N
g =%+(28—1)—2—+7';(1“1/m.‘),

and the only possible cases with genus less than the above take place when
g=0and };_ ,(1-1/m)<2, so t<3, but as I' is an N.E.C. group
7 < 2 and so we have that only the following cases can hold: T =2 and
t=23. If 1=2 or 1 =3 ever, the minimum genus

(this is immediate from Lemmas 1 and 2 of [4]).

If X is orientable, N =q, and g, # 2, we consider an N.E.C. group of
signature (0,+,[q1,4:], {(—)}); this group fulfils the conditions of (3.5);
therefore there exists an automorphism group isomorphic to G and such
that

which implies

If X is orientable, N = 2, we consider an N.E.C. group of signature
(0,+,[2,2,2],{(—)}); this group fulfils the conditions of (3.5); there-
fore there exists an automorphism group isomorphic to G and such that

2 -1 _ 3
2 ——1+§’

which implies
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If X is orientable, B, # 1, we consider an N.E.C. group of signature
0,+,[N,2],{(-)}); this group fulfils the conditions of (3.5) and so
there exists an automorphism group isomorphic to G and such that

Z-1_, 1. 1
N N g,
which implies
, N N
g=7—*2—6:.

If X is non-orientable and ¢, # 2, we consider an N.E.C. group of
signature (1, —,[q,],{(—)}); this group fulfils the conditions of (3.6)
and therefore there exists a non-orientable K.S. X of genus g’ with
an automorphism group isomorphic to G and such that

g -1 1
S o —1-—,
N q1
which implies
N
"=N-—-—+1.
d 41

If X is non-orientable and ¢, =2, we consider an N.E.C. group of
signature (0,+,[2],{(—)(—)}); this group fulfils the conditions of (3.6)
and therefore there exists a non-orientable K.S. X of genus g’ with an
automorphism group isomorphic to G and such that (g'—1)/N =4; so
g =N/2+1.

In any case, operating in the same way as before, we get that those are the
minimum genus.

(4.2). THEOREM. Let G~Dy, N=gbigh...qf, q1<q;<...<gq,
primes. Then the minimum genus of a K.S. X with an automorphism group
isomorphic to G is the same as the one of the above theorem (4.1).

Proor. If Dy is an automorphism group of a K.S. X, then Z/(N) is an
automorphism group of X; so the minimum genus of a K.S. with an
automorphism group isomorphic to Dy is greater or equal than the
minimum genus of a K.S. with an automorphism group isomorphic to
Z/(N). Now we will see that the minimum genus is the same in every case.

To prove it, we will find a series of N.E.C. groups such that for each
group of the series there is either an o.s.h. or an n.s.h. in the conditions that
we wish.
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If X is orientable, f; =1 and B, # 0, weconsider an N.E.C. group I of
signature (0,+,[—1,{(2,4:, N/q1,2)}), and we define

0: -G =<(x,ylx*=y*=@xy =1>
in the following way:
0(c1) =1, 0(cx)=x, 0(cs) = y(xy)™a-1,
0(cs) = y(xy)Na)=1(xy)ds, B(cs) = 1.
Hence ker0 is a normal N.E.C. subgroup of I'. From a fundamental
region of I', we get one for ker 6, and from the last one we have that ker 0 is
the group of an orientable K.S. Moreover, I'/ker @ ~ Dy, where I'/ker 0 is

an automorphism group of the orientable K.S. D/ker 0, and the genus g’
of D/ker @ is given by

23_’—*1_:1_.__}_.__@.- SO g':y__ﬁ_ql_l
SN 2 3g, 2N T

Following the same method as in the above case, we get the following
results:

If X is orientable, N = ¢, and g, # 2, we consider an N.E.C. group of
signature (0,+,[q,],{(2,2)}), and we define : I' - G in the following
way:

0(x;) = yx, O(ey) = xy, 0(cy) =1, 0(c;) =x, 0(c3)=1.

In this case D/ker @ is an orientable K. S. of genus g’ given by

2¢'—1
2q,

[ STR

1
——, andso =
q: g 2

If X is orientable and N =2, we consider an N.E.C. group I' of
signature (0,+,[-],{(2,2,2,2,2)}), and we define 6:I' > G in the
following way:

O(c1) =y, 0(c2) =1, 0(c3) = x, 0(cy) =y, 0(cs) = x, O(ce) = y.
In this case D/ker @ is an orientable K..S. of genus g’ given by

2 -1 _

1
) i andso g’ =1.
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If X is orientable, B, # 1, we consider an N.E.C. group I of signature
(0,+.[—1.{(2,91,N,2)}), and we define 6: I' - G in the following way:

e(cl) = 1, 0(02) = X, 9(03) = y(xy)(N/‘II)"l R
0(ca) = y(ey)M0=2, B(cs) =1.

In this case D/ker 0 is an orientable K. S. of genus g’ given by

-1 1 11 and so N_N
2N 2 2, 2N =274

If X is non-orientable and q; = 2, we consider an N.E.C. group I' of
signature (0,+,[—],{(2,2,2,2,2)}), and we define 6:I' - G in the
following way:

G(Cl) =) B(CZ) = la 0(C3) =X, 0(64) = x(yx)N/Z,
B(cs) = (xy)?, 0(ce) = y.

In this case D/ker @ is a non-orientable K.S. of genus g’ given by

1 N2
=z andso g'=——.

g—-1
IN

If X is non-orientable and g, # 2, we consider an N.E.C. group I' of
signature (0,+,[2], {(2,2,49;)}), and wedefine 8: I' - G in the following
way:

0(xy) = x(x) M-I, f(c;) = y, 0(c2) =1, Oles) =x,
0(cs) = x(yx)N/ar, B(ey) = x(yx)(V/a)-1)2,

In this case D/ker 6 is a non-orientable K.S. of genus g’ given by

g-1 1 1 NN
S - =N-—-—+1.
3N TR andso g @

5. Upper bounds for the order of the groups of automorphisms.

Given an orientable K.S. X of genus g’ and with an automorphism
group isomorphic to Z/(N), we have by (4.1) that g’ = (N — 2)/4, and so
4 +22N.

Moreover, for each g’ > 1 in (4.1) we have found an orientable K.S. with
an automorphism group isomorphic to Z/(4g' +2). This upper bound had
been found in terms of algebraic genus by May in Theorem 1 of [7]-
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Given a non-orientable K.S. X of genus g’ and with an automorphism
group isomorphic to Z/(N), we have by (4.1) that g’ = N/2+ 1, and so
2¢'—22N.

In fact, for each g’ = 2, in (4.1) we have found a non-orientable K.S.
with an automorphism group isomorphic to Z/(2g’ —2).

Given an orientable K.S. X of genus g’ and with an automorph-
ism group isomorphic to Dy, we have by (4.2) that g’ > (N —2)/4 and
4g’'+2 = N. Besides, for each g’ > 1, we obtain in (4.2) an orientable
K.S. with an automorphism group isomorphic to D,y . ,.

Finally, given a non-orientable K.S. X of genus g and with an
automorphism group isomorphic to Dy, we have by (4.2) that g' >
N/2+1, and so 2¢'—2 = N. For each g’ = 2, we have found in (4.2) a
non-orientable K.S. with automorphism group isomorphic to D, _,.
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