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ON THE DEGREE OF C-DETERMINACY

MARIA APARECIDA SOARES RUAS

1. Introduction.

In this paper, we obtain estimates for the degree of C' —%-determinacy
(“=R, € or A) of C* map-germs f: (R",0) — (R?,0) that satisfy a
convenient Lojasiewicz condition.

These estimates generalize a result of Takens [4], and refine in many
cases, the results of D. Lefebvre and M. T. Pourprix [2].

When applied to homogeneous germs, our results imply the following:
(3.14) Corollary: “Let f: (R",0) — (R?,0) be a C* map-germ of corank k,
given by

X = (xl’xZ""’xn) *"') (xla'"’xp—k’fl(x)s"'j;c(x)) H

with f; homogeneous of degree r;.
For all [, 1</< 0o and r=maxr;, we have
(@) If 0 is an isolated singular point of f, then fis (r+I/—1)—C'—%-
determined.
(b) If f ~1(0)={0}, then fis (r+!—1)—~ C'-determined.
(c) If 0 is an isolated singularity in f~*(0), then fis (r+! -1)-C'—x'-
determined.
Furthermore, with the hypothesis of (a), (b) or (c), it follows respectively
that small deformations of order r are C° —%-trivial, ¥ =%, 6 or X",
The above estimates are sharp in the following sense: if f (x)is (r +1o —2)
—Cl—%-determined for some 2<l,< o0, then f is in fact C*—¥-
determined by its (r + 1o —1)-jet.
The author thanks L. Wilson for his valuable suggestions.

2. Notation and basic definitions.
Let C(n, p) be the space of smooth map-germs f: (R",0) — (R?,0).
We denote by J*(n, p) the set of k-jets of elements of C(n, p).
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(2.1) DeFINtTION. For any group ¥ acting on C(n, p), we say that fis k-%-
determined if the %-orbit of f contains all germs g such that j*g(0)=j*f (0).

In this work, we are interested in the groups C'—%, ¥=2, % and X',
defined below.

(2.2) DerFINITION. (a) The group £ is the group of germs of C®-
diffeomorphisms (R",0) —(R",0). # acts on C(n,p) by composition on
the right;

(b) % is the group of germs of diffeomorphisms H of (R" x R?, 0) which (i)
leave fixed the projection on R", and (ii) preserve the subspace R" x {0}. We
may also describe € as the group of germs of families of diffeomorphisms
of (R?,0) into itself, parametetrized by (R",0). Thus any H in € is of
the form H(x,y)=(x,h(x,y)), where h(x,0)=0. € acts on f in
(R"x RP?,0), by the formula

(idgs, H .f) = He(idgs, f), where H .f=h(x, f(x)) ,
and idg- denotes the identity map on (R",0).
(c) X" denotes the group of invertible map-germs
H: (R"xR?,0) » (R"xR?,0),
which preserve the subspace (R" x 0), and such that there exists a map germ
h: (R",0) - (R",0), which makes the diagram below commutative:
(R",0) - (R"x R?,0) = (R",0)
h| |H L
(R",0) =& (R"x RP,0) -% (R",0)
where i denotes the germ of inclusion (R",0) — (R" % R?,0) and = the germ
of projection (R" x R?,0) — (R",0).
The action of X" on fis defined by
(idgs, H .f) = He(id, f)oh™1 .

Clearly € is a subgroup of X'. The identification of he # with
(h,idgs) € X makes & a subgroup of X#". Furthermore ¥ =% .€ (semi-
direct product).

(2.3) DEFINITION. C'—¥%, 9=, € or X', 120, are defined as before,
taking diffeomorphisms of class C', 121, or homeomorphisms, when [=0.
Let C(n) denote the ring of germs of smooth functions and m, its

maximal ideal.
Following Wall [5], we denote by I4(f)=J , theideal of C(n) generated
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by the p x p-minors of the Jacobean matrix of f, by I4(f)=1*(m,)C (n), the
ideal generated by the coordinate functions of f, and I ,{f (x))=1I¢(f (x))
+14(f (x)).

Now, write Ng(f (x)) =l f (x)I*, Ng( f (x)) =1dfJ%=det { (df,)@f. )}

=sum of squares of p X p-minors of df,, and

Na(f(x)) = N f (x))+Ngl(f (x)) -

We say that Ng( f (x)) satisfies a Lojasiewicz condition of order r (>0)if
there exists a constant ¢>0 such that Ng(f (x))=clxI"; we denote such a
condition (c,).

The following proposition relates the existence of a Lojasiewicz
condition for ¢ =) ¥, o7 with the condition that the ideal generated by the
@;’s is elliptic.

(2.4) PrOPOSITION. Let I ={¢4,...,@,) be a finitely generated ideal in
C(n). Then the following conditions are equivalent:
(a) I is elliptic (or, IDm});
(b) there exists g in I such that |g(x) =cx|* for some ¢>0 and «>0:
(c) there exists c>0 and a>0 such that ¥*_; [¢,(x)]* 2 dxl°.
If @, are analytic, then the above conditions are equivalent to:
(d) 0 is an isolated point in @ ~(0), where ¢ (x)=(¢;(x), . . ., @x(x)).

(See [5] for a proof and comments.)

To obtain good estimates for the degree of C'—%-determinacy it is
necessary to impose a condition to control the growing of the derivative of
1/N4(f) such as:

gradNg(f)| . C
Ng(f) | = I¥%

The control will be exercised via the condition (d,, ), which we take to mean
that r, is the largest integer such that Ng(f) € my.

The information contained in I4(f) (hence in the tangent space to
the @-orbit of /') will be used in the construction of controlled vector fields,
whose class of differentiability depends on the conditions (c,) and @,)
of the control function Ng(f).

Az1l.

3. Estimates for the degree of %'-%-determinacy (¥-#, € or X').

Let f: (R",0) — (RP?,0) be a C®-map-germ, with corank k, in the form

(*) (xl,X2, . .,x,,) '—; (xl, . .,xp—bfl(x)y . "f;c(x)) ’
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and let s=max{q| f;e m& j=1,...k}.

Case 1. 9=4A.

(3-1) ProrosITION. If Ng(f) satisfies conditions (c,,) and (d,,, ), it follows
that fis N=[r+1(r—ro+1)— (s—1)(k—1)] — C' — R-determined.

The proof follows easily from the following two lemmas.

(3.2) LEMMa. (See [5, Lemma 2.12], or [1, Lemma 4.7].) Let 0 ; be the set
of germs of vector fields along f, that is

0, = {¢: (R",0) - T(R?)| mpoo&=f} .
Then, for he 6, and
= (aﬁ/axi,)1§r§p,
1ss<p
a p x p-minor of df,, the following holds

(detM).h = df[sfl P [oof(jf')h] = ]

where cof (0f,/0x;) denote the cofactor of 0f,/0x;, and h, are the compo-
nent functions of h.

(3.3) LEMMA. Let N(x) be defined by N(x)=3 +, (d;(x)).

Suppose that N (x) satisfies conditions (c,,) and (d,, ).

Given any germ of a C* function h, with h(x) e mY, N=r+I1(r—ro+1)
+1, then &(x)=h(x)d;(x)/N (x) is differentiable of class C', 121, for any
j=1,...,L.

ProOF oF LEMMA (3.3). Since ld(x) =ld;(x) < [N (x)]*/2, it follows that

lee) < W’;%ﬁ< x|

hence continuous.
We can now proceed by induction. Given

o) = HED)

where H(x) e mY, N=[r+Il(r—ro+1)+1]+ (x—1)(ro—1), I2a—1 and
D(x)=p*(d;), a polynomial of degree o, in the variables d;, j=1,..., L
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Then
JH (x) ( ) N
e (x) 6 B aH (x)D(x)???j
0x; N*(x) Nevlx)
which is a linear combination of terms in the form
AD
Na+ 1 (X) ’

where H € m?, N=r+l(r—ro+1)+1+a(ro—1), D(x)=p**'(d)), 12
It follows that

ab
< k
N (x)‘ < ¥,

where k2r+a(r—ro+1)+1+a(ro—1)— (@+1)r=1, so that de(x)/0x; is
continuous. The induction step, and hence the proof is complete.

ProoOF OF PROPOSITION (3.1). Let g be such that the N-jets of g and f
coincide at the origin, that is: J¥g(0)=7Vf (0), and F (x, t)=(f;(x), t), where
fix)=(@1=t)f (x)+1tg(x), t € [0,1]. It is easy to see that

Ia(f) = Ip(f)+m,*t, Vee[0,1].

Hence, Ng4(f;)+&(x)=Ng(f), where ¢ e m*2, Vit e [0,1] and this
implies Ng(f;)=dx* for all ¢t € [0,1].

Now,
L
Ng(f,(x))?—fi= Y | ofi| *M]| det M} % ,
ot =1 ot
where J enumerates all p x p-minors of (df;), and
of, & & 9, (@f).
J Yt
Mig =L 2 [C Cox, ox, ax

as in Lemma 3.2. (The coefficients of d/dx; are zero for j+i;.)
Defining

L M’(detMJ)af‘ 3
8“”":,‘;[ NalFi) ]axJ

it follows from Lemma 3.3, that ¢ is differentiable of class C".
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Now,

D (x.t) = (@t telx. )

fr ) T TR AR T
and this implies the C'—%-triviality of the family F(t,x) in a
neighbourhood of t=0. Since the same argument is true in a
neighbourhood of t=t, V7 € [0, 1], the proof is complete.

The estimates we obtain are, in many cases, more precise than the results
in [2], as we can see in the following proposition and example.

(3.4) ProrosrTiON. Let f: (R",0) — (R?,0) be as in (*), with corank k.
Assume that each f; is homogeneous of degree r;, j=1,...,k. If 14(f) is
elliptic, fis (r+1—1)— C'— R-determined, r=max, _; 7.

Proor. We may assume that 2<r, <r, < ... &1

Each p x p-minor of df, is homogeneous of degree Y ¥, (r;—1)=r=r,.

The elements of M =cof M* are (p— 1) x (p— 1)-minors of df,., which are
homogeneous, and the degree depends on the omitted row. The smallest of
these degrees is ) f=1 (r;—1).

Hence, the degree of C' — #-determinacy of fis

k-1
r+lr—ro+1)= Y (ri—1) = r—1+41.
i=1

(3.5) ReMark. The above estimates are sharp in the following sense: if
f(x)is (r+1y —2) — Clo— R-determined, for some 2 < |, < co, then fisin fact
(r+1ly—1)— C* —R-determined.

Let us assume fis (r + I, —2) — Cl—&-determined, for some I,. Then,
taking (r 41, — 1)-jets of Clo— R-trivial families

fo = f+tlg=f) = foh, te[0.1],
Fh7g0) = j*R72f(0), heCo-R, by = idp
we obtain
JHo=Y@f/0t) =0 = jr o~ Ydf (Bh/0d,=0)) ,
which in turn implies the (r+ 1, —1) — C* — #-determinacy of f. (See [5] or
[3] for more details.)

Finally, we recall that if fis C* — ®-finitely determined and 0 is a singular
point of f, then p must be equal to 1 ([, Proposition 2.3]). Thus if p>1,
f(x) can not be (r+1—2)— C'— R-determined for all /> 1.
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~ (3.6) ExaMmpLE. f: (R%,0) —» (R2,0) defined by

u(x,y) = x"—y, reven
v(x,y) = xy .
Ng(f)=r(x"+y)and fis (r +1—1)— C'— #-determined for all I>1.
From Remark (3.5), it follows that f(x) can not be (r+1—2)—C'—%-
determined.

CASE 2. 9=%.
We shall assume I, ( f)is elliptic. If fis as in (*), of corank k, we consider

NE(f) = (i)l + ...+ (P + D+ oo+ ()

Clearly, N¥(f) satisfies a Lojasiewicz condition, that we shall denote by
(c2,).

In this case, N%(f) € m2, that is s=r,.

(3.7) ProposITION. If N%( f) satisfies conditions (c%,) and (d,;), it follows
that f is N=[r+Il(r—s+1)—1]—C'—%-determined.

It is not hard to show that f is (N+1)—C'—%-determined. The

reduction to N depends on the next Lemma, in which we construct a conic
bump function, with controlled derivatives.

(3.8) LEMMA. Let Iyl < c,lxl and |yl < c,lx| be cones in R" x R?, with ¢, <c,.
There exists a functionp: R"x R? —» R,p € C® in R"xRP—(0x0),

px,y) = 1 if Iy < cild, (ey) * 0,0,
p(x,y) = 0 if M 2 crlxl,

0<px,y) <1 ifcdxl Y s cldd,
p(0,0) =0,

such that

ID(p(x,y)y) < ];IF(‘.,__f, K, = constant, Vs21.

Proor. For n=p=1, let h: R = R be the usual C* bump function,
h@ =1 , if050<6,;
h(6) = 0 , if 020,
0<h@® <1, if0,<6<0,.
We detine
p(x,y) = h(6), where 0=arctgb%.
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Then |p(x, )yl < (tg 8,)Ix. By successive derivations, we see easily that

K
< S
ID*p(x, y)¥ < T

Fornz=1and p=1, let p(x, y) be defined by
P(X1,s .. 0Xey) = h(@), if IxI0

- - y
p(0,y) =0 , 6 arctgm.
In the general case
p(xh ce s Xpy Vi - *’yp) = Px(x,)’) ~P2(X,J’) . .p,,(X,y), le * 0
where

pix,y) = hB), 6, = arctgt, p(0,y) = 0.

Proor oF ProrositioN (3.7). Let f: (R",0) — (R?,0) be given by
(K15 %20+ %) > (150 s Xp—to S1 X5 S2(X, -+ o2 S3(X)) -
If jNg (0)=jNf (0), where N =[r +I(r—s+1)—1], and
F(x,t) = (£i(x),9), fi(x) = fx)+tg(x)—f(x)), te[0,1],

we have
—k

Ly [(ﬁ),af']F*(yp-H,H Y CHBIFOIT

j=1
where (x,);, i=1,...,p—k denote the first p—k coordinate functions of
F(x,t),and y={y,,...,y,} is the system of local coordinates at (R?,0).
Letn: (R*"x R?x R,0) —» (R"x R?x R, 0) be the vector field defined by
n(t.x,y) = n1(t,x,y)+n,(t,x,y) ,
where

ni(t,x,y) = N*(f)[z (ft);%f;.)’p k+iaa ] and

p—k

n2(t,x,y) = N*(f)[ Z (xt),af; ()i~ }’ia‘;i] .

From Lemma (3.3), it follows that #, is of class C', while 5, is only C'~*.
However, using the function p(x, y) of Lemma (3.8), we may modify , to
obtain a Cl-vector field. We define
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ﬁl(trx’y) = P(taX,)’)ﬂl(t,xJ) .

Since 7; coincides with 7, in a conic neighbourhood of the graph of F(t, x),
equation df,/0t =p .n, +n, also holds. -
The result follows as in Proposition (3.1), by integrating the vector fields.

(3.9) Prorosition. Let f: R*,0 — RP?,0 be of corank k:
(xl, . "xn) = (xl, .. "xp—-ksfl (X), .. 7ﬁc(x)) s

where f; are homogeneous of degree r;.
If1,(f) is elliptic, f is (r +1—1)— C' —%-determined (121), r=maxr;.

Proor. Let #=r .7, . ... .ryand =[], .7 The convenient control
function is given by

NE(f) = ()P4 o+ ()P4 )2+ L+ (x,-) ™

The rest of the proof is just as in Proposition 3.7.

(3.10) Remark. Using similar arguments as in Remark 3.5, we conclude
that the estimates of Proposition 3.9 are exact. Thus, if fis (r+1y—2)— Ch
—@-determined for some 2<1, < o0, then fis in fact (r+1l,—1)—C* —%-
determined.

Case3.9=4A.
We are still considering f'as in (*). Let

ro = max{q| d;emi, i=1,..,L},

where d;=det M;, p X p-minor of df,.
Let s be as before.
If I (f) is elliptic, there exist constants >0, r>0, such that:
N%(f) = @)+ @)+ ...+ @)+ P+ ...+
oo (1) (TP + .+ (x50 )? 2 alxd? .
Clearly, r>sry and ro 2 k(s—1).

With these assumptions, it is possible to obtain a result that envolves
several variables, but gives good estimates.

(3.11) ProposiTION. Let

Ny =Ly i@fs—ry+1)— (k—1)(s—1) and N2=;r;+l(r/r0—s+1)—1,

v~
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then f is N —C'— X -determined, where N is the smallest integer greater
than or equal to the max {N{,N,}.

Proor. For simplicity, we shall assume p=k.
For any g such that jNg(0)=;"f (0), N=max {N,, N,}, we consider the
following unfolding of graph of f

F: (R"x B,O) — (R"xRPxR,0)
(x,t) = (x, £i(x),8), te[0,1],

where f,(x)=(1—t)f (x)+tg (x), t € [0,1].
We aim to find C' retractions h and k of idg.,, and idp., pexg
respectively, such that the following diagram commutes:

TR

(R,0) -4, »xRr0x0) — . (®R"0)
1K Tk T
(R"X R,0xI) —=— (R"X RPx R,0x0x ) — =", (R"x R,0x I)
If we can do so, then

hy: (R",0) - (R*,0) defined by h,(x)=h(x,1) and
ki: (R"xRP,0x0) - (R"xR?,0x0) defined by k,(x,y)
= k(x,y,1),

will give a C' — o -equivalence between fand g.
We shall construct h and k in a neighbourhood of t =0 as follows:
Since

NeL — (va+N3) L
L
N3(f) = 3. @7 and Ny(f) jﬁ (3

we can proceed as in Propositions 3.1 and 3.7, to obtain the equation:

.- o - 5ﬁ
(3.12) _a_fi df, Z wﬁ_}[ (f)j 1
' o ‘[ N¥(f) oxi| | /=1 N (1)

To complete the proof, it remains to find germs of C' vector fields

ft(Yl:l

& RR0) > RXR0), 7ol = 2, muol(0,0)=0, and
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n: (R"xRPxR,0) - (R"xRPxR,0),
such that £ is a lift for n over F, that is dF (¢)=#°F.

So let,
Eex,t) = 0+ 2,
where
1
E(x,t) = N'.;r(f)[z dF~1x M,gft'a ] and
n(x,y,t) = —E(x,t)+r7(x,y,t)+5,
where
. ro—1 s
ﬂ(x,y,t) N* (f)[z (f)z 1at Jay:l
_ ot
Then dF(§) = ( g dfi(— Z)+at 6t>

From equation (3.12), it follows that dF(¢)=n°F.
To show ¢ is of class C' and 5 is of class C' ™1, it is enough to observe that

grad fV 7 < C ,

N*%, [xI*
where A<max {A;,4,}, 4, =r/s—ro+1 and A,=r/ro—s+1, and proceed
by induction as in the proof of Lemma (3.3).

Using the function p(x, y,t) of Lemma 3.8, we may now modify 5 to
obtain a C'-vector field. We define

J
Yy = —E+p n+at

Since y coincides with # in a conic neighbourhood of graph of f;, the
equation dF (£)=y°F also holds.
These vector fields are clearly integrable, hence determine C-
diffeomorphisms H and K in R"x R,0 and R"x R? x R, 0, respectively.
The properties of ¢ and y imply that ng.cH=h and g, g K=k are
the desired retractions.
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(3.13) ProrositioNn. Let f: (R",0) — (R?,0) be given by

(xla .. -axn) - (xl’ . 'axp-ksfl(x), .. ’f;t(x)) ’

where f; are homogeneous of degree r; and r =maxr;.
If 1,(f) is elliptic (or equivalently, if N ,(f) satisfies a Lojasiewicz
condition), then f'is (r +1—1)— C'— X -determined (1<1< o0).
Furthermore, small deformations of f of degree r are C° — A -trivial.

The following corollary follows from Propositions (3.4), (3.9), (3.13) and
from the Lojasiewicz Inequality for analytic functions (Proposition (2.4)).

(3.14) CoroLLARY. Given fas in (3.13) for all |, 1 <1< 00 and r =maxr;:

(@) If 0 is an isolated singular point of f, then fis (r+1—1)—C'—%-
determined.

(b) If £ ~1(0)={0}, then fis (r +1—1)— C' —€-determined.

(¢) If 0 is an isolated singularity in f ~(0), then fis (r+1—1)—C'— 4 -
determined.

Moreover, with the hypothesis of (a), (b) or (c), it follows, respectively, that
small deformations of order r are C° —%-trivial, 4 =R, € or A.

(3.15) ExampLE. f(x,y,z)=(ax™+by"+cz",xyz), m=3, a+0, b+0,
c¢+0. The usual procedure of computing the tangent space to the J -orbit
of fshows easily that fis 2(m —1)— o "-determined.

So, fis (m+1—1)—C'— A -determined, for all 1</<m—1.

This is a sharp result.
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