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THE WITT GROUP OF QUADRATIC CHARACTERS

RAINER WEISSAUER

Introduction.

In [7], A. Weil introduced the notion of a character of second degree on
a locally compact abelian group (what is called a quadratic character in
this paper). These quadratic characters behave similar to quadratic forms
on vector spaces over a given groundfield k. In analogy to the construction
of the Witt group W (k) of the field k we define a Witt group W using
quadratic characters on locally compact abelian groups. The main result
of this paper is that this Witt group W is isomorphic to the complex unit
circle as an abelian group (Corollary 5.4).

1. The Witt group.

In the following let G and H be abelian groups carrying a locally
compact topology. For every such group G, the character group G is the
group of all continuous homomorphisms of G into the complex unit circle
T. The character group G is an abelian group and the compact-open
topology on G is locally compact. We call G self dual if there exists a
homomorphism ¢: G — G, which is an algebraic and topological
isomorphism. The product of two self dual groups is again self dual.

1.1. DeFINITION. A continuous function f on G with values in T is a
quadratic character, if B(x,y)=f(x+y)f (x)f(y) is bilinear.

It is obvious from the definition that B(x,y) is symmetric. The form
B(x,y) defines a homomorphism

b:G -» G

given by b(x)(y)=B(x, y). It is easy to check that the map b is a continuous
homomorphism.

1.2. DeriniTion. The quadratic character f'is nondegenerate if the map
b: G - G is an algebraic and topological isomorphism.

Received November 11, 1984; in revised form June 28, 1985.



72 RAINER WEISSAUER

For the rest of the paper we are only interested in nondegenerate

quadratic characters. We call a pair (G, f), where G is a locally compact
abelian group and fa nondegenerate character on G, a quadratic space or
Q-space. A quadratic space is hyperbolic if there exists a subgroup N of G
such that

1 fN)=1

2) N =N.

N+ is the annulator of N with respect to f. It is given by
Nt ={xeG: B(x,y) = 1forall ye N} .

The two quadratic spaces (G, f) and (H,g) are isomorphic if there exists
an algebraic and topological isomorphism s: G — H such that f=gos.
The sum of quadratic spaces (G, f) @ (H,g) is given by the quadratic
space whose underlying group is G X H and whose quadratic character is
given by h(x,y)=f(x)g(y) for (x,y) e Gx H. The Q-spaces (G, f) and
(H,g) are called similar

G,f) ~ (H,g)
if there exist hyperbolic spaces (S, k) and (S',#’) such that
G.NHe.n) = (H,g) @ (S,h).
It can be checked easily that this defines an equivalence relation.

1.3. LeMMA. The equivalence classes of Q-spaces associated to the
relation ~ define an abelian group with respect to @.

Proor. The equivalence classcs define a set (Theorem 1.7). Addition is
well-defined because the sum of two hyperbolic spaces is again hyperbolic.
It remains to show that the inverse elements exist. The class of all
hyperbolic elements is the neutral element. If (G, f)is a representative of a
class, then (G, f) is a representative of the inverse class. For this it is
enough that (G, f) @ (G, f)is hyperbolic. Let N be the diagonal of G x G,
then f @ f(N)=1 and

N = {(u,v)e GXG : B® B((u,v), (x,x)) = 1 for all x € G}
= {(u,v) e GXG : B(u—v,x) =1 for all x € G}
= N.

This is a consequence of the fact that fis nondegenerate.
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The group so obtained is called the Witt group W. Its definition is
similar to the definition of the well-known Witt rings constructed from
quadratic forms over rings and fields.

Next we introduce the concept of a reduced Q-space. Suppose (G, f)isa
Q-space and N is a closed subgroup of G such that f (N)=1. Because f (N)
=1, we know NS N*. The group N* is closed by definition and the factor
group N*/N is again a locally compact abelian group. It is called the
reduced group G4 (with respect to N). Using

f(x+n) = f(x)f(n)B(x,n) forxeN! andneN,

one has f (x +n)=f (x). This means that finduces a continuous map from
G .qto T. Cartier showed that the quadratic character on G4 induced by f
is nondegenerate (see [1]). This defines a Q-space (G4, f). If the Q-space
(G, f) has no subgroup N #1 such that f(N)=1, then (G, f) is called
irreducible.

1.4. LEMMA. For every Q-space there exists an irreducible Q-space similar
to it.

Proor. Apply the Lemma of Zorn to the set of subgroups N of G with
property f (N)=1. A maximal subgroup N with this property is closed.
The reduced space of (G,f) with respect to N is irreducible by
construction. Furthermore

(Gaf)@ (Gredaf)e (Gredsf) = (Gred1f)® (Gsf)@ (Gredaf) .

We are done if the right pair of Q-spaces on the right-hand-side has a
hyperbolic sum. We have G_4=N*/N. Let 7 be the projection of N* onto
G4 For

N = {(x,nx) € GX G : x€ N}
we have f @ f(N’) and (N')* =N".

A locally compact abelian group is a group with small subgroups if for
every neighborhood of the neutral element, there exists a proper subgroup
contained in the given neighborhood. If the group does not have this
particular property, we say, it is without small subgroups. If H is a closed
subgroup of G and G is without small subgroups, then also H and G/H are
without small subgroups. The first statement is trivial. A proof of the
second statement can be found in [5].

1.5. LemMma. If (G, f) is an irreducible Q-space, then the group G is
without small subgroups.
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Proor. Let B: GXG — T be the bilinear form of f. The torus T is
without small subgroups. Let U be a neighborhood of T without a
nontrivial subgroup. Choose neighborhoods U, and U, of G such that
B(U,,U,)& U. If G had small subgroups, there would exist a subgroup H
in U, N U,. Fixing a variable, the image of H would be a subgroup of U.
Therefore B(H,H)=1 and the restriction of f to H is a character. The
same argument applied again shows f(H)=1. This contradicts the
assumption on the irreducibility of (G, f).

Let G be a locally compact abelian group without little subgroups. Let
G° be the connected component of G. G° is compactly generated. This
implies that G° is isomorphic to R" x F, where F is a compact group. This
is the structure theorem for compactly generated groups (see [2]).

1.6. LemMA. If F is compact, abelian, connected and without little
subgroups, then F~T™,

Proor. If F is a Lie group, this is well-known. On the other hand, itisa
well-known fact from harmonic analysis that the characters separate
points of F —{0}. The intersection of all kernels K, of all characters y, of F
is therefore {1}. We choose an open subset U (1 € U) of F without any
proper subgroup. The complement 4 of U in F is compact

NK,={} = N&KN)=2.

By the compactness property there exist finitely many K, N A with an
empty intersection. As a consequence we have

D~

K, € U, hence ﬂ K,=1.
v=1

v=1

This gives an injective map F — T" and F is a Lie group because it is a
closed subgroup of T".

Recalling the above statements, we get the following result. The
connected component of a locally compact abelian group without little
subgroups is isomorphic to R"x T™

G® = R"xT™.

The factor group C=G/G° is totally disconnected. Therefore C has
neighborhood basis of 0 consisting of open subgroups. But C is without
small subgroups because C is a quotient of G. This implies C to be a



THE WITT GROUP OF QUADRATIC CHARACTERS 75

discrete group. But the connected component G° is divisible and hence an
injective group in the category of abelian groups. The sequence

056 HG65C-0

splits. Because C 1s discrete it also splits in the category of topological
groups: G=G°x C.
If we assume G to be self dual and G=R"x T™x C, then we get

R*xT"xC =~ R"xZ"x C

because R=R and T=Z. We have C=C°xE. As a topological
isomorphism respects the connected components, we get R"X T"=
R"x C° and we already know that C°=R" x T™. As the dual C of the dis-
crete group C is compact, we have n'=0. A dimension count gives
m=m'. E is discrete and compact as a projection of a compact group,
meaning E is finite. Putting everything together gives G=R"x (T x Z)"
x E. The group G is built out of the self dual components R, T x Z and E.
Thus as a consequence of Lemma 1.4 and 1.5 we get

1.7. TueoreM. Every class in W has a representative Q-space (G, f),
where G is isomorphic to R*x (T X Zy"x E and E is finite.

2. Orthogonal decompositions.

In the previous section, we showed that we can restrict to certain
generators (G, f) where G decomposes. We consider now whether the
decomposition can be chosen such that it respects the quadratic character.

2.1. THEOREM. Let H be a subgroup of G and (G, f) be a given Q-space. If
the map b (confer to the diagram below) maps H algebraically and
topologically isomorphically onto H, then the Q-space (G, f) decomposes:

6. N)=H, @ H*, f).

Proor. Consider the diagram

/H~H' — K
i J
G G
\
H

>

._.

H

113
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The lower row is by assumption an isomorphism. The commutativity of
the lower square defines a retract i of G, that is G splits. The induced
isomorphism in the upper row gives i(G/H)=H'. From f(x+}y)
=f(x)f(y) for x € H and y € H* we conclude (G, f)=(H, ) ® (H*, f).
It is obvious that both factors have nondegenerate quadratic characters.

The situation of Theorem 2.1 is given whenever G is the direct product
of two self dual groups and the lower row of the diagram
G xG, 2 (G1XG1)A—;;",G1XC32
T l
G, > Gy
is an isomorphism.

Let us now discuss the case G=G, X G, X G5. Here we suppose G, =R",
G,= (T x Z)" and G, =E finite. We identify the groups G; (i=1,2, 3) with
their duals. Let us assume that fis a nondegenerate quadratic character on
G. The associated map b defines an automorphism of G. We write this
map as a block matrix with entries b;; (1=<i, j<4) according to the
decomposition of G=R"@® Z" @ T" @ E. The map b,;3: T" — R"is zero
because R"” hax no compact subgroup. The map b,3: T™ — Z" is zero
because the image of b, is connected. The map b, is zero because 0 is the
only torsion element of Z™. We know also that the isomorphism maps the
connected component isomorphically to the connected component.
Because b,; =0, we conclude that b,, and b;; are automorphisms of R"
and T™. As a consequence of the remark following Theorem 2.1, we know
that (R", f) splits off as an orthogonal summand. In the orthogonal
complement, b,; defines an automorphism of T™. As b restricted to the
orthocomplement of R", which is isomorphic to Z"@ T" @ E, is an
automorphism and b,;=0 and b,,=0, we see that b,, defines an
automorphism of Z™. This shows that b maps the (Z @ T)™ block in the
orthocomplement of R" isomorphically onto itself mod E. Again we
conclude that (Z@ T)™ splits off as an orthogonal summand. Putting
everything together, we see that

(G, f) = (G, /) ® (G2, /) ® (Gs, f) .

Thus the quadratic character f automatically respects the decomposition
G =G, X G, X G,, if the factors G, are chosen appropriately.

Let us now deal with the three different cases separately:

(1) The case G=R". We identify R" with R using the map &: R* —» R",
é(x)(y)=e(x'y) for x and y in R". Here e(.) is an abbreviation for ")
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Given a quadratic character on R", we obtain the map b: R* — R". The
composition ¢~ ! o b is a linear map of R" to itself because every continuous
additive map is R-linear. Call this automorphism S. We have

B(x,y) = e(x'S'y)

by definition. From B(x,y)=B(y,x) we get S=S'. An automorphism
U: R" —» R" changes the matrix S in the usual form: S — U’'SU. Now
every matrix S can be diagonalized by such a substitution. For the
corresponding Q-spaces, this means

R.f) = @ R, f)
because of Theorem 2.1.

(2) The case of the finite groups. We decompose the group into its p-
sylow subgroups. Every linear map from the p-torsion subgroup to its g-
sylow subgroup is zero for p+gq (prime). We can apply Theorem 2.1 as
every finite group is self dual. Considering the case of finite Q-spaces, we
can now restrict ourselves to the Q-spaces (E,, f). We use the notion E,
for a finite p-sylow group. We decompose the group E, into cyclic factors
each of the form Z/p"Z. Denote A the sum of all copies Z/p"Z with lowest n
and B the rest of them. Every automorphism of E,~ A4 X Bis given by a 2

X 2 matrix
ab
cd

according to the decomposition. The existence of an inverse matrix means
especially

aca' +bec =id,

for certain maps ¢’: A — B and a’: A — A. The image of the map ¢’ is
contained in pB. Therefore the image of 4 under h=bec' is contained in
PA. We conclude that a high power of the map h is the zero map from 4 to
A. Now acd'=id,—h and the right-hand-side is invertible. The map a
must be an automorphism of A. Applying Theorem 2.1 we can split off the
summand A as an orthogonal summand. The discussion of the Q-spaces
with underlying group G = (Z/p"Z)’ is similar to the real case. We identify
(2/p"Z) with its dual. We use the natural ring structure on Z/p"Z. We have
e(.)=e*P™"() g5 a standard character on Z/p"Z. Analogous to the case
G=R' we get B(x,y)=e(x'Sy) for a symmetric matrix S with entries in
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Z/p"Z. We have to distinguish two different cases. The ring Z/p"Z is a local
ring. For p%2 the element 2 is a unit. In this case there exists an
automorphism U such that §=U'SU is a diagonal matrix (see [4]). If
p=2, then the situation is more complicated. In this case S is not further
decomposable only if x'Sx € 2(Z/p"Z) for all x € (Z/p"Z)' (see [4]). The
matrix S is called an even matrix in this case.

(3) The case (T x Z)". For easy notations we identify T and R/Z.

2.2. LeMMA. The topological linear maps from (T XZ)" into itself
correspond to the matrices
ab
0c)’

where a and c¢ are unimodular, integer m X m-matrices and b is a mx m-
matrix with elements in R/Z.

Proor. A topological linear map induces an automorphism of the
connected component T™. This is a linear map of the universal covering
space, mapping the kernel of the exponential map onto itself, hence
unimodular. The map from T™ to Z™ is zero. Therefore ¢ is unimodular.

On J=TxZ there is a natural ring structure. Set (x,n)+ (y,m)=
(x+y,n+m) and (x,n): (y,m)=(xm~+yn,nm) for x,y e T and n,m € Z.
We choose the following standard character e(z)=e*"* for z=(x,n),
xeT and ne Z. We identify J with its dual mapping z e J to the
character e(z- (.)) in J. Now the discussion is similar to the previous cases.
There is only one difference. In the previous cases the topological auto-
morphisms were exactly the ring isomorphisms. In the present case there
are more topological linear isomorphisms than ring isomorphisms.

2.3. LEMMA. The map s: J'xJ" —» T,

[E- E) e e

has the following properties:

i) s[z,Z]=s[2,z].

(i) s[z,UZ]=s[z,VZ] forall z,Z € J" implies U=V for matrices U and V
as in Lemma 2.2,

(iii) s[Uz,Z]=s(z, U*Z]. If U given as in Lemma 2.2, then U* is given by
the matrix
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(o)

0d)

The proof is given by some obvious matrix calculations.

Now suppose fis a quadratic character on J”. One gets
B(z,2) = e°s[8z,2] = e°s[Z,5z] = eos[z,5*7] .

Ihis gives S=S*. The Q-spaces isomorphic to the given one have a matrix
§=U*SU. We show that § can be chosen to be the identity. From S =S*

one deduces
ab
§= (0 a’)

_fa”t 0\/1 =%
U“(o 1)(0 1)

we get U*SU=id. According to Theorem 2.1, the Q-spaces (J', f)
decomposes into factors (J, f;), 1<i<r.

and b=>b'. Putting

2.4. COROLLARY. As an abelian group the Witt group W is generated by
Q-spaces (G, f), where G ranges over the groups R, J, Z/p"Z for p+2 and
(Z/27z).

3. Relations between the generators.

Observe that a quadratic character is essentially determined by the
associated map b. Two quadratic characters f; and f, with the same
associated map b differ by an ordinary character y. It is therefore
reasonable to associate to a given symmetric map b a fixed quadratic
character which is called f,. Here we restrict ourselves to the groups of
Corollary 2.4. In the cases G=R or G=Z/p"Z (p=+2) the element 2 is a
multiplicative unit. In these cases we put fo(x)=b(x)(2”'x) using the
inverse 27! of 2. The map f, defines a quadratic character whose
associated map is b. In the case G =T x Z we can assume after applying an
automorphism that B(x, y)=b(x)(y)=e(xy) for all x and y in G. It is easy
to check that in this case fy(x,n)=e?"" for x € T and n € Z has the
required property. Let us finally look at the case G=(Z/2"Z). Let
Pr: Z — Z/2"Z be the canonical projection. If we identify G with its
dual, the map b corresponds to a symmetric matrix S with coefficients in
Z/2"Z. We chose representatives of the coefficients in Z and view S as an

integer matrix. We set
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folpr (x)) = em™/ZxSx

This is independent of the chosen representative x of pr (x) and has the
required properties. The quadratic characters f, should be called pure
quadratic characters. Now let us return to the simplest case. Let us assume
G=R. Up to isomorphism there are only two different pure quadratic
characters given by e™*" and e ~™*’,

3.1. DerintTioN. The Q-space (G, f) with G=R and f (x) =™’ +inax for
a € R is called (R,a).
3.2. LEMMA.

n n—1 . .
DRa)= D ROS (R,(Z aﬁz)’l).

Proor. This is obvious. Transformations with orthogonal maps do not
change pure quadratic characters, but operate on characters.

3.3. LEMMA.
i) R,2n+1)=0in W for allne Z.
(i) 8(R,0)=0in W.
(iii) The map s: R/Z — W given by s(x)=(R,./1—8x+8n), where ne Z
is chosen big enough depending on x, is a well defined homomorphism
fromT to W.

Proor. The subgroup Z of R is its own annihilator Z* =Z in the Q-space
(R,2n+1), n € Z. This shows that (R,2n+1) is hyperbolic and proves (i).
In order to prove (ii) we use Lemma 3.2 to obtain

9(R,1) = 8(R,0)® (R,3).

According to (i) the spaces (R, 1) and (R, 3) are hyperbolic. This proves
(ii). In order to prove (iii) we choose n € Z so that 1 —8x+8n=0. Let us
first show that s is well defined. Given m>n we get for p=m—n

(R,/8p) ® (R,\/I—-8x+8n) = (R,0) ® (R,\/1—8x+8m).
Now we have (R,./8p)=(R,0) because
(R,0) = (R,0)® (8p+1)(R,1)
= 8p(R,0)® (R,\/8p+1)® (R,0)
= (R,\/3)® (R,1)
= (R,/3p) .
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This shows that s(x) is independent of the number n. In order to prove

s(x+y)=s(x)s(y) we put a=./1-8x+8n, b=,/1—8y+8m, and

c=,/1—8(x+y)+8(m+n). An easy calculation gives c?=a?+b*>—1.
Therefore we have to show

(R,a)® (R,b) = (R,\/a*+b7-1).

This follows from

(R,a)® (R,b) = (R,0)® (R, /a®>+b?)

and

(R,/aZ+b*=1) = (R, /Z+b02 1)@ (R,1)
= (R,/a*Tb9) @ (R,0).

We will show later that the map s is actually an isomorphism from T
onto W. This means that the exact order of (R,0) in W is 8 and that the
symmetric even positive unimodular matrices of rank m exists only if m is
divisible by 8. One only has to remember that each such lattice defines a
hyperbolic structure on the Q-space m(R, 0). It should be finally remarked
(for computations in the Wittgroup) that every Q-space (R, f) has a
representative (R, a) in its class.

3.4. LeMMA. For every Q-space (T X Z, f') there exist Q-spaces (R, a) and
(E, h), where E is a finite group such that the following identity is true in W:

(TxZ,f) = (R,a)® (E,h) .
Proor. We can restrict to the case
f(x,n) = ezni(”x"'"}""xm)

for x and y in T and n and min Z. This is shown by decomposing fin f, and
a character and a modification under an isomorphism. Next we show

(R,0)® (TXZ,f) = (R,\/8my)® (T*Z,g)
where g is given by

g(x,n) = e?mx*tmd xeT, nmel.

This isomorphism is given as a matrix U: RxTxZ - RxTxZ
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id 0 -—c
U=[ 0 id —ic
0 0 id

This matrix is “orthogonal”, i.e. U maps the pure quadratic character
onto itself: hyoo U=h, where

hO(Z, X, n) — eni(2nx+z’)

for z € R, x € Tand n € Z. On the other hand the characters are changed
by U. The above mentioned isomorphism is obtained when c¢=.,/2y/m.
Furthermore (T x Z,g)=0 in W because the subgroup N=0xZ in TxZ
has the property g(N)=1 and N=N"'. Adding 7(R, 0) on both sides of the
above identity, we get the assertion of the lemma because (R,0)
=(Z/2Z, f,). Here the quadratic character has the values f,(0)=1 and
fo(1)=i. It is a reduced Q-space of (R,0).

For the rest of this section, we give some other examples of Q-spaces
whose underlying group is a 2-torsion group. As these groups play a
distinguished role in further discussions, they are treated now separately.

THE casE G=Z/2Z. In this case there are only two quadratic characters
folx) = emi/i2x*  and fix) = T2 (2 +2x)

Their values are f,(0)=f;(0)=1 and f,(1)= —f;(1)=i. The classes of
(G, fo) and (G, f;) are therefore inverses of each other in W.

THE cASE G=Z/4Z. Here we have two automorphisms of G given by
multiplication with 1 and —1. This gives the quadratic characters:

folx) = emi/4x? filx) = T/ +2x)
fz(x) — em'/4(x2+4x) f3(X) — eni/4(x2+6x)

The cases, where the associated map b= — 1, have the four cases as inverse

elements in W. In addition to that (G, f;)= (G, f3)=0 in W because they

are hyperbolic. The subgroup 2G defines a hyperbolic structure for them.
Furthermore, we have the following relations.

3.5. LEMMA.
() Z/2Z, fo)=(Z/4Z, fo)=(R,0) in W.
(ii) (Z/4Z, ,)=3(Z/4Z, fo) in W.
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Proor. Assertion (i) is proved by the method of Lemma 1.4. This is
done by putting either N =2Z or N =./2-Z in G =R for the Q-space (R, 0).
This gives a reduced spaces, the spaces in (i). The second assertion is
proved by considering the subgroup I', in (Z/4Z)*. I', is the subgroup
generated by (1,1,1,1) and

4
U= {(x,,xz,x3,x4) : X, €2(2/4Z) and Y x,-=0}.
i=1

One checks f,(x)=f,(x)* and f, has the values

fo(0) = —f6(2) =1 and fo(1) = fo(3) = e™/*.

I, is annulated by f=f,®3f, and I'y=I4. The space is therefore
hyperbolic and equal to zero in W.

3.6. THEOREM. Let (G, f) be an irreducible Q-space whose underlying
group G is a 2-sylow group. If (G, f) is not decomposable into nontrivial
factors, then either G=2Z/2"Z or G=(Z/2Z)>.

Proor. According to Theorem 1.7, the group G is finite. Let p=2.
Suppose G=Z/p"Z, then we are done. Because of section 2. we can assume
G=(Z/p"Z) for i>1. The map b corresponds to an integer valued
symmetric matrix S whose coefficients will also be regarded as coefficients
in Z/p"Z by taking projections. Because G is indecomposable, we know
that x'Sx € 2(Z/p"Z) for all x € (Z/p"Z)'. This implies for the integer matrix
S, that x'Sx € 2Z for all x € Z'. Remember that f differs from f, only by a
character, hence

f(x) — eni/2"-(x’Sx+2x’Sxo)

for a certain x, € Z'.
Let us first assume n>1. Then put
T = {x e (Z/p"Z) : x'Sxo € 2Z}

and N=2""1T. The group N is not zero because T/2G is not zero. This
can be shown as follows. Suppose Sxo=(yy,...,y;). If one of the
coordinates y, is not even, then z=(0,...,0,z,0,...,0) for z,=1 is an
element z in T and not in 2G. If all coordinates y, are odd, then
z=(1,1,0,....0)isin T and not in 2G. Remember i> 1. The subgroup N
has the property f(N)=1. This is a result of X'Sx € (2"~ 1)y?2Z forne N.
From the assumption n>1, we know that 2"*! divides into 2*"~'. This
shows f (N)=1 because x'Sx, € 2"~ !-2Z by definition. The Q-space (G, f)
can therefore not be irreducible.
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Finally, we have to discuss the case n=1. In this case the formula for f
shows that f'has only the values +1. The value f (0)=1. Any element y 30
with the property f(y)=1 defines a subgroup N of order 2 with the
property f(N)=1. This can not be because we assumed that (G, f) is
irreducible. We conclude f(y)= —1 for every element y+0 in G. If G is
Z/2Z or (Z/2Z)?, we are done. We can assume i>3. We set u= (1,0, . ..,0)
and v=(0,1,0,...,0).

Because i =3 there is an element w different from 0, u, v, and u+v. The
functional equation for the quadratic character f implies

B(u,W) = B(U,W) = B(u+v,w) = —-1.
This contradicts the linearity of B(x,y).

The proof of Theorem 3.6 showed that the irreducible and
indecomposable Q-space on G=(Z/2Z)* is given by the quadratic
character f(0)=1 and f(x)=—1 for x=+0. Let us take (Z/2Z, f,) of
Lemma 3.5. The subgroup N generated by (1,1,1,1) in (Z/22)* has the
property fo @ fo D fo D fo(N)=1. The reduced Q-space of 4(Z/2, f,) with
respect to N is the Q-space ((Z/22)?, f).

3.7. CoroLLARY. The Witt group W is generated by the classes (R, a) for
a € R and the classes (Z/p"Z, f), where p runs over all primes and n over all
integers n=1.

4. The canonical character.

Let G be an arbitrary locally compact abelian group. Let L!(G) and
A(G) denote the space of absolutely integrable functions, respectively the
space of absolutely integrable functions whose Fourier transform is in
L'(G). We assume these functions to be complex valued functions. We
write x* for a character and (x,x*) for its value at the point x. The
Fourier transform of a function f is

foe*) = L £ e)Kx, x*> dx .

The Haar measures dx and dx* on G and G are chosen in such a way
that the Fourier inversion formulas are given by

fix*) = L S ()<, x*y dx

fx) = L Fo) oS dx*
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for fe A(G). We write #!(G) for L'(G) modulo functions almost
everywhere zero. #!(G) is a commutative involutive Banach algebra,
whose product is given by convolution

f*glx) = L fx=y)gl)dy.

The Fourier transform maps #*(G) to the space C®(G), the space of all
bounded continuous functions on G vanishing at infinity. C?(G) is an
involutive Banach algebra with respect to the sup-norm and complex
conjugation as involution. Multiplication in C®(G) is point-wise
multiplication of functions. This being said, the Fourier transform
F: £Y(G) - C*(G) can be shown to be a continuous homomorphism of
involutive Banach algebras.

Given a quadratic character f on G, we have B(x,y)=<{x,b(y)) by
definition. Because | fl =1, generally, the quadratic character f is not in
L!(G). Remember f € L'(G) implies | f| € L' (G) and therefore [ dx < co.
This is possible only for compact groups. As G is selfdual, this implies G is
also discrete, hence finite. Nevertheless, one can define a generalized
Fourier transform of f, but we never need this fact. We only use the
following theorem (see [1], [7]).

4.1. THEOREM. For every Q-space (G, f), there are numbers c € C with|d
=1and r € R positive such that for allu € A(G) the following formula holds:

L S b(x))dx = c(G, f)r(G,f) L SGeu(x)dx .

If (G, f) is hyperbolic, then c(G, f)=1.

4.2. LEMMA. The map (G, ) — ¢(G, f) defines a character of the Witt -
group.

Proor. That this map is additive is obvious. It is an easy application of
the Fubini theorem. For u € A(H) and v’ € A(H') the function u(x)u’(x") is
again in A(H x H'). It can be shown that the integral is not zero for such
functions. A comparison of coefficients gives ¢(H,h)c(H', k') =c(G, f) for
(G, f)=(H,h)® (H', ). The only thing that remains to be shown is the
fact that this map is well-defined. For this, it is enough that isomorphisms
do not change the constant c because ¢(G, f)=1 for hyperbolic spaces by
Theorem 4.1. A computation shows that an isomorphism changes the
product of the constants ¢ and r by the modulus of that isomorphism.
Because this modulus is always a positive real number, the constant ¢
remains uneffected.
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4.3. LEMMA. c(R,q)=e@/41~a"),

ProoF. The function u(x)=e~™" is in A(R). Because B(x, y)=e>"**, we
have @(b(x)) = (x)=u(x) in this special case, if we identify R with its dual
R as in the second chapter. We get

L S (x)i(b(x))dx

i(x2 2
I em(x +ax)e nxt Iy
R

= e—na’/(4~4i)f e—n(1~i)(x—ia/(2—-2i))2dx .
R

We make the substitution z=x —ia/(2 —2i). Using Cauchy’s theorem, we
can shift the line of integration back to the real line. The remaining

integral is
J e =02 gy = D 1/4gnil f e ™ dw .
R L

Shifting again the new contour L back to the real line by Cauchy’s
theorem, the final result is
2~1/4eni/82—naz/(4——4i) .

A similar calculation gives
j Fu(x)dx = 27 14grilBg—na’/4+4)
R

This proves the lemma.
An obvious consequence of Lemma 4.3 is that the character

cW - T
is surjective. It is obvious that the map

s:T - W
defined in Lemma 3.3 in a section of the map c. A consequence is
W = T xKern(c) .

In the next section, it will be shown that the kernel of the canonical
character c of W is zero. It should be remarked finally, that the constant ¢
attached to a given Q-space (G, f) can be computed rather easily in the
case, when G is a finite group. For this reason, we set arg (z)=z/lzl for
z € C* and [z] = (zZ)'/2.
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4.4. LeMMA. If (G, f) is a finite Q-space, then

c(G, f) = arg (L f(x)dx) .
ProoF. We put u(x)=1 for all x € G. Then
Wb(y) = L B(x,y)dx = B(xo,y) L B(x,y)dx .
Because B(x,y) is nondegenerate, there exists for y+0 a point x, such

that B(xo,y)+1. We conclude that d(b(y)) is 0 for y 40 and equal to m(G)
=[gdx for y=0. This means

m(G) = ¢(G, f)r(G, f)x* jf(x)dx :

If we multiply by { f (x)dx, we get the desired result.

According to Lemma 4.4, the constant ¢(G, f) is in the case of finite Q-
spaces the “sign” of a Gaussian sum. It should be finally remarked, that in
the case of finite groups it is very easy to show, that c=1 for hyperbolic
spaces. If N is a subgroup of G with the properties N* =N and f(N)=1,
then for finite groups G we have

ff(x)dx=f ff(x—f-y)dxdy
G G/N JN

=j.m(fmmw0@
G/N N

mmﬁ F0)50)dy
G/N
— mV)1 (0).

The last term is a positive real number. Lemma 4.4 implies c(G, f)=1.

5. Connections with classical Witt rings and final computations.

In the previous section we showed W=TxKern(c). In order to
determine the kernel Kern (c) of the canonical character, we compute
orders of generators of W.

5.1. LemMaA. Let (G, f) be an irreducible Q-space with an underlying
group G=2Z/p"Z.



88 RAINER WEISSAUER

(i) Ifp#*2andn>1,thenthe order of c(G, f)in T is equal to mp", where m
is a divisor of 4.

(i) If p=2 and n>2, then the order of ¢c(G, f) in T is 2"*1.

(iii) In the remaining cases, the order of ¢(G, f) in T is a divisor of 4p.

Proor. We write the quadratic character f in the form f(x)
=fo(x)B(x, x,), where f, is the associated pure quadratic character to the
bilinear form B(x, y) of f. As f and f,, have the same bilinear form B(x, y)
and because fis nondegenerate, we can always find an element x, with the
‘above property. Let us first remark that in the cases (i) and (ii) the element
Xo must be a unit. Otherwise the group N =p"~!G has the property f(N)
=1. This is impossible because we made the assumption that (G, f) is
irreducible. The same argument shows that (G, f,) is always reducible in
the cases (i) and (ii). Furthermore, we have the following general fact:

¢(G,f) = arg (Lf (x)dx)

Jo(xo) arg (L So(x+x) dx)
= fo(x0)c(G, fo) -

With this formula, we can show (i) and (ii) by induction under the
assumption of (iii). It is easy to check that in cases (i) and (ii) the order of
fo(xo)is exactly p®and 2"* 1. As (G, f,) is reducible in these cases, the order
of ¢c(G, f,) is the order of some (G 4, f req) and therefore by induction
smaller than the order of f;(x,). Now it is enough to show (iii). In the case
p=2 this is done case by case. A complete list of the cases is given at the
end of section 3. In the case p #2 one first reduces the problem to the case

"that f(x) is a pure quadratic character. This gives a contribution of order p

.in the worst case. For the pure character, the computation of the “‘signs”
of Gaussian sums is classical. For p+2 there are only the possibilities
1, —1,i, —i. These are elements of order 4. Therefore the order is a divisor
of 4p.

5.2. LEMMA. The Q-space (R, a) is similar to a finite Q-space if and only if
the element c(R,a) is of finite order in W.

Proor. The considerations leading to Corollary 3.7 show that every
finite Q-space is similar to a sum of Q-spaces (Z/p"Z, f). By Lemma 5.1 the
order ¢(G, f) of a finite Q-space is finite. It is therefore a necessary
condition that ¢(R,a) is of finite order. Now let us show that this is
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sufficient too. If the order of ¢(R, a) is finite, Lemma 4.3 implies a? € Q.
We set m equal to twice the denominator of a®. We have m € Z and define
N to be the sublattice in R generated by ma. It can be shown that N*/N is
finite and that the Q-space (R,a) is similar to the reduced space Gred
=N*/N.

5.3. LEMMA. Kern (c) is generated by the Q-spaces (Z/pZ, f,), where fy is a
pure quadratic character.

Proor. According to Lemma 3.2, 3.5, and Corollary 3.7, every class in
W has a representative which is a sum of one copy (R,a) and a sum of
copies (Z/p", f). Lemma 5.2 implies that a class in the kernel of ¢ has a
summand (R,a), which is similar to a finite Q-space. Hence our first
conclusion is that an element in Kern (c) can be represented by a finite sum
of spaces (Z/p", f). The crucial point is that we can rewrite this sum such
that every pair (p,n) has at most one copy (Z/p", f) occurring in the sum.
There will be only one exception. Factors (Z/pZ, f,) with a pure quadratic
Character may occur arbitrarily often. This is done by the following
reduction. Suppose first (Z/p"Z, f) is not irreducible. In that case this
factor is replaced by the reduced factor. Suppose there are two irreducible
factors (Z/p"Z, f) and (Z/p"Z, f’) in the sum. We suppose, furthermore,
n>1 for p+2 and n>2 for p=2. The quadratic characters are f=f, -,
and f'=f{y,. Under the above assumption N=p"~*M for

M = {(x,y) € @/PZ) : x1(x) = 227"}

is a nontrivial subgroup of (Z/p"Z)>. Recall that yx, and x, correspond to
units in (Z/pZ), when (Z/pZ) is identified with its dual since both Q-spaces
were assumed to be irreducible. The sum of these two spaces will now be
replaced by its reduced spaced N'/N =G,q4. Every element in G,y has
order less than p" and the number of elements in G, is less p?*~ 1. In the
decomposition of the reduced quaxratic space, at most, one factor (Z/p"Z)
can occur.

Furthermore, recall that all Q-spaces (Z/p?, f) for p=2 can be written
as multiplies of (Z/2Z, f,) in W according to section 3. Now we apply
Lemma 5.1. As the constant ¢ for the whole sum is 1, no factor of
(Z/p"Z, f) with n>1 can occur. What we finally have to show is that all of
the remaining factors (Z/pZ, f) can be eliminated whenever fis not a pure
quadratic character. For this reason, p %2 case is the only case that needs
to be discussed.

G.N) = @ & @nz.f).
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Every f; , can be written as

f;',p(x) = Bi,p(x’ tpx+xi,p) = fO,i,p(x)Bi,p(x’xi,p)
for t,eZ and 2t,=1modp. Now it is easy to check that c(G, f)=1
implies

EII ja,i,p(xi,p) =1 .

First of all, this number is a pth root of unity, since it can be expressed
purely in terms of values of B; ,(x, y). On the other hand, by Lemma 5.1
and its proof, this product gives the whole p-power torsion part of ¢(G, f)
and must be 1 for this reason. Looking at the cyclic subgroup generated by
the element z=(xy,,, ..., %, ,) in (Z/p?)">, we have

"p

( @ f,.,p) (nz) = 1;11 B, ,(nx; p,nt,x; ,+X; )

Tp

2

= l_ll B, ,(Xi, ps tpxi,p)2n+n
i=

rP

2
H fO,i,p(xi,p)2n+n
i=1
=1.

By further reductions, we can assume z=0. This proves the lemma.

Finally, let us discuss the relation of W with some classical Witt rings.
Let k be a locally compact self dual field of characteristic different from 2,
a local field or a finite field. For each nontrivial character y of k, one gets a
map j from the Witt ring W (k) of that field k (see [3]) to W. This map is
linear and is given by

W (k) %» w
(k" q) — (K" x°q) .
For k=2Z/pZ or k=R and k=Q,, we choose some standard characters. In

the first cases we use e(.) defined in section 2. In the second case we use
e (), where h,, is the p-adic principal part

hp@ r:p‘) =2y

i<0
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Here the r; are chosen from a representative system RE Z of the residue
class field. Assume V is a vector space over a number field K and q is a
quadratic form on V. Let V, be the adelic extension of ¥V and q, the
extension of g on V. The space ¥V is locally compact. We set y=[]x,
(product of standard characters) if K =Q. We get a homomorphism of the
Witt group W(K) of K into W

W(K) L w
V@) = (Vi x0dy,) -
This map is the zeromap. It is well-known and easy to check that V defines

a hyperbolic structure on (V,,x°q,) (see [7]). On the other hand, this
map factors for K=Q in the following way

)
wQ) ——— p@ W(Z/pZ)
) j
Kern (c)EW

To show this we can diagonalize‘the quadratic form g on ¥V and assume
therefore that V is one dimensional. Without restriction g(x)=ax? for
a € Z square free. Let N be [ | Z, (product over all finite places). Then f (N)
=1 and N*/N decomposes as a product. The factors correspond to the
places of Q.

The factor corresponding to p= oo is given by (R, e(q(x)) and its class in
W is sign (a)(R,0). For p=2 the factor is given by (G, f) for G=2Z/4Z or
Z/2Z according whether 2 divides a or not. The discussion preceding
Lemma 3.5 therefore shows that its class in W can be written as a sum of
copies (R, 0). For the remaining primes p +2 a calculation shows that the
class of the factor corresponding to p is given by j,°d,(V,q) where

Joe WZ/pZ) - W (p#+2)

is the homomorphism defined above for the finite field Z/pZ and d, is the
second residue homomorphism

0, W(Q) — W(Z/pZ)

defined in [4]. Especially almost all j,°d,(V,q) are zero in W. Hence
g=j'°d for =@,,,0, wherej is defined on the image of 0 by

J) = Y j(x,)+n(x) (R,0) for x = @x,, x, € W(Z/pZ) .
p¥2 P
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Here n(x)- (R,0) is the contribution of p=2,00 and n(x) is the unique
integer mod 8 such that coj (x)=1.

Now we can give the final conclusion. Both maps 0 and j’ are surjective.
The first fact follows from [4] and the second fact from Lemma 5.3. This
implies Kern (c)=0.

5.4. CoroLLARY. The Witt group W is canonically isomorphic to the
complex unit circle as an additive group. The isomorphism is given by the
canonical character c.
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