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A CONJECTURE OF GRUNBAUM
ON COMMON TRANSVERSALS

MEIR KATCHALSKI

1. Introduction.

A finite family .o/ of convex sets in the plane is said to have property T if
the family admits a common transversal, that is, if there is a straight line
which intersects every member of /. The family ./ has property T(m) if
every m-membered subfamily of ./ has property T. Results on common
transversal and references may be found in 41¢ and [4].

Counterexamples, see [4] and [8], show that there is no m such that T(m)
implies T for an arbitrary family of convex sets. However, with additional
restrictions on members of &/ positive results have been obtained. Thus
T(3) implies T for families of parallel segments, Santalo proved that T(6)
implies T for families of parallelograms with parallel sides (cf. [4]) and
Griinbaum has shown that T(5) implies T for disjoint translates of a
parallelogram (see [2]).

Griinbaum conjectured [2] that T(5) implies T for disjoint families of
translates of a fixed arbitrary convex set. (A disjoint family is a family
whose members are mutually disjoint.) This conjecture is still open. A
weaker conjecture, to be called the weak Griinbaum conjecture, is that
there exists a universal k,, such that T(k,) implies T for any disjoint family
of at least k, translates of a fixed arbitrary convex set. (This conjecture
appears as an open problem in Lay’s book [7].)

A positive solution to Griinbaum’s weak conjecture is given in Theorem
1.

THEOREM 1. There exists a positive integer ko, ko <128, such that T(k,)
implies T for any disjoint family of at least ky translates of an arbitrary
compact convex set.

The proof of Theorem 1 relies on a theorem of Hadwiger [3] and cf. [4]:
HADWIGER’s THEOREM. Let of be a disjoint family of at least three convex
sets and suppose that
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(1.2) the members of o/ can be linearly ordered in such a way that any 3
members of o/ admit a common transversal meeting them in the
specified order.

Then o satisfies property T.

A simple consequence of Hadwiger’s Theorem is that T(3) implies T for a
family of at least 3 parallel segments, since the segments satisfy (1.2). In
order to apply Hadwiger’s Theorem to the proof of Theorem 1 the concept
of a geometric permutation shall be used.

A common transversal for a disjoint family =7 of n convex sets intersects
the members of A in a definite order, up to reversal, and therefore
determines a permutation p of &/ and its reversal. Such a permutation pair,
{p, —p} =P, shall be called a geometric permutation of &/ (or a G.P. of &).
The set of all G.P.’s of & shall be denoted by P,. G.P.’s have been studied
in [5] and [6].

Properties of G.P.’s for translates and some definitons are presented in
section 2. A proof of Theorem 1 is given in section 3, followed by related
results and problems in section 4.

Unless stated otherwise &/ denotes a finite disjoint family of convex
compact sets in the plane.

2. G.P.’s, definitions and consistent permutations.
In [5] it was shown that

THEOREM 2. If o/ consists of at least 11 disjoint translates (of a fixed
convex set), then

Pl < 8.

Let I and m be two directed straight lines meeting at the point 0 and
dividing the plane into four quadrants; Q;,0,,0Q3, and Q, (Q, is bounded
by the half-lines of | and m after 0, @, N Q, is a half-line of m,and @; N Q;
=Q, NQ,=0). Theset Scrossesaquadrant QifINQ NS+ I, mNS+ &,
and 0 is not in S. The following lemma appears in [S, Lemma 3 of section

3]:

LemmMa 1. Let S,,S,,S; and S, be translates of the convex set S, if S, and
S, cross the first quadrant and S5 and S, cross the second quadrant, then
(2.1) either S; NS, =+ & or S3NS, ¥ .

However, in going over the proof of the lemma in [5] it is clear that a
stronger result has been proved, namely:
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LeMMA 2. Let Sy, S5, S4 be disjoint translates of the convex set S, with S,
crossing the first quadrant Q, and S, and S, crossing the second quadrant Q ,.
Then it is impossible that on the half line Q, N Q,:

Both S;NQ, NQ, and S, NQ, NQ, are between

(2’2) Sl an an and 0.

Some definitions. The permutation

12....k
(i)
shall be denoted by (iy, . . .,i). For a permutation p= (iy, . . ., ;) define set
p={i,..., i} (that is, j € setp if j=i, for an integer t, 1<t<k). The
permutation g is a subpermutation of the permutation p (or is contained in
p), or q< p, if set g = set p and if the members of q appear in the same order
in p and in q. ((2, 7,3)is contained in (1,2,5,7,8,3,6)). If R is a family of
permutations of subsets of a set K and L < K, then

R(L)={peR:setp = L}

(e.g., if R={(1,2,3,4),(3,4),(4,3),(4,5,6),(5,6,4)}, then R({4,5,6)}
={(4,5,6), (5,6,4))).

If p is a permutation and Scsetp, then g=P|S (p restricted to S) is
defined by g= p and set g=S. (Thus (1,2,7,6,3,4)1{2,7,4,3}=1(2,7,3,4).)
If P is a family of permutations then PIS={plS: p € P}.

Consistent permutations. A family P of permutations, of a k-set shall be
called r-consistent (r a non-negative integer) if

r=0 and IPl =1

or if r >0 and there exists integers / and m, | <m and m=1+r+ 1 such that
for any two permutations p; = (iy, . . ., i) Fp2= (1, - - -»ji) of P:

(2.3) i, =j, foranyt<lortzm.

(For example: {(1,2,6,7,8,9), (1,2,7,6,8,9), (1,2,6,7,9,8)} is 4-
consistent but not 3-consistent.) Note that, r-consistent implies r+1
consistent and 1-consistent implies 0-consistent. P is r-consistent then P| L
is also r-consistent. It is not difficult to see that

(2.4) P isr-consistent if any two permutations of P are r-consistent.
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Lemmas 1 and 2 imply:

LemMmA 3. If A is a family of translates and if two common transversals
determine the G.P.’s p and p', then it is possible to choose p € pandp’ € p’ and
integers v and w so that

(2.5) pandp’ are S5-consistent.

(2.6) Ifqis obtained from p by deleting v and w and q' is obtained from p’ by
deleting v and w, then q=¢ .

Lemma 3 hold since it can be assumed (Lemma 1), with [ and m as the
transversals, that each of the even quadrants is crossed by at most one
translate, say by A4, and 4,,. Let p and p’ be the permutations determined by
I and m. Deletion of 4, and A,, leaves only sets A; that cross the odd
quadrants or contain 0. These sets appear in the same order in / and m so
that g=q' and (2.6) holds. Similar reasoning, using Lemma 2 yields (2.5).

3. Proof of Theorem 1.

Let o ={A,,...,A4,} be a family of at least 128 translates satisfying
T(128) and let S be a fixed subset of N={1,2,...n} of cardinality 11.
Define
(3.1) O={p={p,—p}:pisa G.P. of set p, a subset of A4, set pc S and

|set p| < 128}.

Let o ={qo, —qo} With set g=S and let
(32) Q = {p: P e Qand plS is 5-consistent with go} .

It follows from (2.5), (2.6), and |S| =11 that if p,p’ € Q, then p| L and p'| L
are 5-consistent and if

(3.3) (i,j,k,1,m) = p, then (m,1,j,i) & p .

Since the permutations described arise from G.P.’s
(34) Ifgcepe Qandifsetgos,thenqe Q.

Partition the 2-sets of N into 2 colors:

(3.5) Color the 2-set u={i, j} black if there exists a set T=T(u)< N that
contains u, such that | T (u)l =7 and such that i and j appear in the
same order in all the permutations of Q(S U T (u)).

(3.6) Color u={i, j} white if for any N> T >u, |TI<7: i appears both
before j and after j in different permutations of Q(S U T).
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It shall be shown that

(3.7) the union of all the white 2-sets is contained in a set W of cardi-
nality §,

and that

(3.8) there exists a permutation py of W so that for any subset U of N of
cardinality 14 there exists a permutation p of Q such that set
p=SUWU U and p>p,.

The next step in the proof is to order N, or equivalently 4, so that
Hadwiger’s Theorem may be applied. The final step is the proof of (3.7) and
(3.8).

The ordering of N. Define the linear order < of N as follows:
If {i, j} is black and i is before j in all the permutations of
(3.9) Q(SUW U T(u), then i<j.
(3.10) If {i, j} is white and i precedes j in p,, then i< j.

To show that < is transitive: suppose that i< j and j<k and that {i, j} and
{j,k} are black. (The other possibilities are treated similarly.)

Assume that k<i (and reach a contradiction). If {i, j} is black, then in all
the permutations of

Q(S U T({i,j}) U T((j,k}) U T({i,k}) -

The integer i is before j, j is before k, and i is after k, a contradiction since
IS U T{G, j}) U T({j,k}) U T{i, 3 < 114+7+7+7 = 32 < 128

and A satisfies T(128) (so that i is before k).
Therefore, {i,k} has to be white, and

ISuwuT{i,j} UT{jk}) £ 114+5+7+7 = 30

implies the existence of a permutation of Q(S U W U T ({i, j}) U T({j, k}))
that contains p,. In such a permutation i is before j, and j before k, but k
before i, a contradiction. So i<k and the relation is transitive.

It remains to show that if i<j<k, then there exists a common transversal
for A;, A;, A; in that order: suppose that {i, j} is black and that {j,k} is
white (the other possibilities are treated similarly). Let g be a permutation
of O(S U W U T({i, j})) that contains p,. In g, i is before j (due to T({i, j}))
and j is before k (due to p,).

The common transversal corresponding to g has the desired property.
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Proor ofF (3.7). Assume that the white 2-sets are not contained in a set of
cardinality 5. Let [ be the smallest integer (6 <1< 7) such that the white 2-
sets {iy, j1}, - - -» {ix, Ji} @re contained in L, of cardinality /, but not in a set of
smaller cardinality.

Observe the permutations p of L which are subpermutations of
permutations of Q (S U L) with set p — L. Suppose (after relabeling) that one
of themis p; =(1,2,3,...,]). The minimality of L and the definition (3.6),
of the white pairs imply the existence of p, = (j,, . . ., ji)and ps = (i, . . -, ij),
subpermutations of Q(S U L) with set p, =set p; =L and such that j, &1
and i; + I (1is contained in one of the k 2-sets and so is [, otherwise, L would
not be minimal). Since pair p,, p, and the pair p,, p, are 5-consistent and
|IL|<5, j;=I and i;=1 so that p, and p, are not S5-consistent, a
contradiction.

Proor or (3.8). Let q4,. . .,q, be the permutations of W contained in
permutations of Q. By Theorem 2, m < 8. If (3.8) does not hold, then there
exists for 1 £i<maset N; of cardinality 14, so that g; is not contained in any
permutation of Q(SUWUN,). But then no permutation of
QSUWUN,;UN,U...UN,) contains g, or g,... or ¢, so that
QSUWUN,UN,U ... UN,)=d, contradicting

ISUWUN,UN,U ...UN,] < 11+5+814 = 128.

4. Related problems and results.
Additional results shall be given (without proof) and some open
problems discussed.

RESULTSs.

1) An o-family is a disjoint family of compact convex sets, each of
diameter at most 1 and area at least a.

Using techniques similar to those applied in proving Theorem 1 it is
possible to prove

THEOREM 3. For each o> 0 there exists a positive integer k =k(x) such that
T (k) implies T for any a-family of at least k sets.

2) Lewis [9], conjectured that for any convex compact set C which is not
a segment, there is an integer ko =k(C) such that T (k) implies T for any
disjoint family of sets congruent to C. He also constructed (in [8]) for any
k=3 a disjoint family of k congruent segments satisfying T(k—1) but
failing to have property T.

Note that Theorem 3 proves the Lewis conjecture. (Assume without loss
of generality that the diameter of C is équal to 1 and that the area of Cisa.)
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3) The value of 128 given in Theorem 1 can certainly be improved.
However, the aim of this paper is to give a qualitative result. In order to
decrease the 128 to a number close to S additional results on G.P.’s are
needed. This will be the subject of another paper.

4)|B,| < lo#l- (Il —1)/2 and for n >4 there exists disjoint families .o
with || = nand |B,| = 2n—2 ([5] and [6]).

5) IR, < |l if o is a family of disjoint segments and there exists a
disjoint family of segments o with | B,| =|.o¢| for || =n=3 (see [6]).

PROBLEMS,
6. Reduce the gap between the upper and lower bounds in 4).

7. Obtain results similar to 3) and 4) for restricted families of convex sets
(discs, congruent discs, etc.)

8. Extend, if possible Hadwiger’s Theorem to higher dimensions (that s,
to R* with k>2).
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