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INTERPOLATION WITH A PARAMETER FUNCTION
LARS ERIK PERSSON |

Abstract.
The (Lions—Peetre) real interpolation spaces 4, , are defined by using

the function norm
© 1/q
ww=qﬁwwﬂg.

By replacing t? by a more general (parameter) function ¢ =¢(t) we obtain
the spaces 4, ,. In this paper we shall point out the fact that most of the
classical (and some new) theorems for the spaces 4,, , can be formulated
also for the more general spaces A4, ,. Sometimes we only need to adjust
some recent results to the present situation but sometimes we must give
separate proofs of our statements. Every result is given in a form which is
very adjusted to immediate applications. This paper can be seen as a
follow-up and unification of several results of this kind in the literature.

0. Introduction.

The (Lions—Peetre) real interpolation spaces 4, , (the spaces of means)
were introduced in [16]. We refer to the books [3], [15] or [32] for the
theory and bibliography concerning these spaces. The spaces Ay, are
defined by using the “function norm”

L 1/q
ose) = ([ weverd)
]

(see section 2). If we replace ¢, , by a more general function norm, then we
obtain more general interpolation spaces. The study of such spaces was
initiated in the fundamental paper [25]. Later on and in particular in the
very last years the theory has been developed in an astounding way. We
refer to [4], [6], [11], [22] and [23] and the references given there.
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The theory for the spaces Ay, , has been used as a powerful tool for
applications in many branches of mathematics. However, many new
beautiful results have not yet found so many applications as expected. In
this paper we shall only consider the interpolation spaces 4, , which are
obtained by replacing ¢ in the definition of ¢, , by a parameter function
o=¢(t) € 0(0,1), which means that, for some £¢>0, g(t)t~*° is increasing
and g(t)t~ ' *¢is decreasing. On the one hand, this generalization seems to
be quite sufficient for many applications. On the other hand, the present
investigation reveals that most of the classical (and some new) theorems
for the spaces 4, , can be formulated also for the spaces 4, ,. Every result
is given in a form which is very adjusted to immediate applications.

The results obtained in this paper can be seen as a follow-up and
unification of some investigations by Kaliguna [13], Gustavsson [7],
Heinig [9], Maligranda [18], Merucci [20], etc. However, in many cases
our proofs are much simpler. Sometimes it is even sufficient to adjust some
recent results to the present situation.

The paper is organized in the following way. In section 1 we discuss a
useful class of (parameter-) functions. In particular the (close) relations to
the function classes 2*~ (see [8]) and B, (see [7]) are pointed out.
Section 2 is used to give some basic interpolation terminology. For the
reader’s convenience we also formulate some well-known results in a form
which is suited for our purposes. In order not to interrupt our discussions
later on we state some technical lemmas in section 3. In section 4 we
discuss reiteration results. Qur starting point is to use some important
estimates from [4] and [22]. Our results are more general than the
corresponding results in [7], [9] and [20]. In particular, we need not in
general assume that we have some a priori separation condition between
the actual interpolation spaces. In section 5 we generalize Wolff’s theorem
(see [33]) to the considered situation. In section 6 we apply some our
results and obtain well-known and also new results concerning
interpolation spaces between Lorentz spaces. Some results concerning
interpolation between the sum (£(4)) and the intersection (4(4)) can be
found in section 7 (compare with [18]). In particular, we point out an
elementary description of the spaces (L?+L*,L* NL*®), .. Finally, we
give some concluding remarks in section 8.

ConvenTIONs. The equivalence ax b means that c;a <b =< c,a for some
positive constants ¢, and c¢,. Two quasi-normed spaces, 4 and B, are
considered as equal and we write A =B whenever their quasi-norms are
equivalent. The relation A<B means that we have a continuous
embedding. If nothing else is postulated all considered spaces are quasi-
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Banach spaces. C denotes any positive constant (not the same in different
appearances).

AckNowLEDGEMENT. I would like to thank Jan Gustavsson, Per Nilsson,
and Jaak Peetre for many valuable comments concerning this paper.

1. On an elementary class of functions on ]0,00[.

Let a, and a; be real numbers such that a,<a;. The class Q[ao,a,]
consists of all function ¢ (¢) on ]0,00[ such that ¢ (t)t ~%is nondecreasing
and ¢@(t)t ~% is nonincreasing. Moreover, we say that ¢(t) belongs to the
class Q(agy,a,), whenever ¢(t)eQ[a,+e¢,a;,—&] for some &>0. The
potation ¢ (t)e Q(ay, —) means that ¢ (t) e Q(a,y,b) for some real number b.
We shall also permit hybrid cases, for example Q[ay, b,) or Q[a,, —). (See
e.g. [29] or [31].) :

ExaMmpLE 1.1. Let ay<a<a, and let b and ¢ be arbitrary real numbers.
Then

@(t) = t“(log (B+1)\(log (C+1/t)f

belongs to the class Q(aq,a;) whenever B and C are sufficiently large
constants (any B> e2lb1/% and C > e?l¢1%, § =min(a —ay,a, —a), will do).

First we state the following elementary (but useful) lemma.

LemMA 1.1. Let ¢(t) € Q[ag,a,]. Then
@) o) € Qlagx,asa], if a>0,
¢(t*) € Qlau,apn], if 2<0.
(b) the inverse ¢~ 1(t) exists and ¢~ *(t) € Q[a;,a; '], whenever ay,>0 .
©) @) € Qla+aoB,a+a,p], if aeR, >0,
o) € Q[a+a,B,x+aoB], if a€R, B<0.

Proor. The proof of Lemma 1.1 only consists of some straightforward
applications of the definition of the class Q[a,,a, | so we leave the details to
the reader. (Part (b) ought to be compared with Lemma 1.2 in [8]).

ExaMmPLE 1.2. Let o*(¢)=tg(1/t). Then, by Lemma 1.1(a) and (c),
’g(t) € Q(0,1) if and only if ¢*(t) € Q(0,1).

ExampLE 1.3. Let ¢(t) € Q[ag,a;]- Then there exists a function
2(t) € 0[0,1] and a concave function k(t) so that

<p(t) = taog(tat—ao) and (p(t) ~ ta"k(tal—“o) .
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Exaniple 1.3 is an easy consequence of Lemma 1.1 (a) and (c) and the
well-known fact that every function g(¢) € Q[0,1] is quasi-concave (see
Peetre [26] and [3, p. 117]).

Prorosition 1.2. Let Y(t) be a function on ]0,00[. The following
conditions are equivalent :

(@) Y(st)<Cmax (s%,s%)W(t), for s>0, t>0.

(b) Y (t) is equivalent to some function ¢(t) € Q[ag,a,] .

) y(@) ~ at®o+ ﬂt“1+53° min (st%,t%)du(s), where a=0, B=0 and u(s)
is a nondecreasing function on |0, co[ satisfying lim,_, ., p(s)< oo and
lim, o+ su(s)=0.

Proor. If (b) holds, then cop(t)<yY(t)<c,p(t) for some positive
constants ¢, ¢; and

@(st) < max (s%,s%)p(t) .

Thus (a) is satisfied with C=c,/c,. The implication (a) => (b) follows by
choosing

p@t) = sSglg(tﬁ(st)/max (s9%,5%4)) .

Let (b) be satisfied. Then, by Example 1.3 and the usual representation
formula by Peetre (see [3, p. 117]),

o) ~ tao(a+ﬁtax—ao+ J ® min G, t""“")dll(s)) .
0

Hence (b) = (c). Finally, if (c) holds, then
Y@) = o(t) = t%%k (%),

where k is concave and thus, in particular, ¢(t) € Q[a,,a;]. Therefore
(c) = (b) and the proof is complete.

In order to be able to compare our results later on with some similar
results in the literature we shall now compare the class Q(0,1) with the
similar function classes 2%~ (see [8]) and B, (see [13] or [7]).

The class 2+~ consists of all functions ¢(t) in Q[0,1] such that

()Y Sgg(«p(st)ﬁp(s)) = o(max (1,t)) ast— Oand¢ - .

The class By consists of all continuously differentiable functions ¢ on
10, o[ satisfying
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. (t) wW'(r)
(1.1) O<E£W§§EQW<1'

ProrosiTION 1.3.
(@) BycQ(0,l)c2* .
(b) If @(t)e P*~, then there exists a function Y (t) € B, such that
P~y ().
Proor. Let y(t) € By. The condition (1.1) implies that y(t) t™* is
nondecreasing and ¥ (¢t) t~# is nonincreasing, where

. (1) ' (¢)
oo 2 B=seue

Thus Y (t) € @(0,1). Moreover the condition Y (t) € Q(0,1) implies that,
for some £¢>0 and every s>0, t>0,

o =

ost)
o) =
which, in its turn, implies that ¢(t) € 2% ~. This completes the proof
of (a).
If o(t) € 2" ~ then it is well-known that ¢ (t) satisfies (a) in Proposition
1.2 with ay,=¢, a, =1 —¢ for some ¢>0. Therefore, @(t)=0(t*, ¢! ~%). We
put

max (££,t17¢) ,

Vi) = J: min (L, s/2)p (1)

By making some calculations (compare with [7, p. 293]) we find that
Y(t)~e(t) and Y (t) € B,.

Remark 1.1. We owe the arguments in the proof of part (b) to
Gustavsson [7].

2. Some basic terminology and results.

If nothing else is postulated we shall always use the following additional
conventions in the sequel: po, Py, 9o, 91, P> 4> 0, pe and g4 are parameters
Satleymg O<p0’p1 <, O<‘10»‘11aPa‘1§00, 0<6< 13

1 _1-6 0 1 1-60 0

— = +— and — = —
Pe Do D1 de 9o q1

2=0(t), 00=00(t) and g, =¢,(t) denote functions in Q(0,1).
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We let A= (4o, A,) denote a compatible quasi-Banach pair (i.e. A, and
A, are quasi-Banach spaces, which both are continuously embedded in
some Hausdorff topological vector space). We put X(4)=A4,+A4, and
A(A)=A,N A,. For a € £(A) and t>0 we define the K-functional

K(t,a) = K(t,a,40,41) = inf (laol , +tllasl ).

a=ay+a,
The J-functional
J(t,a) = J(t,a,Ay,A;) = max (||a||Ao,t||a|‘Al)

can be defined for every ae 4(A4).
We put

© 1/q
Gord0) = ( J («p(t)/e(t»ﬂ)

and say that a € 4, . whenever lall, . =6, (K(t,a))<co.
Furthermore, we say thata € 4 0.qid whenever a can be represented as
"50 u(t)t~dt (convergence in X (A)), where u(t) is measurable with
values in 4(4) and ¢, ,(J(t,u(t)))<oo. We equip 4, ,.; with the quasi-
norm

lall, .., = infe, (I(t,u(®)),

where infimum is taken over all permissable representations of a.

If o(t) =1, then, as usual, we write Ay instead of A, ¢ etc.

Let X be a quasi-Banach space such that 4 Ac=XcZ (A) Wesay that X
is of the class Cy(¢,4) if

K(t,a,4) < Co)llaly, aex,
and of the class C,(g, 4) if

laly £ —J(t,a,4), ae 4.

( )
We put C(e, 4)=Ckle, 4) N C,(e, A).
The proofs of the following examples are standard.

ExampLE 2.1. }1—0 6K is of the class Cx(g,A4) and AQ a7 is of the class
C,;(e,4). (Cf. [3, p. 64] and [7, p. 295].)

ExampLE 2.2. X is of the class Cg(g, 4) if and only if 4(A)cX <4, o
and X is of the class C,(g, 4) if and only if 4, ,= X = X(A), for some g<1.
(Cf. [3, p. 66].)
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We shall also note some important (well-known) theorems.

THEOREM 2.1 (The equivalence theorem).

Apgx =404

In the sequel we write 4, , instead of 4, .. xor 4, . ;.

THEOREM 2.2. (The interpolation theorem). Let (Ao, A,) and (B,, B,) be
compatible quasi-Banach pairs. Assume that T is a bounded sublinear
operator form A; to B;, i=0,1, with quasi-norms M, and M, respectively.
Then T is a bounded operator from A,, to B,, with a bound
M < Mog(M,/M,), where g(s)=sup,., oo(st)/o(t).

Proor. Cf. [7, p. 295] and [9, p. 248].
THEOREM 2.3 (“The power theorem”). If 0<p< o0, then
(48, A3)s = (Ao, 4,)
where ¢4 (t)=(g(t?))*?.

Proor. This is an easy consequence of the usual relation between K-
and L-functionals first discovered by Peetre [24, p. 28]. See also [3, pp.
68-69].

01,9p°

ReMARk 2.1. For the general case we only obtain the estimate

[ (KEa)  \dr\'"
lal (480,481, ~ (J;) (Q (tp,(K(t’a))Po—m) T

For the case g(t)=t",n=0p,/p,, this estimate is equivalent to the usual
form of the power theorem (see [3, p. 68]).

Let A’ denote the dual space of the Banach space A.

THEOREM 2.4 (The duality theorem). Let (Ay, Ay) be a Banach pair such
that A(A) is dense in both Ay and A,. Then, for 1<g< o0,

(AO’Al);,q = (A;b ,l)ehq'a
where 0, (t)=1/0(1/t) and (1/9)+(1/q)=1.

Proor. This can be carried out by generalizing the proof in [3, p. 54].
See also [4, p. 188]. Much more general versions of Theorem 2.4 can be
found in [6, p. 19] and [11].



206 LARS ERIK PERSSON

3. Lemmas.
Let L (w), 0<p < 00, w =w(x) 2 0 denote the space of all functions f (x)
on a measure space (R, u) satisfying ({,(l f (x) (x))? du(x))'? < 0.

Lemma 3.1, If 0<p< oo and ¢ € Q(0,1), then
(3.1) (Lp(w())’Lp(wl))o,p = Lp(wo/Q(wo/w1)) .

REeMARK 3.1. The following complement of (3.1) holds: If 0<p,g< o0
and y=1/q—1/p then, for sufficiently small ¢>0,

ﬂ Lp(wo/(Q(wo/w1)‘/’y(wo/w1)))’ if g>p,

veQ,

(3.2) (L”(a) ), [P (w ))0, =
’ e .pleJQ L"(wo/(g(wo/wl)lll’(wo/wl))), if g<p,

where Q, is the class of functions ¢ satisfying y € Q[;e,a] and
fe vy tdt=1.

(3.1) and (3.2) are special cases of Example 7.2 in [28].

LeMMA 3.2, Let 0<g< o0, 0<r<oo and Yy (t) € Q(—, —). Let h(t) be a
positive and nonincreasing function on 0, cof.

(@) If o(t) € Q(—,0), then

0 qjr 1/q © 1/q
(I, won( [ ewear ) §)" = o[} womewrg)’
(4] 0

(b) If @(t) € Q(0, —), then

® o dp \te © 1/q
(L («p(t))"(Jt (b ))"’“) "t)” < c( L ((p(t)h(t)l//(t))'l?)

(C depends only on q and the constants involved in the definition of ¢ and y.)

For the case g=r the lemma is a special case of the usual optimal
estimates by Muckenhoupt [21]. A proof of the general case can be found
in [29].

LEeEMMA 3.3. Let g4(t), 04(t), and g(t) be in the class Q(0,1) and put t(t)
=01(t)/eo(t).

a) Ift(t) e Q0, —) or t(t) € Q(—,0), then g,(t)=go(t)e(z(t)) € Q(0,1).
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b) Assume that t(t) is differentiable. Then t(t) € Q(0, — ) if and only if, for
some £>0,

t-7'(t)
(3.3) =0 =€

Proor. According to our assumptions there exists an ¢>0 so that
0;(t)t™° is increasing and g,(t)t~'*¢ is decreasing (i=0,1). Assume that
1(t)e Q(0,—). Then, in particular, 7(t) is increasing which, in its turn,
implies that ¢(z(¢))/z(¢) is decreasing and g(z(¢)) is increasing. We conclude
that

Ot = oy ()t T oe(r(®))/x(t)
is decreasing, and
Q2(t)t ™" = @o(t)te((2))

is increasing. Thus g,(t)e Q(0,1). The proof of the case when t(t)e
Q(—,0) is quite similar.

Assume that t(t) is differentiable. Then t(¢)t™* is increasing exactly
when ¢7(t'(t) —et(t)/t) 20 which, in its turn, is equivalent to (3.3). The
proof is complete.

LemMmaA 3.4. Let ¢(t) € @(0,1) and 6(t) € Q(0,1). Then, for every t>0,
we have a unique solution E=¢E(t), Y=y (t) of the system

¢ =9W)
G4 {v/ — (/%)
and £(t) € Q(0,1) and Y (t) € Q(0,1). Moreover, if ¢(t) in (3.4) is replaced
by ¢,(t)=¢(at), «>0, and if the corresponding (unique) solutions are
denoted E=¢&,(t) and Y =y,(t), then &, (t)=E(t) and Y () =Y (t).

Proor. We note that V,=D =10, oo[ and consider a fixed ¢ € 0, cof.
We use (3.4) and Lemma 1.1 (b) to see that Y =¢~!(¢) and

3.5) t =t =077 ¢.

Moreover, 67 1(t) e Q(1, —) and ¢~ *(£)/¢ € Q(0, —). By making some
straightforward calculations we can therefore conclude that
0~ 1(£)/¢) € QO, —). Thus (&) e Q(1, —). We define £(t) as the
(unique) inverse of £(¢) and use Lemma 1.1 (b) once more conclude that
£(t)eQ(0,1). We put y=y(t)=0(t/E(t)) &(t). Tt is easy to see that
¥(t)eQ(0,1).
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Now we assume that {=¢,(() in (3.4) so that ¢ =(1/a)¢p~1(£). The
corresponding function in (3.5) is

(3.6) ta(8) = 6071 ((L/m)p ™1 (£)/E) ¢

Since 6 € Q(0,1) we have the estimate 6! (t)~6~'((1/a)t). Therefore, by
(3.5)-(3.6), t, (&)~ t(£), which, in its turn, implies that & (t) = E(t) (&,(t) is
the inverse of t,(¢)). Finally, we have

Va0) = 297HE0) & 67X (&) = $7H(E0) = ¥0).
This completes the proof.

4. Reiteration and Holmstedt’s formula,

We use the notation o= (x,), for any sequence with Z as index set. By
1*(w), where w=(w,),, we denote the space of all sequences a={(x,),
such that

) 1/q
(Z lozva)J") < ©
-

(M(w) is a special case of LY (w).)
Let E be an interpolation space with respect to the pair

T = (l°°,l°°((2“')v)).

Then we say that a € Ap. x whenever (K (2, a, 4)),l ;< oo. The following
important theorem has independently been found by Brudnyi-Krugljak
[4] and Nilsson [22, p. 301].

THEOREM 4.1. Let A= (Ao, A;) be a quasi-Banach pair and E= (E,E,)
any pair of interpolation spaces between 1. Then, for all t >0 and a € Z(4),

4.1) K(t,a,A x, A .x) ~ K(t,(K(2",a,4)),,E) .

‘REMARK 4.1. The assumption E;=Z2X¢,, i=0,1, used in the original
proof in [22] is superfluous.

In particular, the assumptions in Theorem 4.1 are obviously satisfied
when E;=[%w;), where w;=(1/g,(2")),, i=0, 1. Moreover, for this case we
have Ay x=4, ,i=0,1. We conclude that the formula (4.1) carries the
followmg reiteration information:
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ProrposiTiON 4.1.

(Zeo,qo’ Ael,ql)e,q = Ag.
where
E = (1%(w,),19(w,)),, and o; = (1/¢;(2")),, i =0,1.

Proposition 4.1 implies that our general interpolation problem is
reduced to interpolation between weighted /P-sequences. Unfortunately,
for the general case such descriptions can be rather complicated (see [27],
[28] and the references given there). However for some (diagonal) cases
we have very simple descriptions. For example, if ¢(t)=¢® and qg=gq, we

have
1Yy
= 14 2:)
“(@),), a, (QO(T)) (91(2")>

(see [3, p. 119]). Thus we have

ExampLE 4.1.

4.2) A = A4, ., Where ¢ = 057%] .

Qo,‘lo’A(?h‘h)o,‘h

REMARK 4.2. For the special case gq(t)=0,(t)=t% the formula (4.2)
reduces to the reiteration formula (see [3, p.51])

(Zoo,‘h’ Z()o,q,)g,q, = Zoo,% :
By using Lemma 3.1 we also obtain

ExaMPLE 4.2. (4, A, o =4, o Where e2=00/0(e1/00)-

By using Remark 3.1 and other descriptions obtained in [27] and [28]
we can _in the same way obtain concrete descriptions of the spaces
(A eorae Aou.a)0,q fOT all cases even when we do not impose some a priori

“separation condltlon between the parameter functions g, and g;.
However, these descriptions will be too complicated for our purposes so
we shall in the sequel assume that z(t) € Q(0, —) (or r(t) € Q(-,0)),
where 1(t)=0,(t)/0o(t). (This restriction corresponds to the usual
condition 8, #+0, in the parameter case, see [3, p. 50].)

We also remark that the celebrated Holmstedt’s formula (see [10]
or [3, p. 52]) is another consequence of Theorem 4.1 (see [22]). More
generally, we can state
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ProrosiTioN 4.2. Let 1(t)=0,(t)/0o(t). If ©(t) € Q(0, —), then

K(t’a’AQm‘lo’AGn‘h)
"0 (K (s,a, A)\%ds /2 d (K(s,a,/T) 91 ds \ Vs
~ — — +t —_— — ,
0 20(s) s n() 21(s) s

where n(t) is the inverse of t(t).

@.3)

Proor. The proof only consists of modifications of the arguments used
by Nilsson [22, pp. 310-311] for the (Holmstedt’s) case g,(t)=t%, i=0, 1,
so we omit the details.

REMARK 4.3. According to Proposition 1.3 (a) we see that Proposition
4.2 implies the corresponding result by Heinig [9, Theorem 2.1]. (The
proof in [9] is carried out on the model of Holmstedt’s original proof.)

ReMARK 4.4. For the extreme cases the formulas corresponding to (4.3)
read:

n(t) W\ 4 1/q
- K(s,a,A)\T ds\ /%
4.4 K(t,a,A, ,A) =~ ) -] ,
wo  weadyn s ([T (ERE0)S)
where #(t) is the inverse of t/g,(t), and

- - ® (K(s,a,A)\* ds Va,
4.5) K(t’“’AO’Aa.,q,)~‘(J <_é.1(_s)__) .5_) ,

n(t)

where 7(t) is the inverse of g, ().

We remark that in [22] we can also find a (reiteration) formula for the
J-functional (corresponding to (4.1) for the K-functional). Moreover, the
reiteration results formulated in [22] are much more general (but also
more intricate) than our next proposition too.

ProposITION 4.3. Let Ay, Ay, Xy, X, be quasi-Banach spaces such that
A(A)=X,;=X(A), i=0,1. We put

2:(t) = Qo(t)Q(Qx (t)eo(®) ,
03(t) = eo(t)e(t/eo)) ,
ea(t) = ele:(®))
and assume that X, is of the class C(g;, A), i=0, 1, respectively. Then
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(4'6) (XO’Al)q,q = (AO’AI)QS,Q >
4.7) (AO’Xl)q,q = (Ao,Al)qu s

and, if in addition t(t)=g,(t)/e,(t) € Q(0, —), then
(4.8) (X0, X1)g,q = (Ao, A1)y, 4 -

REeMARK 4.5. For the Banach case a direct proof of the formula (4.8) has
been carried out by Gustavsson [7]. This proof can be carried over to our
quasi-Banach case without difficulty (we can use Lemma 3.2 instead of
Minkowski’s inequality). Also the formulas (4.6) and (4.7) can be proved
by using the method by Gustavsson (g, (t)) corresponds to ¢ in the proof of
(4.6) and g, (t) corresponds to 1 in the proof of (4.7)). Finally we notice
that, by Lemma 1.3 and Lemma 3.3, it is no real restriction to prove
Proposition 4.3 under the apparent more restrictive assumptions used in
[7]-

REMARK 4.6. If X; is (only) of the class Cg(g;, 4), i=0, 1, respectively,
then the formulas (4.6)-(4.8) hold with “="" replaced by “ < ”. Inclusions
in the opposite direction hold when X; is of the class C;(g;, 4), i=0,1,
respectively. These statements follow at once by analysing the method in
the proof in [7].

Remark 4.7. The formula (4.8) holds as well when the condition
7(t) € Q(0, —) is replaced by the “symmetric” condition 1/z(t) € Q(0, —).
This fact follows from the following elementary calculation:

(XOsXI)a,q = (XI,XO)Q*,q = _Q;,q »
where
0*(t) = te(1/t)
and
e3(t) = 21()e*(eo(®)/e: () = eo(t)ele: (1)/eo(t)) -
In partiéular for our test case g;=t%, i=0,1, we only need to impose the
usual restriction 6, +6,.
According to Example 2.1 and Remark 4.7 we also have

COROLLARY 4.4. Let ¢;(t), i=0,...,4, be defined as in Proposition 4.3.
Then
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(4.9) (Zgo,qo’Al)th = 03,9

(4.10) (Ao:Zg,,q,)a,q = ‘Zeuq’

and, if in addition g, (t)/2o(t)€ (0, —) or g,(t)/e, (t)€ Q(0, —), then
4.11) Ay a0 Apraea = Agra

ReMARK 4.8. By comparing with Example 2.2 we see that Corollary 4.4
and Theorem 4.3 are in fact essentially equivalent.

REMARK 4.9. For the case g< oo Heinig [9, Theorem 2.2] has carried
out another proof of the formula (4.11). A much more elementary proof of
this kind (of all formulas in Corollary 4.4) can be obtained by using the
(Holmstedt’s) formulas (4.3)-(4.5), making a change of variables (u=1(t))
and applying Lemma 3.2 in a suitable way. Moreover, according to the
description

(l«@_%ﬂ)) : ((a“(l‘z—)))) = K@),

where @, =1/04(2")e(¢,(2")/0(2")), which can be deduced from the general
descriptions in [28], we can also consider the formula (4.11) as a special
case of Proposition 4.1.

5. Wolff’s theorem.

In this section we assume that 4;, i=1,2, 3,4 are quasi-Banach spaces
satisfying A, N A,< A, N A;. Moreover, let 0(t), ¢(t) € Q(0,1) and let
£(t), ¥ (t) denote the unique functions in the class Q(0,1) satisfying

t
V) = O(Z@)ém and £() = (¥ (1)).

(See Lemma 3.4.) We can state the following dual propositions.

PROPOSITION 5.1. If A, is of the class Cx(¢(t), Ay, A3) and A, is of the
class Cx(0(t), A,, As), then A, is of the class Cx(£(t), Ay, A,) and A, is of
the class Cg(y(t), Ay, As).

PROPOSITION 5.2. If A, is of the class C,(¢(t), A, As) and A, is of the
class C(0(t), A3, As), then A, is of the class C,{¢(t), Ay, As) and A is of the
class CAy(t), A, As).



INTERPOLATION WITH A PARAMETER FUNCTION 213

REMARK 5.1. According to Example 2.2 we see that Propositions 5.1
and 5.2 coincide with Corollaries 2 and 1, respectively, in [12, pp. 288-
289] for the case when A4;,i=1,2, 3,4, are Banach spaces and 0(t)=1%, ¢(t)
=t%, Y(t)=tY, and E(t)=t°.

We can now state the following more general version of Wolff’s
theorem (see [33]).

THEOREM 5.3. Assume that Az = (Al’ A3)¢(t),p and A3 = (Az, A4)0(‘),q-
Then

A, = (AI’A4)§(I),p and A; = (A1,A4)w(t),q .

Proor. Our assumptions imply that A4, is of the class C(¢(t), 41, 45)
and A; is of the class C(0(¢), A,, A4). Therefore we can use Propositions
5.1 and 5.2 to conclude that A, is of the class C(£(t), 44, 44) and A, is of
the class C(y/(t), 41, A4). Thus we can use (4.7) and (4.6) in Proposition 4.3
to conclude that

Az = (AlaA3)¢(t),p = (A1aA4)¢(¢(r)),p = (A19A4)§(t),p
and
A3 = (A27A4)0(!),q = (AI’A4)§(t)0(1/§(t)),q = (AI’A“')'I’(')JI 4
respectively. The proof is complete.

For the case when 4;, i=1,2,3,4, are Banach spaces the proofs of
Propositions 1 and 2 can be carried out by generalizing the arguments in
[12] as indicated in [12, pp. 289-290]. The proof of our more general case
can be carried out by generalizing the original arguments by Wolff in a
suitable way.

Proor or ProrosiTiON 5.1. According to our assumptions we can
choose a}, i=1,2,3,4, so that a=a}+al, aj=al +aj,

lasl ., +ullaill,, < co@lal,, ,
and
laill, +vlladll,, < Co@)latl,, < Co@POWal ,, .

In particular, we find

(5.1) la3l,, < Co@ 22l ,
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and
(52) ”ﬁhﬁd%ﬂm§({mwﬂw+£%§hhf

Let o be a small positive number which we shall define exactly later on.
For every t>0 we can easily see that the system

o =1t
(5.3)
[O(u)fg =

has a unique solution u=u,(t), v=v,(t). We put ¥ (t)=av,(¢) and &,(t)
=¢((1/a)y,(t)). Then, by (5.3), we find that &,(t), Y,(t) is the unique
solution of the system

[61“) = ¢1/a('/’a(t))
t

mm=0G?ﬁam,
where ¢, (t)=¢((1/x)t). Moreover, by Lemma 3.4, &, (t)~&(t) and

Y. )=y (t).
We combine (5.1)—(5.3) and obtain

laill ., = Callall,,
and
latl ,, +eladl,. < 2Cy,@)lall,, .
Following Wolff we now use the same arguments with a replaced by aj}.

Then, recursively, we obtain, for n=1,2,3,..., af € 4;, i=1,2,3,4, so
that .

(5.4) a=a+y A+ ¥ i,
k=1 k=1
where
(5.5) "a’;"A3 =< (oeC)""allA;
and
(5.6) lagl,, +elagll,, < 2C(Cay~ g, ()l ,, .

Since 4, and A4, are quasi-Banach spaces there exists a A=1 so that
(5.7

[
PIA

< Y wlal,, .
n=1 n=1

iﬂugﬁmw@am
4,

n=1 n=1 A,
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Nowweputa; =) > a}and a,=) &, a} and fix a so that Cald < 1. Then,
by (5.4)-(5.7), we conclude that a=a, +ay, a, € A;, a, € A,, and

laill 4, +tllasll,, < 24C ‘_Z_O (Cad) Y, ()l all 4,-

Moreover, ¥,(t)~y(t), so we have proved that A; is of the class
Cx(¥(),A;,A,). In a similar (symmetric) way we can prove that A, is of
the class Ci(£(t), 4, Ay). This fact can also be seen by observing that, by
hypothesis, 4, < (41, 43)y0, and thus, by reiteration (see Remark 4.6
and (4.7)) we find Azc(Al,A4)¢(¢(,»’w. Therefore A, is of the class

CK(& (t)’ Al ’ A4)'

Proor oF ProposiTiON 5.2. Let a € A; N A4. Then, by our assumptions,

“a||Az < C||a||A’/¢(||a||Al/!|a||A3) ,

A

and

A

lall, < Clall, fo(lall /lall ) .
Since t/60(t) is nondecreasing we therefore obtain
(5.8) lall,, £ Collal,/N(a),

where C, is a fixed constant and

N(a) = ¢(||al|Al/”a“As)'(}(”a”Al/("a” A‘-¢(||a|lA‘/“a||A3))) .
It is sufficient to prove that (5.8) implies
(5.9) ||a||A3 < C"a"Al/|/1(||a||A1/||a||A‘) .

We assume the contrary and choose a large constant C, and an element a,
so that
Ylagh , lagh,) = C,(lagl, flaoll ) .
We put vy=lla,l 4/ lla,l Ap Yo= lagl A,/”ao" 4, and
(5.10) Y (wo) = Cauyp .

According to our assumptions we also have, for some ¢, 0<¢<1/2, and
every ¢, 0<c<l,

Cl—e § ¢(Ct) é ct and cl-—a é _%;Ez § ct .

o) 6(t)
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Thus
P (uo) = H(L/C2W o)) = (1/C2)' ~*d(¥ (vo)) = (1/C,)' ~*¢(vo) ,

and, since 0(t)t~! is decreasing,

¢ (“0)9(1’0/ ¢ (“o)) = (1/ Cz)l Y (00)0(C§ "o/ (Uo))

2 C5 =9 (we)f(vo/E (o)) = C3** ™ (v) .
Therefore, by (5.8),
Y (o) S Co CH = ug .

This inequality contradicts (5.10) as soon as C,>C¥®~¢), Thus (5.9)

holds and the proof is complete.

6. Interpolation between Lorentz spaces.

For the measurable function a on a measure space (2, u) we define the
nonincreasing rearrangement a* in the usual way (see e.g. [3, p. 7]). The
Lorentz space A%(p), 0<q < 00, ¢(t) 20, is defined to be the collection of
all functions a satisfying

! dt\'"
lall gsg) = (J (@ @®e @) T) <o,

o
where |=m(f2) and with the usual interpretation of the integral when
g= 0.
It is well-known that, for 0<p< oo,

t? 1/p
(6.1) K(t,a,[?,L°) ~ ( I (a* @) du)
0

(see [14] or [3, p. 109]). Thus, we find

© t /P e \1/a
lall gy o), = (L ( o )(ﬁ (a*(u))"du>" “f‘) .

BybLemma 1.1 we see that 1/g(t*/?) € Q(—1/p,0). Therefore, by Lemma
3.2 (a) and the trivial estimate

t
f (@ @pPdu 2 fa* @Y ,
1]
we obtain
Lemma 6.1. Let 0<p<o0, 0<gq< 0 and ¢ € Q(0,1). Then
(LP,L®),,q = A%t ?/o(t'7)) .
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REMARK 6.1. According to Proposition 1.3 (a) we see that Lemma 6.1
implies Theorem 1.3 in [9] and Lemma 3.1 in [7].

ProposiTiON 6.2. Let ¢;(t) € Q(0, —), i=0,1, and 0<p<oo. Then
(a) (Aq"((Po),Lw)q,q = Aq((P) ’

where ¢ (t)=,(t)/e(¢o(t))-
(b) If, in addition ¢(t) € Q(0,1/p), then
(Lp,Aql((pl))q,q = Aq((p) ’
where @ (t)=t"?/o(t'/?/p,(t)).
(©) If, in addition @,(t)/@,(t) € Q(0, —) or @o(t)/e(t) € Q(—,0), then
(4%(00), 49(01)),,, = A%(0) ,
where ¢ (t)=o(t)/e(@o(t)/¢1(t))-

Proor. First we prove (c). Put g,(t)=t/p;(t?) and choose p so small that
2:(1)€Q(0,1),i=0,1. According to (4.11) in Corollary 4.4 and Lemma 6.1
we obtain
(Aqo((PO)’ Aql((pl))a’q = ((Lp’ Lw)eo,%’ (Lp’Lw)thl)Q»q

6.2)
= (L% L%)g0t0i/e0rg = A1(@)

where ¢ (t)=,(t)/e(@o(t)/@1(t)). In order to prove (b) we first note that,
by Lemma 1.1, the condition ¢,(t) € Q(0,1/p) implies that g,(¢)
=t/p,(t?) € Q(0,1). Therefore the proof follows as above by using
Lemma 6.1 and (4.10) in Corollary 4.4. In a similar way we see that (a) is
an easy consequence of Lemma 6.1 and (4.9).

ReMARK 6.2. The formula in (c) can also be found in Theorem 4.4.1 in
[20]. However, our separation conditions are somewhat less restrictive.

Finally we shall give two examples which in particular proves that our
method can be used even when we have no a priori separation condition
between our weight functions ¢, and ¢,.

ExampLE 6.1. Let ¢; € Q(0, —), i=0,1. Then
(Aq(‘Po)a Aq(q)l))q,q = Aq(‘P) ’

where ¢ (t)=o(t)/e(@o(t)/@1(t)-

According to the calculations (6.2), Example 6.1 is a consequence of
Example 4.2 and Lemma 6.1. Similarly, in view of Example 4.1, we obtain
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ExAMPLE 6.2. Let ¢; € Q(0, —), i=0,1. Then
(4000 A% (01 = 4%(05'91) .

REMARK 6.3. A much more general version of Example 6.2 can be found
in [30]. In particular, we have descriptions of the spaces
(A%(o), A%:(94))g,; also for the most troublesome case when g +q, and

=¢, (or @, is only “close to” ¢,).

Finally we notice that
AP (1 +llogd)?) = L»9(logL)*,

where L”%(logL)* are the (Lorentz-Zygmund) spaces introduced and
carefully studied by Bennett-Rudnick [2]. These spaces represent a
natural scale of spaces, which generalizes the usual LP-, L”%, and
L*(log* L)"-scales of spaces (if u(2) < oo, then L”?(log L)* = L”(log L)“")
In particular, these observations prove that Example 6.2 implies
descriptions in [1] and [7, p. 304]. Compare also with [8, p. 49]. In the
same way we see that the description in [19, p. 278] is a special case of part
(c) of Proposition 6.1.

7. Interpolation between the sum and the intersection.
Per Nilsson has (in a private communication) pointed out to me that
estimate (4.1) also implies the following nice information: If 0<t<1, then

(7.1) . K(t,a,2(4),4(4)) ~ K(t,a,A)+tK(t"',a,A4)
and
(7.2) K(t,a,Z(A),A,) ~ K(t,a,4) .

Elementary proofs of these formulas have also been carried out by
Maligranda [17] (in fact, it is proved in [17] that for the Banach case (7.2)
holds even with & replaced by =).

By using (7.1) and an elementary argument we find that

Nalltz ), acay,.,

- K(t,a,A)+tK(t™1,a,A) 4dt
~ L( e(t) ) T KLa ,A‘)j (a(t))

Thus, we easily obtain the estimate
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"a"(z(;w(g»”
« ([ (KeaD\de\e ([ (K(t,a, D\ dr\s
0 e(®) t 1 0*(t) t]

where ¢*(¢)=tg(1/t). We can use (7.2) in a similar way to see that
laloo o~ [ (KEa A\ de\e
EDA |\ Jo "o )

llal (2(D),40) 0.q

N 1(tK(t",a,Z)>"£i£ e w(K(t,a,Z))«g_t_ g
“\Jo e(t) t A\ e*(®) t )

In particular, we have

(7.3)

and

Proposition 7.1.
(Z(Z)’ A(E))q,q = (Z(Z)a AO)q,q n (Z(Z)9A1)a,q .
At least for the Banachcase we also have the relations

= Apg N Ay, and  Apsonq = 4ot A4

Amin (@,00),9

See [S, p. 169]. Therefore, by (7.3), we also obtain

PRrOPOSITION 7.2. Let A= (Ay,A;) be a Banach pair and 1<q< 0. If
2 € Q(0,1/2], then

(Z(A),4(4),, = Ay g+ Apy
and
(E(Z),A(Z))Q*,q = ZM N ZQ*,q.

RemARk 7.1. According to our Proposition 1.3 we see that this is just

another way of formulating Proposition 3 in [18].

In view of (6.1) another consequence of (7.3) is that
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, "a" (LP+L>,L*NL™),,

1 1 9/t . ap d¢

(7.4) ~ J‘o (m> (J:) (a (u))" du) T
@ 1 q t . ar 4t

+J‘1 (~———U——Q*(t p)> (L (a*(w)) du) <

If o(t)=(e(t'/?))"!,0<t<1,and ¢(t)=(g*(t"/?)) !, 21, then it is easy to
see that ¢(t) € Q(—1/p,0). Therefore we can apply Lemma 3.2 to the
estimate (7.4) and get the following

ExampLE 7.1. Let 0<p< o0, 0<g< o0 and ¢(t) € Q(0,1). Then
_ (LP+L>, L7 N L®), , = AYt'P/o,(t'7)) ,
where g,(t)=0(t) if 0<t<1, and g, (t)=0*(t) if t21.

RemArk 7.2. Example 7.1 ought to be compared with Lemma 6.1.
Moreover, if @€ Q(0,1/2], then ¢,(t)=max(g(t),e*(t)) and if
e € Q[1/2,1), then g, (t)=min (g(t),e*(t)). Thus Example 7.1 is a special
case of Proposition 7.2 in these cases.

8. Concluding remarks.
Iet I1P(A,w) denote the space of A-valued, strongly measurable
functions a(x) on a measure space (2, u) satisfying

( f ("a(x)luw(x))"du(x))”" <o,
Q

In particular, if w(x)=1, 2=10, co[ and du(x)=dt/t (where dt denotes the
Lebesque-measure) then we have the spaces denoted LZ(A) in the
literature.

We remark that our descriptions (3.1) and (3.2) are special cases of the
general descriptions of the spaces (LP°(Ao, w,), LP1(4;,®,)),,, (and more
general spaces of this type) which have been obtained in [27] (the case ¢(t)
=17) and [28]. We emphasize the fact that we need not here exclude the
troublesome (off-diagonal) case when gq+p,. We say that a(x) belongs
to the (Lions—Peetre) generalized ‘“‘space of means” and write

a(x) € S(Ag, A1, po,P1,0(t)), whenever
141 )1/1’0
< 00 .

ao(t)
e(®) LE(Ay)

Po a,(t)

e(t)/t

mn
a=ay(t)+a,(t) LR (4y)
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We can generalize the proof in [3, pp. 71-72] and obtain at least the
following connection:

ExampLE 8.1.

. 1/ps
Sléos A1popi0) = (b p) ™
Q1> 1

where o, (t)=(e(h~*(¢)))P and h~*(¢) is the inverse of h(t)=(g(t))Po~Pit:.

REMARK 8.1. In the case when p,=p,=p we have g,(t)=(o(t'/?)).
Therefore, by Theorem 2.3,

S(Ao, A1, p,p,0(1) = (Ao, A1)gq), p -

In the case when p, % p, we can only get a more complicated description by
using the K-functional (see Remark 2.1).

ReEMARK 8.2. The spaces S correspond to the K-method. In a similar
way we can generalize the (Lions—Peetre) spaces S which correspond to
the J-method. Moreover, we can generalize the proof in [3, p. 70] to see

that S =S in this case, too.
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