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QUASICONFORMALITY OF PSEUDO-CONFORMAL
TRANSFORMATIONS AND DEFORMATIONS
OF HYPERSURFACES IN C"*!

ANTONI PIERZCHALSKI

Summary.

Quasiconformality (with respect to a Riemannian metric generated by a
contact form and the natural complex structure) of pseudo-conformal
transformations and deformations of a real hypersurface of codimension
1in C"*! is investigated.

Introduction and outline results.

Conformality and holomorphy have the same source: complex analytic
transformations in the space C!. Biholomorphic transformations of
several complex variables are no more conformal with respect to the
Euclidean metric. Yet, in multidimensional spaces there are relations
between the two notions. In particular, there are metrics with respect to
which every biholomorphic transformation is conformal. The Bergman
metric is an example. Also in the case of real hypersurfaces of real
codimension 1 in C"*! there are relations between conformality and
biholomorphy. Under suitable assumptions (formulated below) a
hypersurface M in C"*! can be endowed with a contact metric structure
(contact structure is an odd dimensional analogue of the complex
structure). The requirement for a transformation of a contact metric
manifold to be conformal implies very strong restrictions (cf. [12]). The
situation is different if we require conformality on some distribution 2
only. The distribution 9 of real dimension 2n is defined as the assignment
to every point of M the maximal J-invariant subspace of the tangent space
at this point. Some information on transformations which are conformal
on a distribution one can find in [11]. ,

In this paper we construct a Riemannian metric on a real hypersurface
M in C"*! with the property that every transformation of M locally
extendable to a biholomorphic transformation of a neighbourhood of M
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in C"*! is conformal on the distribution 2 (Lemma 1). The Riemannian
metric is generated by a contact form # on M and the natural complex
structure J in C"*!, We also study conformality, or more generally,
quasiconformality of pseudo-conformal transformations, i.e. transfor-
mations of M which preserve the distribution 2 and whose differentials
commute with J. It is well known that under some smoothness conditions
pseudo-conformal mappings of a hypersurface M contained in the
complex space C"*! have biholomorphic extensions to a neighbourhood
of M in C"*!. In this sense they are restrictions of biholomorphic
mappings of domains in this space. Many important properties of pseudo-
conformal mappings can be found in [6], [7], [10], [5], [8] and [13]. We
study geometrical properties of pseudo-conformal transformations and
estimate their rank of quasiconformality (Theorem 1).

For pseudo-conformal deformations Z (which are infinitesimal versions
of pseudo-conformal transformations) we find the precise form of Ahlfors’
operator SZ (Lemma 2) and observe that its restriction to the complex
distribution 2 has a particularly simple form. Namely, it is a multiplicity of
the Riemannian metric tensor (Corollary to Lemma 2). Finally we estimate
the rank of quasiconformality of a deformation Z (Theorem 2). Pseudo-
conformal deformations of domains in the Euclidean space R¥, k> 2, were
systematically investigated by Ahlfors in [1], [2], [3].

All manifolds and mappings in this paper are assumed to be smooth, i.e.
of the class C*.

1. Hypersurfaces with contact structures in C"*!,

By a hypersurface in C**! we mean an oriented real submanifold of
dimension k=2n+1 in C"*!'=R2"*2, For every point p of such a
hypersurface M we denote by T,M the tangent space of M at p. Of course
T,M is a vector subspace of the vector space T,C"*!=~R?"*2 In T,C***
we have the natural complex structure J. Consequently, in T,M we can
distinguish the unique J-invariant subspace 2, of dimension 2n.
Obviously J, restricted to the linear space 2, is a complex structure in
this space, which we also denote by J. The assignment p — 9, defines a
distribution 2 on M, which will be called the hyperdistribution with
complex structure [13]. Because M is oriented there is a family H of
1-forms n on M which annihilate 2, that is which satisfy the condition

1) 7(X) =0 ifandonlyif X9

for all vector fields X on M, where the inscription X € 2 means X €9,
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for every point p € M. Every two forms from H differ by a (multiplicative)
non-vanishing function.

Assume that among the forms of the family H there exists a contact
form, i.e. such a form # that the condition

@) nA@n)+0

holds. For exarﬁple, if M is a smooth boundary of strictly pseudo-convex
domain such a form always exists.
Now fix such a form 5. The conditions

3) n€) =1 and dn(¢,X) =0, XeZM)

where 4 (M) denotes the family of all smooth vector fields on M, define a
unique vector field £ on M. Next define the tensor field fon M (being a
counterpart of the complex structure) of the type (1,1) as follows

4 fX =JX-nX)), XexXM).
It is easy to see that the system (f, &,n) satisfies the following conditions:

5) fP=-I+n®¢ ) =1, fo&=0 nof=0,

where I is the identity operator.
Define the Levi form G on M being a tensor field of the type (0,2) as
follows:

(6) GX,Y) =dn(fX,Y), X, YeZM).

Then G is symmetric. Indeed, first assume that X,Y e 2. By the
integrability condition for J in C"*! ([-,-] is the Lie bracket):

[JX,JY]-[X,Y]-J[X,JY]-J[JX,Y] = 0,

J-invariance of 2 and the fact that f X =JX (compare the definition (4))
we get

rX, fY]-[X, YI-f[X, fY]-f[fX,Y] = 0.
Consequently,
n((fX, fY]D = n([X,Y])
Réplacing Y by fY we obtain
n([fX,Y]) = n([fY,X])
which follows that
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) G(X,Y) = G(Y,X).

Now assume that X and Y are arbitrary vector fields belonging to
& (M). Then we can write

X = Xg+n(X),, Y=7Yu+n(Y),
where X 5, Y, € 9. By the second part of (3) we obtain
a(fX,Y) =dn(fX,, Yy)

and, consequently, (7) holds also in the case of arbitrary fields
X,Ye (M)

Suppose that the form G is positively defined on 2, that is that for any
point p € M and any vector X, € 9,, X, 40, we have G(X ,, X ,)>0. Then
the tensor field g of the type (0,2) defined on M by the formula

@®) gX,Y) = GX,Y)+n(X;n(Y), X,YeZ(M)

is symmetric and positively defined, and thus can be regarded as a
Riemannian scalar product on M.
Observe that

n(X) = g(X,?%)
and

which together with conditions (5) say that the system (f,&,7,g) is a
contact metric structure on M (cf. [4]).

In this way, a contact form on a hypersurface M in C**! may generate a
Riemam}ian scalar product g on M. We are going to investigate
conformality or — more general — quasiconformality (with respect to g) of
transformations and deformations which have holomorphic extensions
from M to domains of the ambient space C"*1.

2. Quasiconformality of pseudo-conformal transformations.
Assume that M and g are as above. Let F: M —- M be a
transformation, i.e. a smooth diffeomorphism of the manifold M onto

itself.
_F is said to be a pseudo-conformal transformation if it satisfies the

following conditions (cf. [13]):
o) DFXe? ifandonlyif Xe9,
(10) DF(JX) = J(DFX) forXe 2.
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It is well known that under some smoothness conditions pseudo-
conformal mappings have biholomorphic extensions to some open
neighbourhoods of M in C"*!. In this sense they are restrictions to M of
biholomorphic mappings of domains in C"*!,

Now we are going to study some geometrical properties of pseudo-
conformal transformations of a hypersurface M with a metric g
mentioned above.

We are interested especially in deformations of angles, and then we are
going to estimate the rank of quasiconformality. To this purpose let us
introduce the notion of quasiconformality.

Let M be a Riemannian manifold of dimension m with a metric tensor g.
Let F: M — M be a transformation. We say that F is a K-quasi-conformal
transformation, 1 < K < oo, if the norm ||BF| of the tensor field BF is
bounded on M by K (cf. [9]), i.e. if

(11) IBYl < K, peM,
where the tensor field BF of the type (0,2) is defined as follows
(12) BF(X,Y) = g(JFY™DFX,JFY™DFY) X,Ye X (M)

(J is the Jacobian of F), and where the norm || B, |l of the tensor field B at
p is defined as follows

IB,Il = suplB,(X,, X, )" .

The supremum is taken over all vectors X, € T,M with the length not
greater than 1, i.. all vectors X, satisfying | X | =g(X,, X,)'?<1.

A transformation F: M — M is said to be quasiconformal if it is K-
quasiconformal for some K.

For a geometrical interpretation of the above definition there could be
shown that quasiconformal transformations map infinitesimal spheres
onto infinitesimal ellipsoids with bounded ratio of the greatest semiaxis to
the smallest one in the whole manifold. Consequently, “a deformation of
angles” is also bounded. This explains the name of the transformations.

More detailed information on quasiconformal transformations on
manifolds may be found in the paper [9].

Now we are going to investigate how pseudo-conformal transfor-
mations change tensors 7, &, f, G and g.

Let M be a hypersurface in C"*! and (f,&,n,g) be as before. Let
F: M — M be a pseudo-conformal transformation.

Let F*n be the 1-form on M defined by

F*y(X,) = n(DFX,), X,eT,M .
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By the conditions (1) and (9) we get that there exists a non-vanishing
function a on M such that

(13) F*n = an .

If we now consider the vector field DF¢ and decompose it onto the sum of
two orthogonal terms such that one of them belongs to 2 and the other is
parallel to £, then, by the first condition in (3), we see that there exists on
M a unique vector field A belonging to 2 such that

DF¢, = a(p)epy+DF(fA,), peM.

Since for every vector field X the vector field X —#(X)¢& belongs to 9,
fl@=J and J commutes with DF on @ (cf. the relation (10)), then

(DF o f)(X}) = frnDFp(X ) +n,(X,)DF A, .
Consequently, we obtain the following relation
(15) DFo f = foDF+n® DF(A).

Relations (13), (14), and (15) enable us to get a transformation formula of
the scalar product g. Let us first compute, with their help, how the form dn
changes under the transformation F. For arbitrary vector field X and Y on
M we have

dn(DFX,DFY)°F = adn(X,Y)+dann(X,Y),
which gives the following transformation formula for dn:
(16) dn(DFX,DFY)°F = adn(X,Y)+da Ann(X,Y), X, YeZ (M)
or, shortly,
F*dn = adn+dann .

By (15) and (16), an analogous computation shows that for arbitrary
vector fields X and Y on M we have

G(DFX,DFY)°F =aG(X,Y)+da(fX)n(Y)—
—an(X)dn(4,Y) —da(A)yn(X)n(Y),

what, by the symmetry of G, implies
da(fX) = —adn(4,X)

a7

or, in particular
da(A) = —aG(A,A4).
In this way the formula (17) takes the form
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G(DFX,DFY)°F = a[G(X,Y)+G(fA,X)n(Y)+n(X)G(f4,Y)+
+G(fA, fAMXMm(Y)] .

Consequently, by (8), (13) and (18), we get the following transformation
formula for the metric g:

(19) g(DFX,DFY)°F = ag(X,Y)+a[g(f4,Xn(Y)+n(X)g(fA,Y)+

+ (Il A2 +a— 1) (X m(Y)]

or, equivalently, with the help of G:

g(DFX,DFY)°F = a[G(X,Y)+G(fA4,Xn(Y)+n(X)G(fA,Y)+
+(G(f4, fA)+apXn(Y)] .

It is easy to see, that if X and Y belong to 2, then

(20) g(DFX,DFY)°F = ag(X,Y).

19’

Consequently, we obtain the following

LemMA 1. Every pseudo-conformal transformation F: M — M is
conformal on the distribution 9, that is it preserves angles between vectors
belonging to 9.

Notice that the transformation formula (19’) will permit to estimate the
rank of quasi-conformality of a pseudo-conformal transformation F if the
Jacobian J of F is known.

To compute J take a point p e M. Since the vector field £ is orthogonal to
2 and | ¢] =1, then

Jr(p) = JDF = JDF |2, ‘a(p) .

But, by the formula (20), the Jacobian J DF,|9, of the linear mapping
DF, |@ (the restriction of DF, to 2,) equals a(p)" Consequently,

ey Telp) = a@F'*', peM.

In this way, for an arbitrary pseudo-conformal transformation F, we
express all transformation formulas through two parameters: the function
a and the vector field A (4 € 2), which are uniquely determined by F.
They will be called the characteristic parameters of F.

Now we shall estimate the rank of quasiconformality of F through its
characteristic parameters. We can prove the following



230 ANTONI PIERZCHALSKI

TueoreM 1. If F: M — M is a pseudo-conformal transformation such that
its characteristic parameters a and A are bounded from above and a is greater
than a positive constant on M, then F is K-quasiconformal, where

K < sup {[a(p)]” V4"~ 9[1+a(p)+14(p)I2]'3} .
peM

Proor. Let m=dim M =2n+1. By definition (12), we obtain
IBFI = IIDFIl/gkm

and it is enough to estimate the function | DFIl/J¥@"+D (cf. Definition
(11)). By the formula (19’) we obtain

g(DFX,DFX)°F = a[G(X,X)+2G(fA, X)n(X)+
+G(fA, fAM* X)+an*(X)], X eZM).

If we decompose X into two components X =X 5+ X, where X , belongs
to 2 and X, is parallel to £, then, by properties (3) and (6) of # and G,
and, by definition (8) of g we derive

IDFX|12o F = a[llX 51> +2G(f4, X o)l X, + (1412 +a)ll X, 112] .
2 2 4 ¢

Using the Schwarz inequality, we obtain
IDFX|> o F < a[(I Xoll + 1141 1 Xc1)*+all XI%].

Now, assume that | Xl =1. Since X, and X, are orthogonal, [1X,l?
+11X,I2=1. The maximum of the expression x + Ay with the condition
x2+y%=1 equals 1+ A2 Consequently,

IDFXII?oF < a[14+a+14l1?], Xex), Ixl =1.
This implies

IDFIl < a'?(1+a+114l2)4/2,

and then, by formula (21), we obtain
| DF|/JHm+ D < q=Yen*D (1 4 a 4] 4]2)72,
which is equivalent to our assertion.

3. Pseudo-conformal deformations.

Assume that M is a hypersurface in C"*! equipped with a system
(f,&,1,g) described above. Let Z be a vector field on the hypersurface M.
We say that Z is a pseudo-conformal deformation if the local group of
local transformations generated by Z is a group of pseudo-conformal
transformations.
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Similarly to pseudo-conformal transformations, the pseudo-conformal
deformations are, under some smoothness conditions, restrictions of
holomorphic deformations of a neighbourhood of M in C"*?* (cf. [13]).

It may be also proved (cf. [13]) that Z is a pseudo-conformal
deformation of M if and only if there exist a function « on M and a vector
field V belonging to 2 such that

@2) Lm=an, L= -d-fV. Lzf= -4QV.

The function « and the field V will be called the characteristic parameters
of the field Z.

We are going to estimate the rank of quasiconformality of Z. The
measure of quasiconformality of a deformation Z on a Riemannian
manifold M is the norm of Ahlfors’ operator SZ. SZ is a symmetric tensor
field of the type (0,2) on M with zero trace, being an infinitesimal version
(in the direction Z) of the tensor field B in the formula (12) defined as
follows

(23) SZ(X,Y) = (91X, Y)-—%ding(X, Y), X, YeZM).

We accept the following definition (cf. [9]).
A deformation Z on M will be called a k-quasiconformal deformation,
0k<oo,if

Iszll < k

on M.

It can be proved (see [9]) that every complete k-quasiconformal
deformation on a Riemannian manifold M generates such a one-
parameter family of transformations F,, te€ R, of M that F, is an
exp (3k?tl)-quasiconformal transformation. Of course, 0-quasiconformal
deformations are conformal, i.e. they are conformal Killing vector fields.

The formula (22) enables us to express SZ in a form which will be
convenient to estimations. Let us first compute &£ ,G:

Z,6(X,Y) = aG(X, Y)+da(fX)(Y)—n(X)dn(V,Y) .
By the symmetry of G we obtain

da(fX) = —dn(V,X).
Consequently,
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Z6(X,Y) = aG(X,Y)—[n(X)dn(V, Y)+n(Y)dn(V, X)]
= aG(X, V)+[n(X)G(fV,Y)+G(fV,X)n(Y)] .

Next, by (21), we obtain
divZ = (n+1)a .

Finally, by the two last formulas and the definition (23) we derive

SZ(X,Y) = aG(X, Y)+2an(X)n(Y)—

gnilag(X Y)+n(X)g(fV,Y)+g(fV,X)n(Y)

~ +13(X Y)+an(Xn(Y)+n(X)g(fV,Y)+

+g(fV, Xm(Y) .
In this way we proved the following

LemMA 2. If Z is a pseudo-conformal transformation of a hypersurface M
in C"*! and a, V are its characteristic parameters, then

24 Sz = -5 +1g+an®n+n®g(fV )+g(fV, )®n .

COROLLARY. If M and Z are as in Lemma 1, then for all vector fields X,Y
belonging to 9

SZ(X.,Y) = - 227X, 7).

T 2n+

We can now estimate the norm of SZ. Namely, we shall prove the
following:

THEOREM 2. Let M be a hypersurface in C"*1. Every pseudo-conformal
deformation Z of M with bounded characteristic parameters and V is a
k-quasiconformal deformation, where

k 2n 172
< Sup (mldl + || V") .
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PROOF. Let X be a vector field on M with the property | Xl =1. Then
X=Xg+X,, where X4 belongs to 2 and X, is parallel to . Of course,

(25) IXgl2+1X,12 = 1.
By the formula (24) in Lemma 1, we obtain

SZ(X,X) = — ‘2“ni+T +al X 2 +20x,lg(fV, X5) .

Using the Schwarz inequality and taking the supremum over all X
satisfying (25), we derive

1/2
Iszl _S_.( 2 |a|+||V||)

2n+1

which, by the definition of quasiconformality of the deformation Z,
completes the proof.
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