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NEARNESS OF CONTINUED FRACTIONS
LISA JACOBSEN

1. Introduction.
We shall study continued fractions

a, a a, a,
1.1 K2=21 2 =1 .
(. b, by +b, +... b+ a, > @7 0,a,b,€C
1

b2+.'.

(The restriction to complex elements a, and b, is not severe. If a, and b,
are complex functions of one or several variables, we can investigate K(a,/b,)
pointwise. Moreover, the considerations in this paper are not altered if we
replace (C, |- |) by some other normed field (F,||-||). F could for instance be
the field of all memorphic functions.)

The purpose of this paper is to investigate the question: To what extent
will “nearness” of two continued fractions K(a,/b,) and K(d,/b,) imply
“nearness” of their properties? By “nearness” of K(a,/b,) and K(a,/b,) we
shall mean |a,—d,| and |b,—b,| “small” for all n. By “nearness” of properties
we think mainly of similarity in convergence behavior and values. (Convergence
and value of a continued fraction are defined in the next section.)

Answers to this question are of interest in several situations. In particular
if such properties are known for one of these continued fractions, say K (@,/b,),
then this can be used to gain information on the other one, K(a,/b,). Moreover,
if these properties are proved to be “sufficiently close”, K(a,/b,) can be used
(as an auxiliary continued fraction) to accelerate the convergence of K(a,/b,)
or to continue the function K(a,(z)/b,(z)) analytically, (see [7]).

The said investigations will take place in section 4 (modified convergence),
section 5 (ordinary convergence) and section 6 (the special case where
(a,—a,) = 0 and (b,—b,) - 0). In section 2 the basic notation and results
used in this paper are given. It is mainly standard notation in accordance
with for instance [11]. Section 3 contains some historical remarks.
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2. Definitions and notation.

The continued fraction (1.1) is said to converge and have the value f, if
its sequence of approximants,

a, a;

a
2.1 =0 = 2 n
(2.1) fo S by + by +...+ b,

n=1)

converges to f in € = C U {o0}. The analogy to series (and partial sums) is
obvious. In forming the nth approximant f, of (1.1), we “cut off” its nth tail

g Anim Qp+1 QAp+2
22 K = , N 0}),
( ) M=1bn+m bn+l +bn+2 + ... (ne U{ })

where N = {1,2,3,...}. If (1.1) converges, then so do all of its tails (2.2). In
contrast to convergent series though, the value f™ of (2.2) will not (normally)
approach 0 as n — oo. (See for instance Theorem 3.1) A modified approximant
f¥ of (1.1) is the value we get if we replace the nth tail by a modifying
factor w,eC.

For convenience we introduce the sequence

(23) su(W) = a,/(b,+w), (neN)

of linear fractional transformations. The composition

a a; a,

(24) Sn(w)=sloszo-..osn(W)=b—l'+B_z‘+...+bn+w

, (neN)

is then again a linear fractional transformation.
With this notation we have f, = S,(0), f* = S,(w,), and f = S,(f™). It is
easy to prove, (see [11, p. 20]), that

An+An-—1W

@3) 8,000 = 5 g

(neN)

where {4,}, {B,} are solutions of the linear recurrence relation
(2.6) X, =bX,-1+a,X,-2, (neN),

with initial conditions A_; = By =1, Ao = B_; =0.
Another quantity, which is of importance, is

a a,_- a
= Q-1 = =b n n—1 “2
(27) hn Sn (CO) Bn-l n+bn—l + b"_z +.+ bl, (HEN).




NEARNESS OF CONTINUED FRACTIONS 131
Both {—h,} and {f™} satisfy the recursion
(28) gn-— 1 = an/(bn +gn)’ (n € N),

with initial conditions hy = oo, @ = f. A sequence {g,}<, of elements
from C satisfying (2.8) is called a tail sequence for K(a,/b,). It is called a
sequence of right tails if K(a,/b,) converges and g, = f, otherwise
it is called a sequence of wrong tails.

In this paper we shall let S@ f™ p» (o g BW denote the same
concepts for the nth tail (2.2) of K(a,/b,). Furthermore, the above notation
shall always refer to K(a,/b,), whereas S,, f,,..., A%, B® shall always refer
to K(d,/b,).

Convergence criteria for continued fractions are often stated in terms of con-
vergence regions { Q,}.,; that is K(a,/b,) converges if (a,,b,)eQ, ECxC
for all n. If in addition

29) f—rl =<4, -0 if (a,b,) e Q, for all n,

where { 4, } only depends on { Q,}, then {Q,} is a uniform sequence of con-
vergence regions. In order to find such convergence criteria, it has proved
useful to apply the following concepts:

DEerINITION 2.1. {Q,}- , is called a sequence of element regions for continued
fractions K(a,/b,), if

(2.10) Q,SCxC and Q,\({0}xC)+ @, (neN)

{V,}&_ o is called a sequence of pie-value regions corresponding to a sequence
{Q,} of element regions, if ¥, < C, V, # ¢ for all n and

(2.11) (a,b)eQ,, weV, =a/(bbw)eV,_,, (neN)

If, in addition, a/be V,_, for every pair (a,b)e Q,, (n€N), then {V,} is called
a sequence of value regions corresponding to {Q,}.

Value and pre-value regions are also interesting from another aspect: If {V,}
is a sequence of value regions corresponding to {€,}, then it is easy to prove
that

(2.12) (a,,b,)eQ, foralln = f"eV, (meN,neN u{0}).

This means that if K(a,/b,) converges, then f®™eCIl(V,) (the closure of ¥,
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in €) for all n. That is, we have a rough estimate for the location of f™ or
f = fOif V, or V, is not too big. Moreover, since f™ e CI(V,) and fMe V,,
we get the following truncation error bound

(2.13) If = foral = IS,(f ™) =5, (f{")] = diam(S,(,)).

If we consider modified approximants, and {V,} is a sequence of pre-value
regions corresponding to {Q,}, then

(214)  (anb,)eQ, w,eV,, (neN) = SD(W,,,)el,, (neN U {0}, meN).

Hence, pre-value regions act as value regions for these modified approximants.
If S,(w,) converges, then

F = lim S,(w,) e Cl(Vy)

and

F® = lim S®(w,,,)€Cl(V,) for all n.

m-—

Furthermore, if K(a,/b,) also converges in the ordinary sense to the same
value F, then pre-value regions often give better estimates for the location of
f = F and for truncation errors, since they frequently can be chosen smaller
than ordinary value regions.

With this application of pre-value regions in mind, we introduce the following :

DeriniTioN 2.2, Let {Q,} be a sequence of element regions, and {V,} a
corresponding sequence of pre-value regions. If

(2.15) (a,,b,) € Q,, w,€V,, (neN) = S,(w,) > F, FeC independent of {w,},

then {Q,} is called a sequence of modified convergence regions with respect
to {V.}.

If, in addition, there exists a sequence {A,} of positive numbers converging
to 0, such that

(2.16)  (a,b)) ey, W€V, (neN) = |[F-§,(W,)| S 4,, (neN),

then {Q,} is called a uniform sequence of modified convergence regions with
respect to {V,}.
Another question is: Will K(a,/b,) converge to F in the ordinary sense
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if (2.15) holds? Fortunately, the answer is very often yes. For instance, if
K(a,/b,) converges to f and liminf,_, ,diam(V,) > 0, then f = F, (see [10]),
Other sufficient conditions are given in section S.

We are dealing with continued fractions K(a,/b,), the most general form.
However, K(a,/b,) is equivalent to K(1/b}) (that is K(a,/b,) and K(1/b¥)
have the same sequence of approximants), where
Ax04° " Q2p->2

(217) bgn—l = b2n—l s
a,a3° " Azp—1

for all n = 1. For such continued fractions, we have Q, = {1} xG,, G, £ C
for all n, and the convergence criteria and their development get simpler.
(We then say that {G,} is a sequence of element or convergence regions.)
On the other hand the continued fraction may get considerably more
complicated by this transformation.

If b, #+ O for all n, then K(a,/b,) is equivalent to K(a}/1), where

(2.18) af = ay/by, ay = a,/byb,_1, (n22)

This transformation can be very useful, if it can be applied. Then Q, = E, x {1},
and again the convergence criteria and their development get simpler. (We
then say that {E,} is a sequence of element or convergence regions.)

3. Historical remarks.

As mentioned in the introduction, the type of “nearness”-results that we
are considering, are interesting if properties of K(d,/b,) are known. Since
the behavior of periodic continued fractions K(d,/b,), where

(ER ) Anip=a, and b, =b, (nZ1,pefl,... k})

for some k € N, are particularly well known, these have been a natural reference,
in particular in the study of limit periodic continued fractions K(a,/b,), where

(3.2) im a4, =, limby.,=b, (@=12..,k)

n—* o n—

The convergence behavior of a periodic continued fraction K (d@,/b, )is governed
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by the character of the linear fractional transformation S,(w). If S, is hyperbolic
or loxodromic (i.e. it has two distinct fixed points, one attractive and one
repulsive), then K(d,/b,) converges to the attractive fixed point, J, except in
special cases. (Thiele oscillation, (see [12, Satz 2.39]).) If §, is parabolic (i..
has only one fixed point in C), then K(d,/b,) converges to the fixed point f.
Perron, [12, Satz 2.41], proved that for the case k = 1, the “nearness” of a
corresponding limit periodic continued fraction K(a,/b,) implied that also
K(a,/b,) converges, under some conditions, and that the “closer” K(a,/b,) is
to K(d,/b,), the closer its value f is to J:

Tueorem 3.1 (Perron). If §,(w) = d,/(b, +w) is non-parabolic, then

K(a,/b,) converges to [ - K(a,/b,) converges,
Oziéan_}dl’ bn—’El f(")—)]"

From Worpitzky’s theorem, (see [11, Corollary 4.36]), follows that K(a,/b,)
also converges if k = 1 and @, = 0 or b, = 0.) Perron also gave truncation
error estimates for this case. Later, Szasz [15] and von Pidoll [13] generalized
this to k > 1.

Theorem 3.1 inspired Gill [3] and Thron and Waadeland [16] to introduce
their method for convergence acceleration of limit periodic continued fractions
with k = 1:

THeoOREM 3.2 (Thron and Waadeland). If §,(w) = @,/(1 +w) is non-parabolic,
then

0.

K(d,/1) converges to f } N f—-S.hH R
S =K(a,/1) # © f—=54(0)

0 # a, - d,

This property of K(a,/b,) can also be regarded as an inheritance from
K(a,/1). Clearly, using modifying factors f on K(d,/1) leads to an extreme
convergence acceleration, since S,(f) = f for all n. Theorem 3.2 is also
generalized to k) 1, (see [4],[7]).

If §, is parabolic, extra conditions on K(a,/b,) are needed to obtain
conclusions like Theorems 3.1 and 3.2. In 1905, Prigshim [14] laid the
foundation for part A of the following result (see [16]) for limit periodic
continued fractions K(a,/1) with k = 1:

Tueorem 3.3. (Thron and Waadeland). If §,(w) = d,/(1 +w) is parabolic
(ie. d, = —1/4), then

A e, +i = , (neN) = K(a,/1) converges to f.

1
4@n’—1)
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C
B. |a,,+z':|§_n~;,(neN)

=S
f-so) 0TS EE

where C > 0, o > 2,

A similar result is also valid for K(a,/b,) and k > 1, (see [5],[7]), although
the sufficient upper bounds for |a,—d,| and b,—b,| are more complicated
and more restrictive. Some improvement can be obtained for this situation
by the main result in section 4 of this paper.

Limit periodicity is a very strong type of nearness between two continued
fractions. Since so many useful continued fraction expansions of known
functions are limit periodic, this is the type of nearness which mostly has been
studied. However, also weaker forms of nearness can induce inheritance of
properties. Perron, [12, Satz 2.40] proved that K(a,/b,) converges if all pairs
(a,, b,) are contained in a certain neighborhood of (d,,b,), where a,, b, are
as in Theorem 3.1. (This result is vastly improved for continued fractions
K(a,/1) by the uniform parabola theorem, (see [11, Theorem 4.40]).) This
result is also generalized to k > 1, (see [7]).

Again this is a case of inheritance from K(d,/b,) to K(a,/b,) of ordinary
convergence, modified convergence with modifying factors w,e V,, and the
location of the values of the tails ™.

4. Nearness and modified convergence.

As in the previous section, we shall regard K(d,/b,) as a given continued
fraction, and find sufficient conditions on {(a,,b,)}>-, for K(a,/b,) to inherit
certain properties from K(d,/b,). The properties we are concerned with here,
are convergence of modified approximants and their limit value. Let {f®}
be a tail sequence of K(d,/b,). (If K(d,/b,) converges, then the values of its
tails represent one among several choices.) Then S,(F® = f© for all n. This
means in particular that the modified approximants S,(7™) converge to f©.
When will {S,(f™)} converge? Or when will {S,(w,)}, with w, “close to” f™,
converge? The first theorem in this section gives an answer to these questions.
It is derived by the following method :

1). Assurhe that f® # oo for all n. Then 7™ # 0, -5, for all n, by (2.8),
and we can always find a sequence {t,} of positive numbers such that for a
given D > 0

(4-1) D, = tn|5n+]'(n)'_tn—l|]'("_l)l 2D, (n 2 1)
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The constant D and the sequence {t,} have proved to be convenient tools
for carrying through the next step:

2). Match expressions for r,, g, and R, to obtain that {E,xG,}
given by

4.2) E,={zeC;lz—a,| £r,}, G,={zeCilz—b,| < q,},

is a sequence of element regions corresponding to the sequence {V,} -,
of pre-value regions, V, given by

4.3) V,={zeC;lz—f™ = R,}, (n20).

Thereby we gain control over the modified approximants S,(w,), where w, e V,
and (a,,b,) € E, x G, for all n.

3). Find conditions for {S,(V,)} -, to shrink to a point if (a,,b,)€ E, x G,
for all n.

With the notation as introduced, we get:

TueoreM 4.1. Given K(a,/b,) with a tail sequence {f™}*_, f™ # 0. Let

D—p Cn ~ 2D,—(D—p)—2c,
44 R, = =R, » 4n =R, = )
( ) " r" tn—-l q 2tn—l|]'(n I)I+D_#

where 0 = ¢, £ D,—(D—u)/2 for all n and —D < u < D. Then the following
hold :

A. {V,} is a sequence of pre-value regions corresponding to the element regions
{Eax G,}.

a0

B. If, in addition, [] Q, diverges to O, where

n=1

(ta-1lJ" I+ (D —p)2)

“3) O = B+ T T Mt ez "N

then {E,x G,} is a uniform sequence of modified convergence regions with
respect to {V,}. Indeed, if (a,,b,)€ E,x G, and w,€ V, for all neN, then

46) | im Suwa)—Sawal S 2L 1 Q) (neN).
i=1

m— oo to
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C. If, in particular,

4.7) 0 = liminft,_,|f" " V| >0 and Z (B, + ™)t =

n—w n=

then [1Q, = 0 if (D—p)2 < /Dé+6> —

Proor. A. Let (a,b,)€eE,xG, and w,eV, be chosen arbitrarily for
arbitrary ne N. Then

b

‘an"dn)—].("— 1)(bn_5n)—']("—“(Wn—]'(n))
(5'"+]‘(n))+ (bn_gn)+ (Wn_]’(n))

]'(n l).

b+w

<t IT"lgn+ R
b+ 7™ —(qu+R,) T

B. Let (a,,b,)€e E, x G, and w,e V, for all neN. Then for n,meN,

(48) S,,(W,,) - Sn+m(wn+m)

a; a,
b +S(” (W) b +Sn+m l(wn+m)

_ la ;|12 (W) — S m— 1 (W )|
by + S (Wallby + S m— 1 (W4 )l

Sn +m(wn+m)

T by + 50, (w,)

K 1 (Wa) = SE s (Wi tm)]

S:j+"l') j+ 1(Wn+m)

Sin) S(n) m
= IS8 (w,) —S(w, )ln b+ 50 ()

~ AJYTUI+R;
= 2 nI5+f‘”I—R =)

ﬁ_,_ (¢ 21T D+ D= )2y
j=1tj- t|5j+]m|tj | fY- Y+ (D—p)2

D_ n
s [1Q,—0 asn- .
o j=1

Hence, {S,(w,)} is a Cauchy sequence on the compact set V;, and thereby
converges to a value F e V,. Furthermore,
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4.9)

C. Assume that (4.7) holds and that (D —pu)/2 < /D6 + 6% — 5. (We always
have (D—pu)/2 < D. Since \/l_)(5+(52 —0 < D/2, this condition represents a
restriction.) Then, with & = . /Dd+6% —6— (D —p)/2 > 0, we get

0 S(z"~1|]<"-“|+,/05?6_2—5—8)2
" tn'5n+]‘(mltn~ 1|.T("‘ Hl

D,—2/Dé+6% +20+2 .
talbn+ J |

1-—

Db+62+6 +20e+¢2 —2,/1)5+oz(> 727\/1)5+q2
talbo+ ™, (| FO 1

D—2,/Do+5> +25+26—(D+26 -2,/ D6 +0%)
talba+

A

1—

26+s—2./ D&+ 62
B T T

Since 26 +¢—2./Dé+6% < 2(5~{-\/D_6+(52 —6—2./Dé+6* < 0, we therefore
get

2
(4.10) 0, = l—m,

which proves part C.

REMARks 4.2.(i) If we consider continued fractions of the form K(a,/1), we
can chose ¢, = D,— (D — u)/2 which gives

(D —p)(D,—HD—p))
2tntn— 1

D—p
= 0’ Rn = —
9 qn 2t,|

4.11) r, =

and

taea T D1+ (D —p1) _ Byt T+ 0y [TV =

I 3 By 5 e

(ii) If we consider continued fractions of the form (K(1/b,), we can choose



NEARNESS OF CONTINUED FRACTIONS 139

¢, = 0 which gives

D—p 2D,—(D—p) D—p
4.13 =0, ¢q,= : , R, = .
( ) " 4 2tn Ztn*ll.r(n_l)l+(D_H) 2tn

(iii) We can, without difficulty, let the parameter u vary with n, {1ta}, as long
as {u,} is non-decreasing. With

(4.4) T'n = Tullta)y  qn = qu(ttn), R, = R,(y,) for all n
we get

Fa(a) + 17" 1(Gn(n) + Rolpta))
B+ T (i) + Ry 1) = Rl

which proves A. Furthermore,

n G- 1 R
(48" 1S,(Wa) = Sn s m(Wnrm)l = 2R, (1) H 1B, -Z]"”l |—+ Jul)(#lq 1(:1 )’
J J\Hj

which proves B with

ta— o[ ]I+ 3D = - ))(tg T VI + 3D~ Ha))

4.5 =
( ) Qn nIE +](")|In lli(" ‘)l+2(D “n)cn

In fact, (D—p,)[[}-1Q; — 0 is now sufficient in part B, since the right hand
side of (4.8) becomes ((D-p,)/to)[]}=1Q; Similarly D can vary with n too, as
long as (D, — u,) is non-increasing.

(iv) The partial derivative 0Q,/0(D —u) > 0. This means that

Qn Z ty o) ] VV/t,lb,+ J) for all n.

Hence,

[ o sl T DYtlBy+ T = 0

n=1

o
is necessary for []Q, = 0, where

n=1

2 bSO - lim Lo |1 — By 1 JO - lim Lo fam1 =T
o B, AT T et 1B+ By TPl aemty Pt O]
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If K(d,/b,) converges to a finite value, and {f™} is a bounded sequence
of wrong tails, then (h,+ f™)—0, and [[,Q,=0 only if t, » oo fast
enough. That is, only if r, = 0,9, — 0 and R, — O fast enough. This is quite
in line with [8, Proposition 3.3].

(v) If K(a,/b,) converges, []7-1Q, = 0 and {t,} does not converge to oo,
then K(a,/b,) converges to lim S, (™), (see [10]).

Application of Theorem 4.1 can give us both uniform convergence and
truncation error bounds for modified approximants, if [ [Q, = 0. The neigh-
borhoods E, x G, of (d,,b,) are often quite small. By use of Stieltjes-Vitali’s
theorem, [see [11, Theorem 4.30]) we are sometimes able to enlarge these
neighborhoods considerably, at the cost of these advantages. See for instance [9].

5. Nearness and ordinary convergence.

Theorem 4.1 gives sufficient conditions for modified convergence. In
many cases we then do not need ordinary convergence at all. In particular
this is so if the radii R, of V, have no limit point at 0. Then K(a,/b,) converges
generally to F = limS,(f™) if (a,,b,) € E,xG, for all n. (See [10].) This
implies the following. '

(i) If K(a,/b,) converges, then it converges to F.

(ii) limS,(w,) = F for all sequences {w,} such that liminf d(w,, —h,) > 0,
where d(-,-) is the chordal metric on the Riemann sphere. (See Remark 6.2 (ii),
F #+ «.)

However, if one wants to prove ordinary convergence, then the following
two observations are useful:

(iii) If 0 e V, for all n, then K(a,/b,) converges to the same value F.

(iv) If liminfdiam(¥,) > 0 and {h,} has no limit point at 0, then K(a,/b,)
converges to the same value F, by (ii).

Clearly,
liminfdiam(V,) > 0 if limsupt, < 0. (u constant.)
The following result is a step on the way to find sufficent conditions for
{t,} to be bounded:

PROPOSITION 5.1 Given the sequences {X,} and {Y,} of positive numbers. Then
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there exists a bounded sequence {t,}-, of positive numbers such that
(51) [an—’tn—lYng 1, (neN),

if and only if

1 n n a0
{Xnmglj In—lI-O-IX] l}n 2
is bounded.

Proor. Assume that {t,} is bounded and satisfies (5.1). Then

r Xn X—n X—n n—1 2Xn—l
1 n n Y. ny. 1 n n Y,
2 = T+t e i,
Xnmz=:2j=l;l+lxj—l l]I:—[Z J Xnmglj=lr_nl+1XJ—l

since t; X; > 1. This implies that *

llmsup — Z ]_[

nm—l; m+1

X

Assume next that

1 n n Y
limsup — I < 0.
anmZ:lj:ELlXj—l

Then we can choose {t,} such that we have equality in (5.1). We get

1 £ " Y; Y, 45X, & i Y,
ty=— Loy, [] L <= L
n m§2j=lr_n]+1X1—l ljl-:IZ XJ Xn mz=:1j=lr:[+l Xj—l

which proves that {t,} is bounded.
We immediately get:

COROLLARY 5.2 With the notation of Theorem 4.1, we can find a bounded
sequence {t,} satisfying (4.1) if and only if

. 1 n n—1 ]‘(J)l
timsep i 7,2, L5+ 70) <

n- oo m=1j=m
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REMARK 5.3. If

limsup [ (79 VY164 T = o0

n~® j=m

for an meN, then {t,} can never be bounded.

The other question is: when is liminf |h,| > 0. One answer to this problem
can be given in terms of regions W, for right or wrong tails corresponding
to a sequence {Q,} of element regions. That is, a sequence {W,}", of non-
empty sets from C such that

(52) (an,bn)egm Wn-1€ VVn—l = W, = _bn+an/wn—l € VVn

for all n. Clearly, such a sequence has the property that if {f™} is a tail
sequence of a continued fraction K(a,/b,) with (a,,b,) € Q, for all n, then

(5.3) fMeWy = fMeW, foraln=N, (NeN u{0}).

THEOREM 5.4. Let {G"™} be a sequence of finite wrong tails for a continued
fraction K(a,/b,). Let {t,} be a sequence of positive numbers such that for a
D>0
(5.4) D, =1t,,lg" V|-t b, +g"™ 2 D, (neN).

Further, let {E,}*_,, {G,}2-, and {W,}*-, be given by

5z
(5.5) W,={zeCilz—g" SR}, R,=—=",
(5.6) E ={zeCilz—a <7}, 7 =R, t.c" ,

n—-1
and

3 5 2D, - (D —ji)—2¢
7 = (zeCil=Bl S @), du= Ry xSt
(5 ) G,, {ZEC |Z nl qn} qn n zt"_llg'(n—l)l_D+ﬁ’

where
(5.8) -D=spsD, 0=2¢ £D,—(D—-i)2 (neN).

Then {W,} is a sequence of regions for right or wrong tails corresponding

to {E,xG,}.
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Proor. The proof is a straightforward verification of (5.2).

REMARKS 5.5. (i) A sequence {t,} satisfying (5.4) can not always be found.
Indeed, it exists if and only if

= 1B+gY)

5.9) L=
( ngo jl——_—ll 1§
This follows since by (5.4)

~ _<_t g v —-D

"I b +g"

(; D nzl ﬂ '5 +g""’|) l:[ |g~(m—l)'
o lg(ml j=0m=1 lg('n)| m=1 'Em +g~(m)l ’

The if part follows similarly.
From [17] follows that no sequence of right tails can satisfy (5.9).

(i) Theorem 5.4 also holds if §® = co. {—h,} is the tail sequence of
K(a,/b,) with —hy = co. Theorem 5.4 confirms that —h,e W, for all n if
K(a,/b,) satisfies the hypotheses with §” = —h, and (a,,b,)€E,xG, for
all n, since §, < R, and h, = —b,, b, = b,.

In view of Remark 5.5(ii), we get the following corollary to Theorem 4.1
and Theorem 5.4 (with the notation from these theorems):

COROLLARY 5.6. Let K(d,/b,) be a convergent continued fraction. Let {f™}
denote its sequence of right tails. If

(5.10)  either liminft,_,|f" Y| > 0 and [] b, + 7™~ = oo,

n— o n=

or l_[ ano,
n=1

(5.11)  {f™) and {t,} are bounded, p > 0 and

(5.12) there exists a bounded sequence {G™} of wrong tails of K(a,/b,)
and a sequence {t,} bounded away from O satisfying (5.4),

then {(E, n E,)x (G, n G,)} is a sequence of convergence regions, and (V,}
is a corresponding sequence of limit regions.
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Proor. {E, x G,} is a sequence of modified convergence regions with respect
to {V,}. (Theorem 4.1.)
Let K(a,/b,) and {w,}* , be arbitrarily chosen such that

(5.13) (a,b,)e(E, nE)x(G, nG,), w,eV,, (neN).

Assume that {f,} is bounded. (This is no restriction.) Then for some R > 0,
diam(W,) Z R, neN. Since, by [2], (,+§™) — 0, there exists an N €N such
that —h, e W, for n 2 N. Define K (a*/b}) by

n

. fa, forn <N, . b, forn < N,
% =a, forn>N,’ b, forn > N.

Then —h} = —hyeWy and hence —h*eW, for n = N. Since {W,} is
bounded, (K(a*/b¥) converges to the value F* = lim S*(w,). Hence its Nth
tail converges to

SyTUF*) = FM* = F™ = Sy 1(F),

where F = lim S,(w,). Hence, K(a,/b,) converges to F € V,, which proves the
theorem.

REMARK 5.7. Corollary 5.6 generalizes [6, Theorem 2.2A]. g, = §, = O for
all n and K(d,/b) = K(d,/1) k-periodic in Corollary 5.6 gives [6, Theorem
22A}, if 7, and r, are replaced by the (not larger) radii

D? — #2 p2_ /12

= , F .
4t,t, " Aty

ry

6. Adjacent continued fractions.

We shall first define what we mean by this new concept:

DEFINITION 6.1. Two continued fractions K(a,/b,) and K(d,/b,) are called
adjacent (or K(a,/b,) is adjacent to K(d,/b,)) if
(6.1) d(a,,d,) -0, d(b,b,) -0,

where d(:,) is the chordal metric on the Riemann sphere.

REMARKS 6.2. (i) The name adjacent was suggested by Prof. H. Waadeland.
(ii) The chordal metric is defined by
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2la—bl/\/(1+lal®)(1+b*) if a,b # oo,
d(ab) =4 2/ /1+a? if b= %,a+# o,
0

ifa=b= 0,
for a,beC, (see [1,p.20]).

(iii) This new concept generalizes the relationship between periodic and
limit periodic continued fractions.

If u vary with n (Remark 4.2 (iii)) such that u, — D, then results in the
previous sections are on adjacent continued fractions. We get for instance the
following corollary to Theorem 4.1:

COROLLARY 6.3. Given the continued fraction K(a,/1) with a bounded tail
sequence {f™}. Let K(a,/1) be adjacent to K(d,/1). Assume there exists a
bounded sequence {t,} satisfying (4.1). Then the following holds:

A. {S,(w,)} converges to value FeC for every sequence {w,} of modifying
factors such that w,— f™ — 0.

B. F®—f®™ 0, where F™ = S, !(F). ~

C. Letd, = sup{tylm—1|am—3anul; m 2 n} for all neN. If d; < D*/4, then

“d
6.2 Fo_Jm < n
62) 0 -Jo S 258

and

dy ot 4+ T+t | TV - /D —4d;_,
63)  IF=S,(J"=2-"-T] , | .
Do =i till+]m|+tj—1|f(1_”|+\/D—2:4_d-j

D. If furthermore there exist a bounded tail sequence {§™} of K(a,/1) and

a sequence {t,} satisfying (5.4) with liminft, > 0, then K(a,/1) converges
to F.

Proor. A. From Theorem 4.1B and Remark 4.2(i) it follows that {E,}
is a sequence of modified convergence regions with respect to {V,} for any
ue (0,D). Since a,—d, =0 and w,— ™ — 0, and since {r,} and {R,} are
bounded away from O, there exists an N eN such that a,eE, and w,e V,
for all n 2 N. This proves A.

B. Asin Remark 4.2(iii) we can let u vary with n. Indeed, since a,—d, — 0
we can let u,— D. That is |JF™ — ™| < R, (u,) = 0.

Choose pu, = \/D?—4d, for all sufficiently large n (d, < D?/4). Then p, > 0
and pu, » D monotonely. Furthermore,
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dn __DZ—”n D—p,
tntn—l B 4tntn—l 2t tn 1

|an - anl é

'l

with ¢, = D, — (D —u,)/2. Hence, by Theorem 4.1 B and Remark 4.2(i) and
(iii), B follows.

C. Similarly, we get

D—u, D-/D'—4d, _2d
FO— Fo < R () = —tm = TN T o S
TS e 21, 2, = t,D
and
IF—S(ftn)"gD“/‘n T+ (D — o y)2

2o joy tibi+ JO = (D —py)2

< inr,|5+] N+, Y1 -/ D? 4(1, d;
Dto ;= t)b;+ fO 4+, Y~ l’|+\/DZ 4d;

D. Follows by an argument similar to the proof of part A.

Corollary 6.3 connects with [4, Theorem 4.1] on convergence acceleration.
Under the conditions of Corollary 6.3D, both K(d,/1) and K(a,/1) converge.
If these conditions still holds with g™ = —#h, for all n (i, = oo does no harm),
then it follows from [4, Theorem 4.1] that

|7 )( 17 ) nt1

s+ 2+4
( 51-(],(")) n+lD |an+1|
where zn = sup{lam_dml; m g n} and 5!:(].(")) = IE"-{-]'(")' —ﬁn(ﬁn) > 0’
(@ = —h,), by an additional argument, (see [1, Result 12]). Clearly (6.3) also

indicates a convergence acceleration of K (a,/1) by using the modifying factors f
compared tousingasequence {w, },forwhichw, € ¥,(4,)andliminf | ™ —w,| > 0.

(6.4)

F—S,(J")
F-5,0)

A result similar to (6.4), but without requiring that {t,} and {|f™|} are
bounded, was proved in [S]. Results of this type can also be obtained from
Theorem 4.1.
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