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ON SUPERSINGULAR CURVES
AND ABELIAN VARIETIES

TORSTEN EKEDAHL *

Introduction.

The present article contains a number of results on the theme of super-
singular (s.s.) curves and as an inevitable consequence of supersingular abelian
varieties. (By definition an abelian variety in positive characteristic is super-
singular if the first crystalline cohomology group has all its slopes equal to 1/2
and a curve is supersingular if its Jacobian is). In [10] Ogus proves that there
is a one-to-one correspondence between isomorphism classes of s.s. abelian
varieties and isomorphism classes of F-crystals with all their slopes 1/2
together with a determinant (when the base field is algebraically closed and
the dimensions are different from 1). We begin by studying the same problem
when a polarization is also thrown in. Our first result will be that every
polarization on a supersingular F-crystal is isomorphic to one coming from a
polarization on the associated abelian variety. It is not true however that
two non-isomorphic polarizations on a supersingular abelian variety give non-
isomorphic polarizations on the associated F-crystal even if the polarizations
are principal.

We make a closer study of this phenomenon in the case of principal
polarizations on the product of s.s. elliptic curves. The usual techniques
(Tamagawa number = 1) give a formula for the mass of the set of principal
polarizations on such a product and we give a formula for the mass of the
set of indecomposable principal polarizations and this enables us to completely
determine when such a product admits an indecomposable principal polar-
ization.

We then continue to consider the problem of the existence of s.s. curves.
We show that if the genus is larger than }(p>—p) where p is the
characteristic of the base field then there is no curve whose Jacobian is the
product of s.s. elliptic curves of that genus. In addition to that I am only able
to give some examples constructed from Fermat curves.

* Supported by a grant from the Swedisch Natural Science council.
Received February 8, 1985; in revised version January 1, 1986.
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In chapter III we consider how to classify pencils of s.s. curves of genus 2.
This result was at least implicitly obtained by Oort (cf. [12]). The only
contribution I give is to make it explicit and also to give the result in a
more general form. We then apply this result to the study of the total space of
pencils over P! whose Jacobian is an abelian scheme.

The interested reader could do well to consult a series of papers by
Ihukiyama, Katsura and Oort (to appear) which consider very related topics.

I would like to thank N. Katz for some interesting and even useful dis-
cussions on subjects pertaining to this paper and to the LH.E.S. for
providing the necessary ambiance.

1. Polarizations of s.s. abelian varieties.

1. Let K be a field and M a central simple algebra over K of dimension H.
Recall that if Trd: M — K is the reduced trace then a - a* := Trd(a).1—a
is an involution of M over K. We extend this involution to M,(M) by
(a;;)* = (a%). Symmetric elements, of M,(M) with respect to (—)*, are then
in 1—1 correspondence with hermitian forms (—,—):M"xM" - M.
Explicitly ¢ —{—, @(—))> where (—, —) is the standard hermitian form for
which the standard basis of M" forms an orthonormal set. The group of
unitary elements (¢ € M,(M), pp* = 1) are then the K-rational points of the
algebraic group Aut({ —, —>) of automorphisms of (—, —>.

If M = M,(K) and (—)' is the standard involution (a;;)' = (a;) on M

and if
01
e--(__1 O)M

then a* = e~ 'a’e. Hence if we put

M,(M)>E = e

then a — Ea gives a one-to-one correspondence between *-symmetric matrices
and alternating matrices in M,,(K). Similarly, Aut({ —, —)) is conjugate by E
to Sp,,(K) and *-hermitian forms on M” correspond to alternating forms on
K?". As ee GL,(2Z) this works if we replace K by any commutative ring.
Going back to the case where M is just central simple I claim that there
exists a unique polynomial function Pf: (*-symmetric elements of M,(M)) — K
such that Pf(1) = 1 and Pf(a)? = Nrd(a). Indeed, unicity being clear we may,
by descent, assume that M = M,(K) and then we-can put Pf(a) = pf(Ea)
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where pf is the usual pfaffian on alternating matrices. By unicity we see that
Pf(xax*) = Nrd(x)- Pf(a) for x e M,,(M). The correspondence above allows us
to define Pf on hermitian forms. Note that if two forms have the same
non-zero pfaffian then any isomorphism between them have reduced norm 1.
Similarly, in the case of 2 x 2 matrices, when we replace K by any ring and
non-zero by non-zero divisor.

2. For results and definitions concerning abelian varietes I will use [8] as
standard reference. This will not always be mentioned. For our purposes [8]
is lacking somewhat in the p-adic theory. I will solve this problem mostly by
ignoring it, hence leaving to the reader the task of extending the results on
the [-adic theory. Only at a few points will I discuss how to do this
explicitly. (It is clearly §23 of [8] which is needed for this extension.)

Let us begin with a general discussion of polarizations: let k be a perfect
field of characteristic p > 0, let 4 be an abelian variety over k and let A
be its dual abelian variety. We put

H(A,1) := Hl(ﬁ;;, Z,(1)), Hx(/‘i’ l) := H' (A Z/(1))
as Gal(k/k)-modules and
H\(A4,p) := Hkis(4/W), H,(A,p) := Hii(A/W)

as F-crystals. If dim 4 = g the trace maps give identifications, for every prime r,
det H,(4,r) = Z,(9) (as Gal(k/k)-modules and F-crystals, respectively) where
Z,(9) := Hii(P}/W)®e.

Recall that a polarization of degree n, n >0, of A is a morphism
¢: A - A such that (over k) there exists an ample linebundle £ with y(£) = n
and such that ¢ = @y:x » T*¥# ® ¥ !. Then ¢ is an isogeny of degree n?
(and is sometimes called a polarization of degree n?). By functoriality we get
morphisms

(pr:Hl(A’r)—’ Hl(’a\ar)‘

Using the Riemann forms and the fact that they are alternating we get
a morphism

0} A2H,(4,1) > Z,(1).
Note that when ¢ = @« then ¢, corresponds under
Hom(A?H,(A,r),Z,(1)) = Hom(Z(1), A’H' (4, 1))

to the Chern-class of &.
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The trace maps enable us to speak of bases of the underlying Z-,
respectively W-module, of determinant 1. Two such bases differ by a linear
transformation of determinant 1. As the pfaffian of an alternating form is
unchanged under a base change of determinant 1 we may unafnbigously speak
of pf(g;).

Lemma 2.1. pf(e;) = n.

We will first need another description of the pfaffian. If R is a commutative
ring, M a free R-module of finite rank 2n and ¢: A2M — R an alternating
form, the pfaffian can be considered as a morphism pf(p): A**M — R.
I claim that n!pf(p) = @ A @... A @ (n times). Indeed, we reduce to R a field
and ¢ non-degenerate by universal example and then we choose a basis such
that ¢ has standard form and compute

(Xt AYi+Xo A Vot oo+ X, AV =0U Xy A YL AXa AYaeeiXy A Yy)-

This shows that pf(g,) is 1/g! times the gth cup power of the Chern
class of an .# such that ¢ = @& (always possible as we may assume k = k).
We then use the Riemann-Roch formula (cf. [8, §20, Theorem 3]).

More generally, if ¢: A2H,(A,r) - Z,(1) is a morphism we may define its
pfaffian which will be an element of Z,.

DEeFINITION 2.2, i) An r-adic polarization of A is a morphism
@:A*H{(A,r) > Z,(1) (in the appropriate category) with a non-zero pfaffian.
Its degree is pf(p). An isomorphism of polarizations ¢ and ¢’ is an automor-
phism of H,(A,r) taking ¢ to ¢’ and of determinant 1.

ii) A Q,-polarization of 4 is a morphism ¢: A2H,(4,7r) ®zQ - Q,(1) (in
the appropriate category) with a non-zero pfaffian. Its degree is pf(¢). Idem
for isomorphisms.

iii) An adic polarization of A4 is a set {¢,, r prime} of r-adic polarizations
such that there exists an neZ, n > 0, with pf(ep,) = n for all n. Idem for
degree and isomorphisms.

iv) An adelic polarization of A4 is a set {¢,, r prime} a finite number of which
are Q,-polarizations and the rest r-adic polarizations such that there
existsan neZ,n > 0, with pf(p,) = n for all n. Its degree is n. An isomorphism
of ¢ and ¢’ is a set {y,,rprime} a finite set of which are isomorphisms of
Q,-polarizations and the rest are r-adic polarizations. (This set may be larger
than the corresponding ones for ¢ and ¢'.)

REMARK. By the results of 1 we see that if we consider two r-adic, Q,-adic,
adic or adelic polarizations of the same degree then the condition of deter-
minant 1 for a candidate for an automorphism between them is automatic.
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By Lemma 2.1 we see that a polarization of A4 gives rise to an adic
polarization of A of the same degree and isomorphisms of polarizations give
rise to isomorphisms of the associated adic polarizations.

The elements of Hom(A4, 4) of the form (over k) ¢ for some linebundle
¥ are exactly those elements which are symmetric for the involution
@ > @* = gev where ev:4 — A is the biduality isomorphism (cf. [8, §20
Theorem 2 and Remark 3]). Similarly the r-adic (etc.) polarizations are
exactly the-monomorphisms of Hom(H,(A4,r), H,(A,r)) (etc.) symmetric for
the involution ¢ » @* = gev.

DEFINITION 2.3. A rational polarization of A is an element ¢ € Hom®(4, 4)
(:= Hom(4, 4) ® Q) such that for some meZ, m > 0, mp € Hom(4, A) and
me is a polarization. Its degree is Pf(¢) where Pf(— ) is the polynomial function
on symmetric elements of Hom®(A4, A) whose value on @ (over k) is x(£).
Two rational polarizations ¢ and ¢’ are isomorphic if ¢’ = Yoy for some
¥ € Aut®(A4) of degree 1.

If we fix some polarization ¢,, then
Hom®(4, 4) %> End®(A4. A)

is an isomorphism and the involution (—)* is mapped into the Rosati in-
volution. Furthermore, the rational polarizations correspond to elements ¢ of
End®(A, A) which are symmetric for the Rosati involution and such that the
polynomial g,(t) with g,(n) = Pf'(n+ ¢) has all its roots negative, where Pf’
is defined by transport from Hom®(4, 4).

It is now clear that there is a group scheme Aut, whose integral points
are the automorphisms of ¢, whose rational points are the automorphisms of
the associated rational points and, if End,(4, A) ® Z, = End(H,(A4,r)), whose
2-points are the automorphisms of the associated adic polarization and whose
A’ -points are the automorphisms of the associated adelic polarization. Hence
the set of isomorphism classes of polarizations whose adic and rational
polarizations are isomorphic to those of ¢ is in one-to-one correspondence
with Aut,(Q) \Aut,(47)/Aut,(2).

ReMARK. The only part of this not explicitly proved in [8] is the fact that
if & is a linebundle with (%) # 0 and i(#) = 0 then & is ample. This
however follows from the proof of the Theorem of §17 where in fact only
these conditions are used to conclude that %3 is very ample.

3. Suppose now that k = k. Recall that A4 is said to be supersingular if
H,(A,p) has all its slopes equal to 1/2. This implies (cf. [10, §6]) that
End(4) ® Z, = End(H,(4,r)) for all r.
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THEOREM 3.1. Let A be supersingular. Then every adic polarization is isomo-
phic to the adic polarization associated to a polarization.

Proor. The case of dim A = 1 is trivial and left to the reader.

Let us now note that if ¢ and ¢’ are Q,-adic polarizations of the same
degree then they are isomorphic. Similarly, if ¢ and ¢’ are r-adic polarizations,
r # p, of the same degree which is an r-adic unit. For the case r # p this is
clear as we then deal with perfect alternating forms. For the p-adic part
we know that A is isogenous to the product E¢ (cf. [12], where E is a super
singular elliptic curve. Let y be the polarization on A which is the
pullback of the product polarization on E? by such an isogeny. Using this
polarization we see that ¢ and ¢’ corresponds to elements of

End(H,(A), H,(4)) ® Q, = End(4, 4) ® Q, ~ M,(End(E) ® Q,)

symmetric with respect to the Rosati involution on End(E) ® Q, extended in
the usual way to gxg-matrices. By [8, §21, Theorem 2] the Rosati in-
volution on End(E;E)® Q, is isomorphic to a » Trda—a. We thus see,
applying the discussion of 1, that ¢ and ¢’ correspond to hermitian forms of
rank g over End(E) ® Q,. By diagonalization we are reduced to the case when
¢ and ¢’ are of rank 1 that is ¢(xe, ye) = ax*y and ¢'(xe’, ye') = a’'x*y where
e and ¢’ are base and a,a’' €Q}. Now as

Ky = W(F,)®Q,
splits . we may embed K,: € ./ and then for 1e K
I*A = NK .ja,(4).

As K,»/Q, is unramified every element in Z, is a norm of an element in
K 2. Changing bases of /e and /¢’ we may assume that @’ = p’a. Similarly,
embedding Qp(\/l_)) in of we get f e with f *f = p so again by changing
bases we get a' = a so ¢ is isomorphic to ¢'.

Let us now construct a rational polarization of the same degree n as the
given adic polarization ¢'. Using the polarization y this corresponds to
finding a symmetric element ¢ of M (End°(E)) such that the polynomial
24(t) with g,(m) = Pf'(m+ ¢) has all its roots negative and ¢,(0) = n. Now
it is clear, by unicity, that Pf'(—) = y(.#)Pf(—) where Pf(—) is the function
of section 1. If we put r = n/y(#) and let ¢ be the matrix with diagonal
entries 7, 1,1...1 and zero off the diagonal then Pf(m+¢) = (m+r)(m+1y~!
and as r > 0 we get what we want.
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By the first part of the proof the adic polarizations associated to ¢ and
¢’ are isomorphic. Hence there exists a € G(A”), where G is the algebraic
group of elements of reduced norm 1 of End(A4), such that y takes
¢ ®qA’ to ¢’ ®2A7. As G is a form of SL,, it is semi-simple and simply
connected. As g > 1 G(R) is non-compact so that we can apply the strong
approximation theorem (cf. [10]) and write y = y; 'y, where ¥, € G(Q) and
v,€G(2). Applying y, to ¢ and ¥, to ¢ we may assume that
¢ ®q A/ = ¢’ ®2A’. Thus ¢ is at the same time rational and adic so
integral and hence a polarization whose associated adic polarization clearly
is ¢’

4. Let us take a closer look at the problem of classifying Il-adic and
rational polarizations.

LEMMA 4.1. Let {—, —>: A*M — Z, be a non-degenerate alternating pairing.
Then {—, —) is isomorphic to L;I"(—, —), where (—, —) is the standard
perfect alternating pairing of rank 2. The set with multiplicities {n;} is deter-
mined by ( —, =) and pf(—, = = 1" unit.

Indeed, by dividing ( —, —) by as high a power of | as possible we may
assume that (—, —) is not divisible by I. Thus there exists m,, m, € M such
that {m;,m,> is a unit and then m, and m, generate a hyperbolic plane
which we may split off. We then continue with the complement. The unicity
is left to the reader and the calculation of the pfaffian is clear.

We therefore get

COROLLARY 4.1.1. The isomorphism classes of l-adic polarizations of degree n
on A are in 1 — to —1 correspondence with sequences n, = ... = n, of natural
numbers such that v(n) = Y7_n;.

As for rational polarizations they correspond to hermitian positive definite
forms of rank g over & := End®(E, E). Any such form can be diagonalized
and the diagonal coefficients are positive rational numbers. Using the well
known fact, which is proved as above by embedding various quadratic fields
into &, that every positive rational number is the norm of an element of ./
we see that any such form is equivalent to the standard one. This gives

PRrOPOSITION 4.2. All rational polarizations of the same degree are isomorphic.

We now divide the isomorphism classes of polarizations of A into genus
classes, two polarizations belonging to the same genus iff their associated
rational and adic polarizations are isomorphic.

From (4.2) it follows that we need only check that their adic polarizations
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are isomorphic and from (4.1.1) it follows that the only reasonably compli-
cated genus invariant is its associated p-adic polarization.
As will be seen below a genus class may contain several isomorphism classes.

5. Let us further specialize to A = E9, E an elliptic curve, and polarizations
of degree 1 on A.

We begin by the p-adic polarizations. We thus have the F-crystal M = Ef,
where

Ey;:= Wa[F]/(FZ_P)

and we want to classify ¢ : A*M — Z (Z) with pf(¢) # 0, 1,,Fy, 1,, F,.., 1, F,
being a base of determinant 1.

Using the standard ¢ with M = 1Y_|E, 2 and {1, F) = 1 we transfer the
problem to the study of (¢;;) = pe M (o), with o = Endr.ys(E,)2),
symmetric for ¢ - ¢* = (¢%), with a* - Trda—a and Pf(¢) = 1. Of course
these correspond to perfect hermitian forms ¢ of rank g over .«#.

PropPosITION 5.1. All principal p-adic polarizations on E? are isomorphic to
products 1 (Ey;;,{—, —)).

We first want to prove that ¢ can be diagonalized. Clearly ¢ is not
divisible by p. I now claim that this implies that there is some x € .o/¢ with
@(x,x) ¢ po. If not then

o(x,y)+o(x,y)*epo for all x,y e .of*.

As o//Rad o ~ Fj,: with 1* = 1P we see that there is some Ae .o/ such that
A*—A1¢Rad /. Then

P(Ax, y)+@(dx, y)* = A*@(x, y)+Ap(x, y)* e p.o

so (A*—A)o(x,y)epo/ and as A*—1 is a unit ¢(x,y)epof for all x,y. Now
ol x is perfect so we may split off o/x and continue by induction. We now
continue as for o/ ® Z,-forms. We may thus assume that ¢ is of rank 1.
As o/ is the unique maximal order we can embed W(F,:) & & and so if
@(xe,ye) = ax*y we may find 1e W(Fj) such that Nw,)z,(A)-a=1
Changing basis from e to ye we get ¢ isomorphic to the standard form.

We thus see that in particular

PRrOPOSITION 5.2. The principal polarizations on E? form a single genus.

Using section 2 we see that the set S of isomorphism classes of pairs (B, ¢)
where B is a s.s. abelian variety whose crystalline cohomology is isomorphic
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to that of 4 and ¢ is a principal polarization on B is in 1-to-1 corre-
spondence with G(Q)\G(A4' )/G(Z) where G = Aut¢’ and where ¢ is the
standard polarization on 4 = E?. We also see (cf. [8, §21]) that

G ={AeM(E): AA* =1}

where & = End(E) is a maximal order in a quaternion algebra over Q ramified
exactly at p and oo. Recall that the mass M; of S; is defined to be

1
2 iAuto@)’
PES, @
Using that the Tamagawa number of G is one, one can compute M; and I

quote the result from [3]:

(2)@4)...{2n). 1130 2n—1)! 2 . ;
- B = [T (- ).

(5.3) M,
Using the formula for {(2i) this can be rewritten (cf. [13, VII. Proposition 7]
54) M =—1Z..... ‘B_"lil(""( 1)!‘)
. "4, 4n L4 b '

We will mainly be interested in indecomposable polarizations i.e. those not
of the form (B, ¢') L (B”, ¢") so we begin by a discussion of how to compare
the mass of all polarizations with the mass of the indecomposable ones.

6. To emphasize the purely combinatorial aspect of this comparison we will
put ourselves in a more general situation.

DerFmvitioN 6.1. i) A graded groupoid is a groupoid ¥ together with a
function ¢:ny(%) —» N from the set of isomorphism classes of objects of %
to the natural numbers.

i) (%4, @) is of finite type if Autg(a) is finite for all acob¥ and ¢ has
finite fibers.

iii) If (4, @) is of finite type then its mass .#(%) is

tola)
L, TAug@ < ol

aeny(¥

iv) (9, o) is positive if Imp S Z,.
Given a graded groupoid (¥, ¢) we define a new graded groupoid P(%)
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as follows. Its objects are functions ¢:[n] — ob(¥) for some neN where
[n] ={0,1,2...n—1}. A morphism ¢, — ¢, is an isomorphism of sets
¢:Dom¢@, - Dom ¢, together with morphisms g;:¢,(i) = ¢,(e(i)) for
all ieDom¢g,. Composition is the obvious one. We have a functor
1l: P(%)xP(%) — P(%) given on objects by Dom(p; L1 ¢,;) =
= [#Dom ¢, + #Dom¢,] and ¢, 1 @.(i) = ¢:() if i< #Dome,,
@,(i—%Dome,) if i 2 #Dom@l. Then 1 is a coherently associative and
commutative product (cf. [1]) with unit [0] — ob(¥). We define a functor
4 — P(%) by a » (0,a)e[1] x ob¥%. Furthermore, we grade P(¥) by

@W:[n] > o0b@) = ¥ oW().

ie[n]

LEMMA 6.2. i) If 9 is of finite type and positive then P(%) is of finite type.

ii) Let A be a category with a coherently associative and commutative
product @ with unit 0 and let y:9% - A be a functor. Up to natural
equivalence there exists a unique y': P(4) - A" commuting with products and
units and such that ¢y = y'ot. If (N, ¢@") a graded groupoid such that
¢"(0)=0¢"(@a®b) = ¢"(a)+¢"(b) and ¢ = ¢” oy then ¢’ = ¢"oy'".

iii) ¥’ is an equivalence of categories iff for all finite ordered sets A,,..., A,
and A},..., A, of ob% all morphisms between y(A,) ® y(A,)... ® y(A4,) and
V(A)) @ y(A2)...y(A4,,) can be written uniquely as a product of permutations
of factors and isomorphisms coming from % and all objects of A" are isomorphic
to such a product.

Proor. It is clear that i) is true. An extension as in ii) is given by

¥'(e:[n] - ob¥) = (¥(e(0)) ® ¥(e(1)) ® ¥(e(2))...¥(e(n—1)))

and the rest of the proof is left to the reader.
We can now state and prove the intended result

PROPOSITION 6.3. Let 4 be a positive graded groupoid of finite type. Then
(6.3.1) M (P(%)) = exp(# (%)) eQ[[]].

For any graded groupoid »# we define Q[[»#]], the ring of power series of
finite monomials in the variables X, aemno(#) If X, X, ... X, is a
monomial in Q[[»#]] we define its weight to be Y ;. () and we define
the weight of an element of Q[[#]] to be the minimum of the weights of all
monomials occurring with non-zero coefficients in the given element. We can
then define a topology on Q[[#]] by saying that a;, — O if their weights tends
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to infinity. If s is of finite type then

HX)= ) X,
aemy(H)

converges and if n, denotes the continous ring homomorphism
Q[[#]]——Q[[t]] such that

tol@)

nx(X,) = m s

then 1 (H# (X)) = #(#). Now let 2 :0b(P(¥)) - monomials in Q[[4]] be
defined by

2'(y:[n] > ob(%) = _1‘[[] X0

This factors to give 2: ny(2(%)) - monomials in Q[[%4]]. Let F: monomials
in Q[[¥4]] - Q[[¥]] take

1

ny yn n, n n,

XaXol Xy to ———— X' Xo2 - Xy
nyinyt...n!

The composite F o 2 extends by continuity to a ring homomorphism

0:Q[[P)]] - a[[4]].
LemMA 6.3.1. The diagram

Q[[P#)]]-=Q[[#]]

”P(g\ / Ng

Q[[t]]

Proor. Let B be the class of 4 = 7(4,) L t(4;)2... L 1(4,Y" in no(P(9))
where A4;€0b¥ are non-isomorphic. By definition

Aut(4) = Aut(A,)" > Z,, x Aut(4,)" ~aZ,, x X Aut(A4, ) =X,
where the symmetric groups Z, act by permutation of factors. Hence

r t‘P(A«) m

nee)(Xg) = .'=21 ($Aut(4;)yu<>n;!
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Let a; be the class of A4;. Then

rox™ o)

Q%) = I3 and melXa) = auay

Hence np«)(Xs) = ng° Q(X,) and as all f in ny(2(%)) are of this form we
can conclude the Lemma.

The proof of the proposition can now be finished. We have

Xy Xy
Q(P(%)(X)) = Y ;n,_'irlzz—'*a;“ = exp( Y X > = exp(¥(X)).
Ceme o mlngton! xe @)
)

We now apply the lemma and the continous homomorphism ., to get
M(P(9)) = exp(#(%)).

COROLLARY 6.3.2. Put

1

M= ) and M;= Y ———.
et P(#)) #Aut(x) zema(®) #Aut(x)
Qa)=1i @) =i

Then for all n

(6.3.3) nM, = nM’,+(n—)M,_ M, +(n—2)M,_ M, ... + MM, _,.
Proor. From the proposition we get exp(} Mit') = Y} Mt'. Taking the
logarithmic derivative on both sides gives
: i—1
S imgi-t = 2ME!
IMit
Now multiply by Y M’ on both sides.

7. The following result is what is needed to apply the results of the last
section to principal polarizations.

ProrosiTioN 7.1. Let k=k and let (Ay,¢,)Az, ®2)...(A4,, 0,) and
(A}, @1)... (AL, @.) be indecomposably principally polarized varieties over k.
Then any isomorphism

Wi(Ax, (pl) 1 (A29 (pZ)"'(An (pr) - (A,ls (p’l) L...1 (As9 (ps)

can be written uniquely as a product of isomorphisms between factors and
permutations of factors.
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Proor. We can recover the indecomposable factors of a polarization by
considering its theta divisor and for each irreducible component of it consider
the connected component of the subgroup of the abelian variety whose
translations leave this component stable. Gathering together the components
of the theta divisor with the same such subgroup we get an indecomposable
component (as the quotient of the abelian variety by this subgroup).

Hence if we let S be a set of isomorphism classes of abelian varieties stable
under sums and direct factors such that for each dimension there is only a
finite number of elements of S with this dimension we can let %(S) be the
groupoid of pairs (A4,¢) with AeS and ¢ an indecomposable principal
polarization on A. Then %(S) graded by the dimension of 4 is a graded
groupoid positive and of finite type and P¥(S) is equivalent to the category
of principal polarizations on elements of S.

Let us further specialize to the case that actually interests us, namely
that where S is the set of classes of s.s. abelian varieties whose crystalline
cohomology is isomorphic to that of E? for some g and E an elliptic curve.

Note first that by [10, Corollary 6.7], S consists of Ef, g # 1, plus all s.s.
elliptic curves.

Hence we get

THEOREM 7.2. Let M,, n # 1, be the mass of indecomposable principal polari
zations on E" and My = M, (cf. (5.3)). Then
(7.21) nM,=nM,+(n—1)M,_ M+ (n=2)M,_,M,+ ...+ MM, _,.
Using (5.4) we get

p—1 (p—D(p*+1)
7. . - AP T
(7.3) M, 2 Mo 27.32.5

M (=P -1)
3 210 34 5 7 ’

(14) M, =_I¥’ M, = (p—D(p—2)(p—3)

28.325 ’
. _ (p=1*(p—2)(p* +3p* —6p+24)
M= 20,3757 '
+1
PRrOPOSITION 7.5. 1) M, is a polynomial in p of degree n(n2 )

i) M,>1/nM, if n>6m>4 if p+2).
i) M, #0 iff (n,p) # (2,2), (2,3) or (3,2).

Proor. To prove i) we need only observe that by (5.4), M, is a polynomial
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in p of degree n(n+1)/2 so one proves by induction that M, is a polynomial
of the same degree using (7.2.1) and the fact that by the induction hypothesis
iMiM, _,, i <n, has smaller degree than M,. Let us continue to ii) and iii).
We will need a lemma

nM, <("+1)Mn+1
n-1)M,_, =~ M, '

LEMMA 7.5.1.1) If n 2 3 then

ii) 3M M, £ Ms, 2M3M, < M,, SMM, < M,.
i) fp+2, 4MM, <Ms, 3M M, <M, MM, <M,.

Before proving this we will see how it implies ii) and iii). It is clear that
ii) will follow from (7.2.1) if we can prove that iMM; = M, ; if i+j =6
i+j=4ifp+2)

The case i+j = 4 is taken care of by ii) and iii) of the lemma and as
M; = M; it suffices to show that iIMM; = M,,; if i+j=26 (i+j25 if
p # 2). Again ii) and iii) takes care of i+j = 6 (i+j = 5) and i) allows us to
pass from iM;M; S M;,;,oM; = M;,;,, and iIMM;,, S M, ;. as it
implies that

(k+1)M, < (I+1)M; 3<k<l.
kM, IM,

By ii) we get iii) for n 2 6 (n 2 4 if p # 2) and (7.4) takes care of n £ 3
so it leaves only M} and M’ for p = 2, which is done by explicit computation
using, of course, (7.2.1) and (5.4).

We can now set out to prove the lemma. Using (5.4), i) for n = 3 says that

3By(p°—1) _ 4B4(p*+1)
243 T 344

and using B; = 1/42 and B, = 1/30 we get 15(p®—1) < 14(p*+1) but
15(p>—1) £ 14p(p® —1) = 14(p* —p) < 14(p* +1).

In a similar fashion one proves ii) and iii) so we are left with i) for n = 4
which says that

2nn? (@n+2) PPt i+ (=1t
(n*—=1(2n+1) {(2n) P+ (-1)

IIA

However,

ntn) 1o, 12
{@n) ~ L@2n) ~({4) "3
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and I claim that

pn+l+(__1)n+l é
-1 T2

v

Indeed, this is equivalent to p"(2p—3) = (—1)"S which is clearly a true
inequality as n > 4. Hence

C(2"+2) pn+l+(_1)n+l > :
{@2n) prH(=1r T

so we will be finished if we can prove that

2nn?

M <.
R —1)2n+1) =

Now

2nn? n?

<
(M*=12n+1) = n2-1

which is < 1 for n = 4.

2. Supersingular curves.

1. In section I, 7.5 we have completely answered the question of when the
product of s.s. elliptic curves admits an indecomposable principal polarization.
If the dimension of this product is 2 or 3, then, as is well known, every
indecomposable principal polarization is obtained by endowing the abelian
variety in question with a structure of Jacobian of a smooth, projective curve
and taking its assoctated polarization.

Hence in these dimensions we have decided when the product of s.s. elliptic
curves is a Jacobian. In higher dimensions much less is known. I will show that
if the genus of a curve is greater than 4(p?—p) then its Jacobian is never
such a product. Apart from that I will only be able to give a systematic
procedure for producing examples.

THeoreM 1.1. Let C be a curve over k, algebraically closed of characteristic
p >0, of genus g. If its Jacobian is isomorphic to the product of s.s. elliptic
curves then

i) g =3(p*~p)
ii) g < 4(p—1)if C is hyperelliptic and (p,g) # (2, 1).
Proor. Assume first that C is non-hyperelliptic and let (J(C), @) be its Jacobi-



166 TORSTEN EKEDAHL

an where O is the canonical polarization. Then AutC @ [ X1} = Aut(J(C), 0).
Hence any descent for (J(C), @) gives by projection onto the first factor descent
data for C so if (J(C), ©) descends to some subfield of k then so does C
and the jacobian of the descended curve is either isomorphic to the descent
of J(C) or the twist of it by multiplication by —1 over some quadratic
extension.

There always exist a ss. elliptic curve E over F,. whose Frobenius is
multiplication by p. Hence the same is true for E? and in particular

Hompp:(Ey, EY) = Hom,(E*, EY)

so any polarization of EY defined over k descends to E?/F,:. Therefore C
descends to F,: with the Frobenius acting on HA(C F,»Z1) by multiplication
by p or —p. Hence the number of rational points of C over F, is either
1—2gp+p? or 1+2gp+p.

Suppose now that g > 4(p> —p). The first case then gives

B(C(F2) < 1—=(pP=—pip+p* = —p>+p*+1 < =2p°+p°+1 =1-p> <0

which is absurd.
The other case gives the Frobenius for C over F,: equal to p* and hence

1+2gp+p* = #C(F2) < $C(F ) = 1 =29p* +p*
so 2g(p+p?) < p*—p? which contradicts 2g > p> —p.

ReMARK. That the Frobenius can never be tp for a curve over F, of
genus > 4(p? —p) 1 learned from Serre (cf. [14]).

Let now C be hyperelliptic. Then Aut(C) = Aut(J(C), ©) so as above we
can descend C to F,. this time with the Frobenius equal to p. Hence
8C(F,2) = 1-2gp+p® 2 0. Now I claim that 1—2gp+p? is not equal to 1
unless (p,g) = (2, 1).

Indeed, if this were the case then 2¢g = p which is clearly impossible if p
is odd. If p = 2 we get g = 1 which is excluded by assumption. As 1 —2gp + p*
is congruent to 1 modulo p we get 1—-2gp+p> 2 p+1 (f (p,g) # (2,1))
hence p—1 2 2¢g which is what we wanted as ii) clearly implies i) when C
is hyperelliptic.

Remark. a) We will see later that when g = (p?—p) (respectively
g = 3(p—1)) then there is a curve (respectively hyperelliptic curve) of genus g
in characteristic p whose Jacobian is the product of s.s. elliptic curves.

b) We saw in the proof that a curve C whose Jacobian is the product of
s.s. elliptic curves descends to F . with the Frobenius T p. Conversely

ProposITION. 1.2. Let A be an abelian variety over F,, q = p" with its
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Frobenius being equal to multiplication by *q. Then F" =0 on H'(A,0,).
In particular, if q is a prime then A is the product of s.s. elliptic curves
(over F,,: ).

ProOF. If we let F: denote the Frobenius with respect to F,: and F the
absolute Frobenius then F?" = F: on H(is(A/W). Hence F>" = * p". Now
p" = F"V" and F is injective on Hc,,s(A/W) so F" = £ V" but

H' (A, 0 ) = Hy(A/W)/VH i (A/W).

This proves the first part. The second part follows from [11]. (It would
seem that [11] only gives the result over F,: but we may choose E such that

F = is multiplication by the same integer as for 4 and then the isomorphism
descends).

2. Let C be a ring, free of finite type as Z-module such that C ®,Q is
a semi-simple Q-algebra. Let Q be an algebraic closure of Q and let S be
the set of isomorphism classes of irreducible representations of C ®z Q. The
Galois group of Q over Q will act on S;;; if C — M,(Q) is a representative of
a€ S and ¢ an automorphism of Q then C - M,(Q) & M,(Q)is a representative
of o(a). If K is an algebraically closed field of characteristic 0 containing Q
then extension of scalars identifies S with the set of isomorphism classes
of irreducible representations of C ®, K

Similarly, if p is a prime such that C ®, F, is a semi-simple F ,-algebra
choosing an algebraic closure IT,, of F, we can define S, to be the set of
isomorphism classes of irreducible representations of C ®; F,. This set is
identified with the set of isomorphism classes of irreducible representatnons of
C ®z k where k is any (algebraically closed) overfield of F,. We also get an
action of Gal(F ,,/F,,) on S,

Let K, < Q be the maximal subfield of G unramified at p and let R, be
its ring of integers. A choice of maximal ideal, m, in R, lying over p and a
choice of isomorphism between R,/m and F give rise to an isomorphism
between S and S, in the following way. Let R,, be the localization of R, at m.
Any representation ¢: C — M,(Q).is conjugate to some ¢’ with ¢'(C) & R and
reduction modulo m gives us a representation C — M,(F ,). This gives us a well
defined mapping S — S, which is the searched for isomorphism. This iso-
norphism is compatible with the action of Galois groups.

Suppose now that k is an algebraically closed field such that C ®,k is
semi-simple. Suppose further that we are given an abelian variety A over k
and a morphism of rings ¢: C - End,(4) such that Hjg(A/k) is a sum of
pairwise non-isomorphic irreducible C ® k-modules.

ReMARk. This situation is essentially a complex multiplication situation.
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It can be shown that the simple factors of 4 have complex multiplication
by the image, in the endomorphism ring, of the part of the center of C ® Q
stabilizing that factor. Conversely, if 4 has complex multiplication by K, a
finite extension of Q, over k and if (K nEnd(4)) ® k is reduced then
(A, K n End(A), K n End A — End A) fulfills the condition above. If K is
unramified at p := chark then after possibly changing A by an isogeny
(K n End(A4)) ® k can be supposed to be reduced.

The theory to be presented below may suitably generahzed so as to cover
the general case.

If we choose an embedding of F, ,in k (Fo := Q) we can identify the iso-
morphism classes of the irreducible factors of HAg(A/k) as C ®, k-module
with a subset of §, which we will denote §,,.

LemMA 2.1. S, is stable under the action of

Gal(F,/F,) (F,:=Q).

Indeed, as the irreducible factors of a representation is determined by the
value of its character on C it suffices to show that the values on C of the
character of Hbr(A/k) lie in F,. This, of course, is well-known and follows
from the trace formula.

We now divide S, into S9 and S} where S are the classes of irreducible
representations occuring in H°(4,Q),) and S, the ones occuring in
H'(A, 0,). The canonical exact sequence

0 — H%(4,Q)) > Hbr(A/k) > H'(4,0,) > 0

shows that S, is the disjoint union of §9 and S;,. We call (S,,S9,S}) the
type of (4,C, ).

ReMARK. When C ® Q provides 4 with complex multiplication this is what
is called the CM-type of (4, C ® Q).

It is clear that these constructions are compatible with specialization in the
following sense. If R is a discrete valuation ring with residue field k and K
is an algebraic closure of the fraction field of K and if A4 is an abelian scheme
over R with a ring homomorphism g:C — Endg(A4) then we can consider
(after having made some choices)

(SP’ SP‘O’ pe 0) and (Sq’ S'I (34 Sfl) ['44 »ﬂ)

where p = char K and q = char k. After some further choices we can identify
S, and S, and under this identification (SM, e ,) corresponds to

(Sq 59 e Sl .o) and we have compatibility for Galois actions.
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Having made these definitions we can specialize to the case when k is of
positive characteristic p. Then Gal(F,/F,) equals 2 with generator o, the
Frobenius automorphism. As C ® k is semi-simple, C ® W, W = W(k), is a
separable W-algebra. Hence the isotypical decomposition

Hpr(A/k) = @ V,
aes,

lifts to

Hii(A/W) = @ V.

€S,

Now F and V are o, respectively ¢~ !, linear and commutes with the action
of C so it takes V,(V,,) to V,, (respectively V,).

ProposiTION 2.2. If ae Sy then F: V,—V,, is an isomorphism and if
a€ S} it equals p times an isomorphism.

ProoF. We know that the kernel of Hl;(4/W)— H'(A,O,) is the image
of V. Hence a €S iff V, is in the image of V.

Furthermore, as V; = V;/pV; is an irreducible C ® k-module for all feS,,
F (respectively V): V, — V,, (respectively: V,, — V,) is either an isomorphism
or divisible by p. Now FV = VF = p so either F: V, » V,, is an isomorphism
and V: V,, — V, is an isomorphism times p or vice versa and we have just
seen that V: V,, » V, is an isomorphism iff a € S}.

Let S¢ denote the set of orbits of ¢ on S,. For each BeS, we define
the F-crystal My := @,4V,, so that

Hei(A/W) = @ M,
BeS,

as F-crystals, and M_,, 1= My/V Mg, so that

@ My, = H'(A4,0,)
BeS,

compatible with the action of Frobenius. To each orbit f we associate a
number of invariants. First we put dimf equal to the dimension of V, for
any a e B. Then we divide B N S} into disjoints sets {a,, 6ay,0%a,,...,0na,},
{ay,00,...,0ma,} ... where the «; have the property that either ¢~ 'a; and
o'i+la; belong to S or o%itla; = a;. We then associate to f the set, with
multiplicities, ny = {r;: a; # "+ 1a;}.

Tueorem 2.3. i) M, is an F-crystal of rank #f-dim B and all its slopes are
$(B N S)/4B (here #(—) denotes cardinality).
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ii) The F-nilpotent part of M is isomorphic to (@;., k[F]/(F'*!)yimp.
Proor. This is clear from (2.2).

RemARrk. In the CM-case i) is the Shimura-Taniyama relation. Using the
extension of the results given here that was mentioned earlier one gets a proof
of the Shimura-Taniyama relations in general.

We can now use ii) to decide when A is the product of s.s. elliptic curves.
Indeed, this is, as was observed earlier, equivalent to F being 0 on H!(4, 0,)
and we see that this is true iff « € S} implies that oo e S°.

Suppose now that A is defined over some number field K S Q still with
C - Endg4 and C ® Q having a multiplicity free action on Hpg(A4g/Q).
Let 4 = Gal(Q/Q), let € &% be the subgroup of automorphisms acting
trivially on the maximal CM-extension of Q and suppose that € acts trivially
on S, or equivalently that for all ae S, the character values of a on the
center of C generate a CM field (this turns out always to be the case but
in the case we will consider it will be completely obvious). We can then
unambiguously speak about the action of complex conjugation on S, which
we will denote by t. It is clear, by Hodge theory for instance, that 7 will
permute S and S,. Let s# be the subgroup of ¥ stabilizing (setwise)
S9 and Sj.

We assume that we have chosen a prime p in Q such that 4 has good
reduction at p and that C ® k(p) is semi-simple. This gives us a well defined
element o, the Frobenius in ¥/ 4" where .4"is the Kernel of the permutation
representation of ¢ on S,. By our criterion Ay, is the product of s.s. elliptic
curves iff a(S3) = S9. As t has this property we get

ProPOsITION 2.4. The reduction modulo p of A is isomorphic to the product of
s.s. elliptic curves iff

ceTH| N

The case we are interested in is when we have a curve C, smooth and
projective, with a finite group G acting on C such that Z[G] —» End(J(C))
fulfills our conditions. As the character values in this case will generate a
cyclotomic field our condition on C acting trivially is certainly fulfilled. Indeed,
if the exponent of G is n the charcter values will always lie in the field
obtained from Q by adjoining a primitive nth root unity. Hence we get

CoroLLARY 2.4.1. Let C be a curve over K with an action of a finite group
G of exponent n such that all irreducible representations of G occurs at most
once in Hhr(Cg/Q). If p = —1(n) and C has good reduction C modulo p then
J(C) is (geometrically) isomorphic to the product of ss. elliptic curves.
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Pairs (C,G) as in the corollary seem to be very rare. Indeed, the only
examples of curves of this type that I know of are obtained as abelian covers
of P! ramified at 3 points. This is the case we will now set out to discuss.

Let C —» P! be an abelian cover of P! ramified at 0,1 and oo over an
algebraically closed field k of characteristic prime to the order of the
covering. Let A denote the structure group and suppose nd =0 with
(n,char k) = 1. Then such coverings are classified by elements of

HL(P'\{0, 1, 0}, A) = Hom(pZ, A).

The covering is connected iff the corresponding homomorphism p? — A4 is
surjective which we will assume from now on. Hence it is the quotient of the
covering corresponding to id: u? — p? by the kernel B of u2 — A.

The covering {x"+y" = 1} - {t = x"} is a connected p2-covering ramified
at {0, 1, o0} so the associated mapping u? — p? is a surjective homomorphism
between finite groups of the same order and hence an isomorphism. It is clear

that it takes p, @0 to u, ®0 and 0D u, to 0 ® u, and if we make our
identification

H4 (P \{0, 1, 0}, p,) = Hom(p, ® p, o p,) = Z/n ® Z/n
such that
k[x, 1/x, 1/(x — 1)]* KUmmr, 5L (PY\{0, 1, o0}, 1) = Z/n @ Z/n

becomes f - (ordyf,ord,f)modn then it is clear that this isomorphism is
the identity. The set S(Z[A]) can be identified with the set of characters of 4
hence with the set of characters of u? vanishing on B. Thus

S@Z[A]) = {(a.b)eZ/nx Z/n:"" = 1V(, 7)€ B}.
We can now determine the type of (C,Z[A4],Z[A] — Jac(C)).
ProposiTiON 2.5. Put
S={(ab)ezZnxZ/n:a,b + 0;a+b + n},
S® = {(a,b)eZ/nx2Z/n:a,b # 0;a+b < n}
and
S' ={(a,b)ezZ/nxZ/n:a+b > n}

where a+b < n (respectively a+b > n) is to be interpreted as lifting the residues
a,b to integers in the interval [1,n—1] and then comparing the sum of those
integers, with the integer n.

Then the type of (C,Z[A],2[A] - Jac(C)) is (S n S(Z[A4]), S° n S(z[4],
St ~S(Z[A])).
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Proor. This is, of course, very well-known and is inserted only for the
convenience of the reader. As the de Rham and Hodge cohomology of C is
the fixed points of B on the de Rham and Hodge cohomology of the Fermat
curve we reduce to the Fermat curve. By Hodge theory it suffices to determine
the action on global 1-forms and then we use the basis {x“y?dx/(y""'):
0=a+b=n-3}

If we identify Gal(Q(u,)/Q) with (Z/n)* then the action on S is given by
multiplication on both factors. Thus we have reduced the problem of when C
modulo p is the product of s.s. elliptic curves to a purely combinatorial
problem. Indeed, we need to determine which elements of (Z/n)* stabilize
S° N S(Z[A]). When (|A4],6) = 1 this has been done in [4], the answer is that
such an element is almost always the identity in which case it is exactly the p
which are congruent to —1 modulo the exponent of 4 we are looking for.

Let us finish this section with a few examples. As p always is congruent to
—1 modulo p+ 1 we see that the Fermat curve of degree p+ 1 has a Jacobian
isomorphic to the product of s.s. elliptic curves. As its genus is $(p?> —p) we
have an example that was promised earlier. I claim that the hyperelliptic curve
Y = {y* = xP—x} likewise has a Jacobian of the type we are interested in.
As py,- 1) acts on it with quotient P! and ramification at {0, 1, 0} we could
apply our results. Another possibility is to note that Z/p acts on Y with
quotient P'. As the genus is (p—1)/2 we see that H}(Y/W) is a module of
rank 1 over W[Z/p]/(zgez/pg) =R and as R is a discrete valuation ring
it is a actually a free modulo of rank 1. Hence F and V which commute
with R are of the form n®isomorphism repectively n’-isomorphism where
n = [1]—1, a generator of the maximal ideal of R. It is clear that then all
the slopes of F on H},(Y/W) are a/(p—1) and as H%;(Y/W) is isogenous
to its dual we get a/(p—1) =3. As FV = pwe get a+b = p—1soa = b and

F-Hei(Y/W) = V- Hy(Y/W)
so F is O on
H'(Y,0y) = Hgio(Y/W)/V - Hyig(Y/W).

Cris
As the genus of Y is (p—1)/2 we have produced another of the promised
examples.

As we know for which p there are curves of genus < 3 whose Jacobian is
the product of supersingular elliptic curves we can ask ourselves for which p
abelian covers of P! give us curves of genus 4 or 5 whose Jacobian again
has this property. Let ¢:C — P! be such a covering. We choose generators
for the monodromy at 0,1 and oo, a, f respectively y such that a+8+y = 0.
Let a, b and c be their orders. By changing coordinates for P! we may assume
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that a < b < c. As a+f+7 = 0 we have (b,c)- albc, (a,c)- blac and (a, b)c|ab.
Put r = (a,b,c), rd = (a,b), re = (a,c), rf = (b,c). Then a = rde, b = rdf and
c=ref and also (d,e) = (d,f)= (e,f) = 1. The condition a £ b < ¢ also
gives d = e = f. Let finally s be the index of the cyclic group generated by y
in the structure group A of ¢. As (,y) and (B, y) generate 4 we get sla and
s|b thus sjrd. Hurwitz’ formula now gives 29 —2 = s(ref — (f/d + 1 +e/d)) where
g=4orS.

It is straightforward and tedious to list all possibilities and I only give the
result. I list (a, b, c, s):

g=4: (3, 5151); (2, 9,18,1); (4, 6,12,1); (3,6,6,3);
(5,10,10,1); (3,12,12,1); (2,16,16,1); (6,6,6,2);
(2,10,10,2); 9, 9, 9,1).
(
(

g=>=5: 2,11,22,1); (11,11,11,1);
3,15,15,1); ( 2,20,20,1);
2,1

, 12,12, 2).

6,12,12,1);
4, 8, 8,2);

By direct inspection one shows that all tuples are actually realizable and
that we get F = 0 on H!(C, 0() exactly when p = —1 modulo the exponent
of the structure group except in the cases (3,12,12,1), (2,16,16,1) and
(3, 15, 15, 15, 1) where we could also have p = —7mod 12, —7mod 16 respect-
ively —4mod 15. Thus there exists an abelian cover of degree prime to p of P!
ramified at 3 points whose Jacobian is the product of s.s. elliptic curves of
genus 3 exactly when

p= —1mod15,6,10,16,9 or p= —7mod 16
and of genus 5 exactly when
= —1mod11,12,15,20,8 or p= —4mod15.

ProBLEM. Does there exist a curve of genus 4 or 5 whose Jacobian is the
product of s.s. elliptic curves for any p # 2,3?

3. Pencils of s.s. curves of genus 2.

1. Let X — C be a semi-stable fibration of genus 2 curves with supersingular
generic fiber. Recall [5], [6]) that given a polarization ¢: E* » E E a ss.
elliptic curve, such that ker ¢ = Ker F then Moret-Bailly constructs such a
fibration X, » P'. Our aim is to show that in a very precise sense
these are the only possible fibrations of the above type. We will work over an
algebraically closed field k (of characteristic p > 0).

THEOREM 1.1. Let X — C be a stable non-isotrivial fibration, generically
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smooth, of genus 2 curves with C a normal irreducible variety such that the
generic fiber is supersingular. Then there exists an étale cover C-CofC,
a polarization ¢: E* — E* with ker ¢ = ker F, a morphism C — P! and an
isomorphism of fibrations of the pullback of X and X, to C. If there exists
two such tuples (X - C, C - P!, ¢) and (X » C, C' - P, ¢’) then there is
an automorphism of E? taking ¢ to ¢'.

ProoF. The first step is to construct C such that the pullback X — C has
the property that its Jacobian admits an isogeny of degree p from E*x C.
For this we will need the following lemma (cf. [12]).

LemMa 1.1.1. Let Y be a normal irreducible noehterian scheme and A and B
two abelian schemes over Y. Suppose given a geometric point § — Y whose
image is the generic point and a homomorphism A; — B;.

Then there exists an étale cover Y - Y, a lifting 5 Y of 5> Y and a
homomorphism Ay — By extending the given A; — B;.

ProoF. Indeed, we may consider the universal family of homomorphism
from A —» B:

AXYY’——_—>BXle

Y —Y

One knows that Y’ is a separated algebraic space locally of finite type
over Y. The rigidity lemma (cf. [7: Corollary 6.2]) shows that ¢ is formally
unramified and hence unramified. By hypothesis § — Y lifts to § - Y'. Let Y
be the closure of the image of 5. If we can show that ¥ — Y is an étale
cover we are through. As we have seen it is unramified and as it is dominant,
Y is irreducible and as Y is normal it is étale. This shows that ¥ is an
open subscheme of the normalization of Y in the function field of Y so it
is of finite type and what is left is to show that Y — Y is proper. It is of
finite type so we can check by the valuative criterion. Thus we reduce to the
case when Y is the spectrum of discrete valuation ring and Y — Y is open and
Y + @, but then by the properties of Néron models ¥ = Y.

To get our C we need therefore only check two things. Namely that an
isogeny E2x3§— Jac(X;) of degree p exists for § some generic geometric
point and that Jac(X/C) is an abelian scheme. The first part follows from
[11, Corollary 7] and the second from [12, Proof of Theorem 1.1a].

Let us now consider our isogeny ¢: E2 x C - Jac(X/C) where X := X x.C
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and C is connected. The kernel of ¢ is of order p and fiber by fiber
isomorphic to «, as this is the only subgroup scheme of E* of order p. In
particular it is of height 1 and thus completely determined by the position of
its Lie algebra ¢ inside of the Lie algebra of E* which is Oz ® Op. As ¥
is locally a direct factor of Oz @ O there is a morphism y: C — P' such that
¥ S O @ Op is the inverse image of Opi(—1)E Opi. Let . # S E*x P!
be the height | subgroup scheme whose Lie algebra is ¢(—1) and let
0:E*x P! > ¢ be the isogeny obtained by taking the quotient by .#. Then
clearly ¢ is isomorphic to the inverse image of ¢ and in particular Jac(X/C)
descends to P'. I claim that so does the fibration X — C. Let us first show
that Jac(X/C) together with its polarization descends. The morphism y is not
constant because if it were, then Jac(X/C) would be a constant abelian scheme
and X — C would be isotrivial by the Torelli theorem. Hence y is dominant
and we may choose a geometric point of C whose image in P! is the generic
point. By Lemma 1.1.1 there is an étale cover of P' such that over this cover
is a homomorphism ¢ — #* where #* is the dual of ¢, inducing on §
the pullback of the polarization on Jac(X/C). As P! is simply connected
4 — #* exists already on P'. The polarization on Jac(X/C) and the pullback
of § » #* to C give two homomorphisms Jac(X/C) — Jac(X/C)* whose
pullback to § are the same so by rigidity they are equal.

To descend X — C we obssbserve that as y: C — P! is dominant and C
integral y is flat and hence y': € — Im y(C) is faithfully flat. Thus to descend
X - € to Imy(C) it suffices to give descent data for ¥ — C with respect to
C - Imy(C). In fact it suffices to show that ¥ — C descends over U — y~'(U)
for some open subset U of Imy(C) and that the descended fibration
extends to the whole of P' for then we would have two stable fibrations
over C isomorphic on an open subset and hence they would be isomorphic.
(Use the fact that the scheme of isomorphisms would be unramified and
proper (cf. [2, Theorem 1.11]).) By making U small enough we may assume that

Xw—l(u) - (p_ 1(l])
is smooth and then the automorphism scheme for

X, oy~ v '(U)
is equal to the automorphism scheme for its polarized Jacobian which already
is descended.

We have therefore arrived at the point where we may assume that C = P!
and that there exists an isogeny ¢: E> x P! — Jac(X/P') of degree p such that
Ker Lie(¢) = Op:(—1).

Pulling back the Jacobian polarization by ¢ gives us a polarization of degree
p on E? x P! which necessarily is constant i.e. is of the form a polarization
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v on E? times P!. The kernel of y contains ker ¢g for every point of P’
and as these fill up all of ker F we see that ker R € kery and as they have
the same order they are equal. We hence get a Moret-Bailly family X, - P'.
By construction there is an isogeny

@ E*x P' - Jac(X,/P")
and an isomorphism
¢:Jac(X,/P') - Jac(X/P")

such that go¢ = ¢. Again by construction the pullback by ¢ of the
polarization o of X — P! equals the pullback by ¢’ of the polarization g of
X, — P'. Hence ¢'*(¢*(2)) = ¢'*(B) and as ¢'* is injective ¢*(x) = B. This
implies that at least over an open subset of P’ the two families are
isomorphic and then they are isomorphic being stable.

For the unicity we may assume that there is some dominating C" - P!
such that the pullback of two polarizations ¢, ¢’ on E? are isomorphic. By
Lemma 1.1.1 they are isomorphic over some étale cover of P! and hence
isomorphic.

2. We will now apply Theorem 1.1 to the study of semi-stable fibrations over
P! whose Jacobian has everywhere good reduction.

ProposiTioN 2.1. Let n: X — P!, X smooth, be a semi-stable non-isotrivial
fibration by curves of genus at least 2 whose Jacobian fibration has everywhere
good reduction. Then X is of general type unless the characteristic is two and
the fibers have genus two and X is birationally equivalent to a product of two
supersingular elliptic curves.

Proor. R'n,Z, is by assumption a lisse sheaf. As P' is simply-connected
it is constant. Leray’s spectral sequence then shows that

H'(X,Z)) = H*(P',R'n,Z)) = H'(X5,2))
for any fibre X;. Therefore the morphism A x P! — Pic®(X/P'), where
= Pic* (X reqs

is an isogeny and in particular if g is the genus of a fibre g = g := dim 4.
Let us dispose of the case g = 2. As X — P! is non-isotrivial Pic®(X/P')
is non-constant so A is an abelian surface that has a connected non-trivial
family of finite subgroupschemes. If 4 is not supersingular there is in fact
only a finite number of subgroup schemes of fixed order. Any such group
scheme can be written uniquely as a sum of a p-group and p'-group where
p = chark. The 'statement is obvious for the p’-part so we may confine our-
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selves to the p-part. Similarly, the étale and multiplicative parts are clear so
we need only look at the biconnected part. If A is not supersingular
this part of the p-divisible group of A is either zero (a trivial case) or
isomorphic to the p-divisible group of a s.s. elliptic curve but there, for every
n there is exactly one subgroup scheme of order p", the kernel of the Frobenius
(there is a unique subgroup of order p hence it is contained in every non-
trivial subgroup, dividing by it we conclude by induction).

We thus see that A4 is supersingular and by Theorem 1.1, X — P! is the
pullback by a morphism n: P' -» P' of a Moret-Bailly family X' —» P'. If
p #2 Moret-Bailly [6] shows that wy. is ample. If degn =r then
wy = t*wy(2r—2) where t: X - X' is the given map. Hence wy is still
numerically positive and X is also of general type. As for characteristic 2 a
Moret-Bailly family has X birational to the product of s.s. elliptic curves.
What is left to be shown is that the pullback by a morphism P! — P! of
degree r greater than 1 is of general type. Moret-Bailly shows that f : X' — P!
has 5 singular fibres each of which consists of two crossing elliptic curves
hence the number of singular points for f is 5. He also shows that the degree
of fywy,p> is 1 and as X' is an abelian surface blown up at one point
Ci = —1. By [15],

CiX)=([2-]-5)0r—-1)—1=7r-1)—1

hence positive if r > 1. As X admits a generically finite map to an abelian
variety X is not ruled so it is of general type.

We can now finish the argument. Now g > 2 so X is neither birational to
a K3-surface nor to an abelian surface. By the classification of surfaces
there is some fibration X — C with fibers of arithmetic genus < 1 (rules,
elliptic or quasi-elliptic) and a birational mapping X - - X. We see that
g(C) = q(X)—1=¢g—1. Let TS X be some fiber of X - P' such that
T — X is defined. As g(T) 2 2 the morphism T — C is non-constant and we
can factor it as T — C' —» C where C' = C("") for some n so C' — C is purely
inseparable and T'— C’ is separable. Hurwitz’ formula gives

29-2 =n(29(c)-2)+} (&= 1)

where n is the degree of T — C'. The inequality g(C)=q—1 gives
02 (n—-1)2g—2)—2+Y (e;—1) and as g 2 3 this is impossible unless n = 1
or n=2and T —» C' is étale. Hence we get only a countable number of
possibilities for T which forces X — P! to be isotrivial.
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