ON THE EMBEDDING AND DIAGONALIZATION OF MATRICES OVER C(X)

KLAUS THOMSEN

1. Introduction.

In [2] Effros suggested the study of C*-algebras which arise as direct limits of C*-algebras of the form $C(X) \otimes F$, where C(X) is the algebra of continuous functions on a nice compact topological space and F is a finite-dimensional C*-algebra. The idea is to generalize the almost complete theory of approximately finite-dimensional C*-algebras.

As a first step in the study of such direct limit C*-algebras one must study *-homomorphisms

$$\varphi: C(X) \otimes M_n \to C(Y) \otimes M_m$$
.

The difficulties in imitating the theory of AF-algebras start already at this stage since two unital *-homomorphisms between $C(X) \otimes M_n$ and $C(Y) \otimes M_m$ need not be inner equivalent. Hence the question is if there is a canonical way of describing how $C(X) \otimes M_n$ can be embedded into $C(Y) \otimes M_m$. The purpose of this note is to give such a description when Y satisfies certain topological conditions and the dimension of $\varphi(C(X) \otimes M_n)(y) \subseteq M_m$ is constant over Y. As will become clear, the question is closely related to the question of which abelian C*-subalgebras of $C(Y) \otimes M_m$ can be diagonalized. Unless Y is a Stonean space, such a diagonalization is not automatically possible, see [4].

Although none of our results depend on the results of [4], the paper of Grove and Pedersen has been an indispensable source of inspiration.

2. Notation.

X, Y will denote compact Hausdorff spaces, M_n the $n \times n$ complex matrices, and U(n) the subset of M_n consisting of the unitary elements. We will identify $C(X) \oplus M_n$ with $C(X, M_n)$, the continuous functions on X with values in M_n .

Received April 4, 1986.

If B is a C*-subalgebra of $C(X, M_n)$, we write B(x) for the following C*-subalgebra of M_n :

$$B(x) = \{ f(x) | f \in B \}, \qquad x \in X.$$

 S_n will denote the symmetric group of order n!, and as in [4] the cohomology sets $H^1(X, S_n)$ and $H^1(X, U(n))$ will play an important role. For a definition of these sets, which will be sufficient, at least for our proofs, we refer to [5, p. 9-10].

3. Results.

LEMMA 1. Let $\varphi: C(X) \otimes M_n \to C(Y) \otimes M_m$ be a unital *-homomorphism. Then n|m, that is n divides m, and

$$\dim[\varphi(C(X, M_n)](y) = n^2 \dim[\varphi(C(X) \otimes 1))](y), \qquad y \in Y.$$

PROOF. Let $y \in Y$. Then

$$C(X, M_n) \ni a \mapsto \varphi(a)(y)$$

defines a finite-dimensional representation of $C(X, M_n)$. Therefore there is a number $k(y) \in \mathbb{N}$ such that

$$\varphi(C(X, M_n))(y) \simeq \underbrace{M_n \oplus M_n \oplus \cdots \oplus M_n}_{k(y) \text{ times}}.$$

Since $\varphi(C(X) \otimes 1)(y)$ is the center of $\varphi(C(X, M_n))(y)$ by [6, Corollary 1], it is clear that

$$k(y) = \dim \varphi(C(X) \otimes 1)(y).$$

That n|m follows from [1].

LEMMA 2. Let A be an abelian C^* -algebra in $C(X, M_n)$ containing the unit and such that dim A(x) is constant over X.

Assume that both $H^1(X, U(k))$ and $H^1(X, S_k)$ are trivial when $k \leq n$. Then A is diagonalizable.

PROOF. Let $k = \dim A(x), x \in X$.

By [4, Lemma 5.2] we can find a finite open covering $\{U_i|i=1,2,...,N\}$ of X and elements $Q_1^i,Q_2^i,...,Q_k^i$ in A such that $\{Q_j^i(x)\}_{j=1}^k$ are the minimal projections in $A(x), x \in U_i, i=1,2,...,N$.

For $x \in U_i \cap U_j$, we can define an element $s_{ij}^x \in S_k$ by the requirement

(1)
$$\operatorname{Tr}(Q_{s_{il}(m)}^{i}(x)Q_{l}^{j}(x)) \neq 0 \quad \text{iff} \quad l = m$$

 $m,l \in \{1,2,\ldots,k\}$. Then $Q_{s_{ij}^j(m)}^i(x) = Q_m^j(x)$ and the defining relation (1) shows that

$$U_i \cap U_j \ni x \to s_{ij}^x \in S_k$$

is continuous. Since $s_{ij}^x s_{jm}^x = s_{im}^x$, $x \in U_i \cap U_j \cap U_m$, we find that (U_i, s_{ij}) represent an element in $H^1(X, S_k)$. This set is trivial by assumption. Therefore there are continuous functions

$$s_i : U_i \to S_k$$

such that

$$s_{ij}^{\mathbf{x}} = s_i^{\mathbf{x}}(s_j^{\mathbf{x}})^{-1}, \qquad \mathbf{x} \in U_i \cap U_j.$$

Then

$$Q_{s_{i}^{i}(m)}^{i}(x) = Q_{s_{i}^{i}(m)}^{j}(x), \qquad m \in \{1, 2, ..., k\}, \qquad x \in U_{i} \cap U_{j}.$$

For each $m \in \{1, 2, ..., k\}$, we define $Q_m \in C(X, M_n)$ by

$$Q_m(x) = Q_{s_i^x(m)}^i(x), \qquad x \in U_i.$$

Then $\{Q_1(x), ..., Q_k(x)\}$ are the minimal projections in A(x) for all $x \in X$. For any sample $d_1, d_2, ..., d_k$ of integers satisfying

$$\sum_{i=1}^k d_i = n,$$

the set $\{x \in X | \text{Tr}(Q_i(x)) = d_i, i = 1, 2, ..., m\}$ is open and closed. In order to show that span $\{Q_1, Q_2, ..., Q_k\}$ can be diagonalized over X, we can therefore restrict attention to such a set. Or, for simplicity of exposition, assume that

$${x \in X | \operatorname{Tr}(Q_i(x)) = d_i, i = 1, 2, ..., m} = X.$$

Let $p_1, p_2, ..., p_k$ be diagonal projections in M_n such that $Tr(p_i) = d_i$, i = 1, 2, ..., k. Fix $x_0 \in X$. There is a unitary $U \in C(X, M_n)$ such that

$$U(x_0)Q_i(x_0)U(x_0)^* = p_i, \qquad i = 1, 2, ..., k.$$

Then

$$\sup_{i} \|U(x)Q_{i}(x)U(x)^{*} - p_{i}\| < \frac{1}{2}$$

for all x in a neighbourhood of x_0 .

Let $g: [0, 1] \rightarrow [0, 2]$ be a continuous function which is zero in a neighbourhood of 0 and g(t) = 1/t, $t \ge \frac{1}{2}$.

Let $W_i \in C(X, M_n)$ be given by

$$W_i(x) = p_i [g(p_i U(x)Q_i(x)U(x)^*p_i)]^{1/2} U(x)Q_i(x)U(x)^*$$

 $x \in X$, i = 1, 2, ..., k. As shown by Glimm in the proof of [3, Lemma 1.8], we have that

$$W_i(x)^*W_i(x) = U(x)Q_i(x)U(x)^*$$

$$W_i(x)W_i(x)^* = p_i, \qquad i = 1, 2, ..., k$$

for all x in the same neighbourhood of x_0 as above.

Let $W = \sum_{i=1}^{k} W_i$. Then W(x) is a unitary such that

$$WUQ_i(WU)^*(x) = p_i, \qquad i = 1, 2, ..., k$$

for x in this neighbourhood.

We conclude that there is a finite covering $\{U_i|i=1,2,...,N\}$ of X and continuous functions

$$W_i \colon U_i \to U(n)$$

such that

$$W_i(x)Q_j(x)W_i(x)^* = p_j, \quad j = 1, 2, ..., k, \quad x \in U_i.$$

Especially $W_j(x)W_i(x)^* \in \{p_1, p_2, ..., p_k\}', x \in U_i \cap U_j$. Let \mathcal{W} denote the unitary group of $\{p_1, p_2, ..., p_k\}'$. Then $(U_i, W_j W_i^*)$ define an element in $H^1(X, \mathcal{W})$.

Since $\{p_1, p_2, ..., p_k\}' \simeq M_{d_1} \oplus M_{d_2} \oplus \cdots \oplus M_{d_k}$, we have that

$$\mathscr{W} \simeq U(d_1) \times U(d_2) \times \cdots \times U(d_k).$$

Since $H^1(X, U(d_i)) = 0$ for all i by assumption, we conclude that $H^1(X, \mathcal{W}) = 0$. Hence there are continuous functions

$$V_i: U_i \to \mathscr{W}$$

such that $W_i(x)W_i^*(x) = V_i^*(x)V_i(x)$, $x \in U_i \cap U_j$. Define $T \in C(X, M_n)$ by

$$T(x) = V_i(x)W_i(x), \qquad x \in U_i.$$

Then T diagonalizes A.

REMARK. If dim A(x) is constantly equal to n, the above proof works with the assumptions that

$$H^1(X, S_n) = H^1(X, U(1)) = 0.$$

Since $H^1(X, U(1)) \simeq H^2(X, \mathbb{Z})$, the lemma that results follows from some of the arguments used to prove Theorem 5.3 in [4]. In this case the lemma is very close to Theorem 1.4 of [4]. The morale of the lemma is that the worst or most effective obstruction to diagonalization of matrices over C(X) arises from the fact that the number of eigenvalues of a normal element in $C(X, M_n)$ can vary over X. If this number is constant the multiplicites are irrelevant as long as X satisfies the assumptions of the lemma.

THEOREM 3. Let X, Y be compact Hausdorff spaces, and

$$\varphi\colon C(X,\,M_n)\to C(Y,\,M_m)$$

a unital *-homomorphism (such that especially n|m). Assume that

$$\dim \varphi(C(X,M_n))(y)$$

is constant over Y and that $H^1(Y, U(k)) = H^1(Y, S_k) = 0$, $k \le m/n$. Then there is a unitary $U \in C(Y, M_m)$ and m/n continuous functions $\psi_i : Y \to X$, i = 1, 2, ..., m/n, such that

 $y \in Y$, $f \in C(X, M_n)$.

PROOF. Define elements \tilde{e}_{ij} of $C(X, M_n)$ by

$$\tilde{e}_{ij}(x) = e_{ij}, \qquad x \in X$$

where $\{e_{ij}\}$ is the standard system of matrix units in M_n . Since φ is unital,

$$\{\varphi(\tilde{e}_{ij})(y)\}$$

is a system of matrix units in M_m for all $y \in Y$. Let $\{f_{ij}\}$ be the standard system of matrix units in M_m , and define

$$c_{ij} = \sum_{d=1}^{m/n} f_{i+(d-1)n, j+(d-1)n}, \qquad i, j = 1, 2, ..., n.$$

For each $y_0 \in Y$ there is a unitary $U \in C(Y, M_m)$ such that

$$U(y_0)\varphi(\tilde{e}_{ij})(y_0)U(y_0)^* = c_{ij}, \qquad i, j = 1, 2, ..., n.$$

But then

$$\sup_{ij} ||U(y)\varphi(\tilde{e}_{ij})(y)U(y)^* - c_{ij}|| < \frac{1}{2}$$

in a neighbourhood of y_0 . Take a function g as in the proof of Lemma 2, and define an element $W \in C(Y, M_m)$ by

$$W(y) = \sum_{i=1}^{n} c_{i1} [g(c_{11}U(y)\varphi(\tilde{e}_{11})(y)U(y)^*c_{11})]^{1/2} U(y)\varphi(\tilde{e}_{1i})(y)U(y)^*, \quad y \in Y.$$

Then W(y) is a unitary such that

$$W(y)U(y)\varphi(\tilde{e}_{ij})(y)U(y)^*W(y)^* = c_{ij}, \qquad i, j = 1, 2, ..., n$$

for all y in the above neighbourhood of y_0 . The details needed to verify this can be found in [3, proof of lemma 1.8] and [1, proof of lemma 2.3].

Thus we can find a finite covering $\{U_i, i = 1, 2, ..., N\}$ of Y and continuous functions

$$W_i \colon U_i \to U(m)$$

such that

$$W_k(y)\phi(\tilde{e}_{ij})(y)W_k(y)^* = c_{ij}, \quad i, j = 1, 2, ..., n, \quad y \in U_k.$$

Let \mathscr{W} denote the unitary group of $\{c_{ij}\}' \subseteq M_m$. Then $(U_i, W_i W_j^*)$ defines an element in

$$H_1(Y, \mathscr{W})$$

Since $\{c_{ij}\}' \simeq M_{m/n}$, our assumption on Y assures that there are continuous functions

$$V_i \colon U_i \to \mathcal{W}$$

such that

$$W_i W_j^* = V_i^* V_j$$
 over $U_i \cap U_j$.

Define $S \in C(Y, M_m)$ by

$$S(y) = V_i(y)W_i(y), \quad y \in U_i, \quad i = 1, 2, ..., N.$$

Then S is a unitary in $C(Y, M_m)$ such that

$$S(y)\varphi(\tilde{e}_{ij})(y)S(y)^* = c_{ij}, \quad y \in Y, \quad i, j = 1, 2, ..., n.$$

Let
$$f \in C(X)$$
. $i, j \in \{1, 2, ..., n\}$. Then

$$\begin{split} S\varphi(f\otimes e_{ij})S^*(y) &= S\varphi(f\otimes 1)\varphi(\tilde{e}_{ij})S^*(y) \\ &= S\varphi(f\otimes 1)S^*(y)c_{ij} = c_{ij}S\varphi(f\otimes 1)S^*(y), \qquad y\in Y. \end{split}$$

Hence $S\varphi(C(X) \otimes 1)S^*(y) \subseteq \{c_{ij}\}'$ for $y \in Y$.

Since $\{c_{ij}\}' \simeq M_{m/n}$ and dim $\varphi(C(X) \otimes 1)(y)$ is constant over X by Lemma 1, we conclude from Lemma 2 that there is a unitary $T \in C(Y, M_m)$ such that $T(y) \in \{c_{ij}\}'$ and

$$TS\varphi(f\otimes 1)S^*T^*(y)$$

is diagonal for all $f \in C(X)$, $y \in Y$.

Let

$$p_1 = \sum_{i=1}^n f_{ii}, \qquad p_2 = \sum_{i=n+1}^{2n} f_{ii}, ..., \quad p_{m/n} = \sum_{i=m-n+1}^m f_{ii}.$$

Since $TS\varphi(C(X) \otimes 1)S^*T^*(y) \subset \{c_{ij}\}'$,

$$TS\varphi(C(X) \otimes 1)S^*T^*(y) \subset \operatorname{span}\{p_1, \dots, p_{m/n}\}$$

for all $y \in Y$.

For each $y \in Y$ there are then elements

$$\psi_1(y), \psi_2(y), ..., \psi_{m/n}(y) \in X$$

determined by

$$TS\varphi(f\otimes 1)S^*T^*(y)p_i = f(\psi_i(y))p_i, \qquad i=1,2,...,\frac{m}{n}$$

 $f \in C(X)$. Clearly, $\psi_i : Y \to X$, are continuous functions.

The desired unitary, U, is TS and it is a routine matter to check that $U, \psi_1, \psi_2, ..., \psi_{m/n}$ have the right property.

It is clear that there is a great freedom in the choice of the unitary U of Theorem 3. But the question is how much freedom there is in the choice of the functions $\psi_1, \psi_2, ..., \psi_{m/n}$. This is answered by the following

Proposition 4. Let X, Y be compact Hausdorff spaces and let

$$\varphi: C(X, M_n) \to C(Y, M_m)$$

be a unital *-homomorphism such that $\dim \varphi(C(X, M_n))(y)$ is constant over Y. Assume $\psi_1, \psi_2, ..., \psi_{m/n}$ are continuous functions from Y to X such that (2) holds for some unitary U. Let $\varphi_1, \varphi_2, ..., \varphi_{m/n}$ be continuous functions from Y to X.

Then there is a unitary W in $C(Y, M_m)$ such that (2) holds with φ_i substituted for ψ_i , i = 1, 2, ..., m/n, and W substituted for U if and only if

$$\{\psi_1(y), \psi_2(y), ..., \psi_{m/n}(y)\} = \{\varphi_1(y), \varphi_2(y), ..., \varphi_{m/n}(y)\}, y \in Y.$$

If Y is connected this condition is equivalent to

$$\{\psi_1, \psi_2, ..., \psi_{m/n}\} = \{\varphi_1, \varphi_2, ..., \varphi_{m/n}\}.$$

PROOF. Assume first that (2) holds for $\varphi_1, ..., \varphi_{m/n}$ and W. Taking the trace, it follows that

$$\sum_{i=1}^{m/n} f(\varphi_i(y)) = \sum_{i=1}^{m/n} f(\psi_i(y))$$

for all $y \in Y$, $f \in C(X)$.

Since X is a compact Hausdorff space, this is only possible if

(3)
$$\{\varphi_1(y), \varphi_2(y), ..., \varphi_{m/n}(y)\} = \{\psi_1(y), \psi_2(y), ..., \psi_{m/n}(y)\}, y \in Y.$$

Conversely, assume that (3) holds.

Let $k = \dim \varphi(C(X) \otimes 1)(y)$, $y \in Y$.

Let $N_1, N_2, ..., N_k$ and $M_1, M_2, ..., M_k$ be two partitions of $\{1, 2, ..., m/n\}$ into k disjoint non-empty subsets such that $\#N_i = \#M_i$, i = 1, 2, ..., k. Consider

$$\bigcap_{l=1}^{k} \left\{ y \in Y \mid \varphi_i(y) = \varphi_j(y) = \psi_n(y) = \psi_m(y), \quad i, j \in N_l, \quad n, m \in M_l \right\}.$$

Such a subset of Y is called a configuration.

From (3) and the assumption that $\dim(C(X) \otimes 1)(y) = k$, it follows that the configurations form a finite covering of Y by mutually disjoint subsets. Since each configuration is obviously closed, we see that they are in fact both closed and open.

Let $\{F_1, F_2, ..., F_N\}$ denote the non-empty configurations. For each $i \in \{1, 2, ..., N\}$, it is clear that we can find a unitary $\tilde{W}_i \in M_m$ such that

$$\widetilde{W}_i \begin{bmatrix} f \circ \psi_1(y) & & & & \\ & f \circ \psi_2(y) & & 0 & \\ & & \ddots & & \\ & 0 & \ddots & & \\ & & f \circ \psi_{m/n}(y) \end{bmatrix} \widetilde{W}_i^* = \begin{bmatrix} f \circ \varphi_1(y) & & & & \\ & f \circ \varphi_2(y) & & 0 & \\ & & \ddots & & \\ & & 0 & \ddots & \\ & & & f \circ \varphi_{m/n}(y) \end{bmatrix}$$

 $y \in F_i$, $f \in C(X, M_n)$.

Define

$$W_i(y) = \begin{cases} \widetilde{W}_i, & y \in F_i \\ 0, & y \notin F_i \end{cases}$$

and

$$V = \sum_{i=1}^{N} W_i.$$

Then V is a unitary in $C(Y, M_m)$ such that

$$V(y) \begin{bmatrix} f \circ \psi_1(y) & & & \\ & f \circ \psi_2(y) & & 0 \\ & & \ddots & \\ & & 0 & \ddots & \\ & & & f \circ \psi_{m/n}(y) \end{bmatrix} V(y)^* = \begin{bmatrix} f \circ \varphi_1(y) & & & \\ & f \circ \varphi_2(y) & & & 0 \\ & & \ddots & \\ & & 0 & \ddots & \\ & & & f \circ \varphi_{m/n}(y) \end{bmatrix}$$

 $y \in Y$. Let $W = UV^*$. Then (2) holds for $\varphi_1, \varphi_2, ..., \varphi_{m/n}$ and W.

If Y is connected, there is only one non-empty configuration. Hence (3) implies that

$$\{\psi_1, \psi_2, ..., \psi_{m/n}\} = \{\varphi_1, \varphi_2, ..., \varphi_{m/n}\}$$

in this case.

REMARK. The conclusion of Theorem 3 is not true if $H^1(Y, U(k)) \neq 0$ or $H^1(Y, S_k) \neq 0$ for some $k \leq m/n$. This follows from [4, Theorems 4.1 and 4.2], or rather their proofs, since the non-diagonalizable elements constructed there generate abelian C*-subalgebras with constant dimension over X_0 .

REFERENCES

- O. Bratteli, Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234.
- E. Effros, On the structure of C*-algebras: Some old and new problems, in Operator algebras and applications, I (Proc. Kingston, Ontario, (1980), ed. R. V. Kadison, (Proc. Sympos. Pure Math. 38) pp. 19-34. American Mathematical Society, Providence, R.I., 1982.
- J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340.
- K. Grove and G. K. Pedersen, Diagonalizing Matrices over C(X), J. Funct. Anal. 59, (1984), 65-89.
- M. Karoubi, K-Theory (Grundlehren Math. Wiss. 226), Springer-Verlag, Berlin Heidelberg -New York, 1978.
- 6. J. Vesterstrøm, On the homomorphic image of the center of a C*-algebra, Math. Scand. 29 (1971), 134-136.

MATEMATISK INSTITUT AARHUS UNIVERSITET NY MUNKEGADE DK-8000 AARHUS C DENMARK

z,