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THE LAW OF LARGE NUMBERS,
EXAMPLES AND COUNTEREXAMPLES

V. DOBRIC

In this paper we construct some examples and counterexamples that give
answer to some open problems arising in the law of large numbers for non-
separable and non-measurable random variables, a theory which has recently
been developed by J. Hoffman-Jergensen [5] and E. Giné and J. Zinn [3].

I would like to thank J. Hoffmann-Jergensen who has greatly influenced on
the present paper.

Throughout all of this paper, (S, ¥, u) denotes a probability space, B a
Banach space, B* its dual and LLN(u, B) the set of all functions f:S — B
which satisfy the following version of the law of large numbers (see [5])

(*) JaeB: lim [la—1/n ), f(s)l=0 for pu®—as.(s;) €S>,
i=1

n—a

where (S, ¥, u®) is the countable product of (S, &, u) with itself.

From [5] we know that if f e LLN(y, B), then [*||f|ldu < o0, fis Gelfand
integrable and the a occurring in (*) equals the Gelfand integral of f.
M. Telegrand [6] has shown that if f € LLN(y, B), then the convergence in ( * )
takes place in probability, too, and if [*||f||du < oo and we have convergence
in probability in ( * ), then we also have convergence a.s.

We shall use the notation of [5], where the author considers the following
four function spaces which we shall frequently use

Li(u,B) = {f:S — B| f is weakly p-integrable}
Li(u, B) = {f:S - B| f is Gelfand-integrable}

L'(u, B) = {f: S - B| f is Bochner-integrable}
Ly(u, B) = {f:5 - B| [*lIf (s)lln(ds) < oo}.
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1. Examples of Banach spaces that satisfy LLN.

First we shall prove two very useful lemmas. We let ¢ denote the cardinal
of the continuum, i.e. ¢ = card R.

LEMMA 1.1. Let (S, %, u) be a probability space, where S is a Polish space
with card S = ¢, & is the Borel g-algebra on S and p is a diffuse probability
measure. Then there exists a class F = {F,|te T} of subsets of S such that
card T = ¢ and

(1.1.1) card F, £ Ny, teT,
(1.1.2) Fonkip.=9, t #¢t, t,t"eT,
(1.1.3) VBe & with u*(B) >0, 3teT suchthat B nF>? + @,

(1:1.4) U F.=S.
teT

Proor. Let S be a Polish space with card S = c¢. Then card ¥ = ¢ and
also card ¥® = ¢. Let &, = {Be ¥*|u*(B) > 0}. Then card ¥% = c. The
set § and the family 7 may be enumerated by cardinals less than c:
ST ={Bt <c} and S = {s,|t < c}. The set B,e ¥ has positive measure
and therefore B, # @ . Let us take (s{) € By and define the set Fo < S by

_ {59,590} if soe{s3,5%,...,...}
0 {s0,53,53,...,...} otherwise.

Then card Fy £ N, F$ N By # @ and sq € F,. The set (F§)® has u® measure 1
and therefore it intersects every set of positive p® measure, in particular
(F§)° N B, #+ @. Let us take (s})e (F§)® n B, and define the set F, S S by

Fo- {s1,5%,. 0.} if s; € {s},83,..,,...} UF,
Y7 {s1,sh,88,...,...} otherwise.

Thencard F; S Ny, F nBy # @, Fy nFy = ¢ and s, € Fy U F,. By trans-
finite induction we shall finish our proof. To this end, suppose that the
family {F,|t <a}, a <c, has been constructed such that it satisfies
(1.1.1)~(1.1.4) with a instead of c. Let

F*= |J F,.

t<a
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We claim that
B, n ((F*¥)* # ¢.
To show this, it is enough to prove that
(1.1.5) (u™)*(B, N ((F*)* > 0.

Borel sets in a Polish space are either countable or have cardinality c, and since

card F* = card () F, Scarda-N, <,
t<a

we conclude, because u is diffuse, that
Hy(F?) = 0.
By Lemma 2.1 in [5], it then follows that
(™) (((F*F)*) =1,

which implies (1.1.5) since u(B,) > 0. Let us take (sf)e B, n ((F*¥)® and
define the set F, S S by

- {53,530} if s,€{s},83,...,...} UF*
{54 53,53, ...,...} otherwise.

Then card F, £ Ny, F, nF, =%, Vt <a, s,e|)i<oF, and F? "B, #9.
Hence by transfinite induction (1.1.1)-(1.1.4) holds

LEMMA 1.2, Let (S, %, n) be a probability space, where S is a Polish space
withcard S = ¢, & is the Borel o-algebra and p is a diffuse probability measure.
Then for every neN there exists a class #, = {F,|te T} of subsets of S such
that card T = ¢ and

(1.2.1) card F, S n+1, VteT,

(1.22) FonFp.=¢, t #t', t,t"eT,

(123)  VBe " with y"(B) > 0, 3te T such that F* A B + @,
(1.24) U F.=5s.

teT
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Proor. Replace ¥ with " in the proof of Lemma 1.1.

THEOREM 1.3. Let (S, %, u) be a probability space, T a set and f: Sx T— R
a stochastic process such that f(s) = f(s," )el,(T), for every seS. If the
function n:S x S — R defined by

(1.3.1) nsv)= Y f@s,0)f(@1t) for(s,v)eSxS

teT

is u x pu measurable and

(1.3.2) j* (s, s)u(ds) < oo,

5
then f € LLN(u,,(T)).

Proor. Directly from the definition of # it follows that

In(s, )l = /n(s,)/n(,v), V(s,v)eS xS,

hence Fubini’s theorem and (1.3.2) shows that ne L,(S x S, 4 x u). Since

T(s) = {t] f(s,1) # O}

is countable and

f Y f (s, )f 0, t) pdv) £ /n(s, s) J 1, v)ud) < o,

teT(s)

we have

I nd(u x p) = u(dS)I ;( )f (5,0)f (¢, v)u(dv)
S

SxS§

= | X f(stmt)u(ds),

J teT
S

where m(t) = | f(v, t)u(dv) is the mean of f(-, ). Hence by subtracting from f
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its mean we may assume that

(1.3.3) j nd(u x p) = 0.

SxS

We then want to show that

(1.3.4) lim

n— o

=0 for u®—as. (s;)eS™.
2

1 n
n igl f(s:)

The limit in (1.3.4) can be written in the following way

2 1 2
= lim (— Y f(si,t)>
2 n

(1.3.5) lim

n-— ©

1 n
n igl f(s:)

I
5
™M

Z,l n(s;, s;)

—
~.

N - L2
= lim — Y n(s,s)+ lim = Y #nis,s)).

n— oo i=1 n— oo 1si<jsn

The last term in (1.3.5) is obtained by symmetry of n. The law of large

numbers in [2, p. 122] applied to X; = the outer u®-envelope of \/n(¢;, &),
and condition (1.3.2) imply that

lim Lz Y n(si,s) =0 for p*—as. (s;)eS™.

n— oo i=1

It remains to prove that the last term in (1.3.5) tends to 0 u® —a.s. Let us
define

2

=— s,s) and F,=a{U]i2n} fornz=2.
D), D, M) (Uilizn)

<jsn

Then for n = 2 we have

2
U, = E{U,| #,} = ) | Si;js"E{rl(sn )| Fa}

= E{"(sh sZ)‘ 5'-"}
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If we put 7_,=%, and S_, = E{n(sy, s2)| #,} for n =2, then
{S4, T, —0 <n S -2} is a martingale and E|S_,| < oo because

nel(uxnp). If

f—ao - néZ *g;m

then Theorem 11.1.1 in [2, p. 376] ensures that

(1.3.6) lim S, (say S_,) exists uxpu—as.,
(1.3.7) S_ . is 7~ measurable,
(1.3.8) EIS_ .| < 0.

Since J _, is g-algebra of permutable events, the Hewitt-Savage zero-one law
(see [2, Corollary 7.3.8]) ensures that S__ is a constant random variable
which coincide with En. But by (1.3.3) En = 0 and therefore

lim U, =0.
Consequently
.1 . n—1
lim — Z n(s,,s;) = lim ——U, =0 for u®—as. (5;) € S™.
oo M7 <icjsn noo N

Theorem 1.3 gives a sufficient condition for f to belong to LLN(y, [,(T))
and naturally it brings us to the question whether the condition of Theorem
1.3 is also necessary. But in general, as the following result shows, this is not
true.

THEOREM 1.4. Let (S, &, u) be a probability space, where S is a Polish space
withcard S = ¢, & is the Borel o-algebra and p is a diffuse probability measure.
Let # = {F,|teT} be the class of subsets of S that is established by
Lemma 1.2 withn =2, and let f:S x T — R be the function defined by

(14.1) f6s,t) = 1g(5).
Then the functic;n s B f(s) = f(s,-) is an element of LLN(u, I,(T)) but
(5,0) BaGs,0) = Y f(5,0)f@,0)

teT

is not u x pu measurable.
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Proor. For every se S we have that f(s) e l,(T) because

W= 2 IS0 =Y N6 = ¥ 156) =1

teT teT teT

and this shows that s » f(s) is a map from S to I,(T).
We shall prove that

1 n
(14.2) H; .; f(s)

-0 pu®—as. (s5;)eS”
2

that is f € LLN(y, [,(T)) with mean 0. We have

1 » 2 1 n n
|t S =55 5 5 reomsn
i 2 N T der
1 n n
=z ‘21 -Zx t TIF,(SI')IF,(S])
i=1j= €
l n n
= n? '21 .zl lF(si’sj)
1= J=
where
F= ) F/xF,
teT
If we define
(1.4.3) L = {(ss) € S™|s; # 5, ¥i,j, i #+ j},

then u®(L) = 1 because pu is diffuse. Since card F, < 3, we have for all (s;)e L

1 n 2 1 n n
“* Z f(s9) =—3 Z Z lF(shsj)
ni=1 2 W0y =
l n n
== X 1r(s:) Y 1£(s))
n° =1 ter i=1
1 2 3
< = ==
~n i§l3teT tr(5) n
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which shows that f e LLN(u, I,(T)). It remains to prove that the scalar product

n(s1,82) = (f(s1) f(s2)) = Z 1g, (s1)1F,(s2) = 15(sy,82)

teT

is not a p x u measurable function. To this end, notice that if se F,, for the
section F(s) we have

F(s)= {veS|(v,s)eF} = {veS|(v,s)e |J F, x F}
teT
= {veS|3teT:(v,s)eF,x F,} = F,,
and so u(F(s)) =0 for all seS. If A S F is a ux u measurable set, then
1(A(s)) = 0 for every section A(s), s€ S, which implies that

(ux u)(A4) = Ju(A(S))u(dS) =0,

and consequently (1 x ), (F) = 0. If Be ¥% and (u x u)(B) > 0, then

B\ F= Bﬂ(U F,xF,)= U BN F.xF)+ ¢
teT teT
which implies that (ux pu)*(F) =1, and so F and thus n is not uxpu
measurable.

ReMARK. The family {F,|t e T} has been chosen so that

s=JF
teT

which leads to

1 2 2 1
- Z f) 2=
2 n

n =1

Therefore, for every (s;) e L we have

Jis s s
n 2 n-

"1; i=il f(s)
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which implies that

piis “f 5 6, = v} -

The Portmanteau theorem states that if

1 n
ﬁ i=zl f(s)

converge in law to some Gaussian Radon probability measure y on [,(T), then

\/;“Zlf(S)

where B, is an open ball with radius o. But for a < 1
X fs)

{‘f <=0

and thus f does not satisfy CLT (Central Limit Theorem), but it does satisfy
LLN.

lim sup P {l

n— o

< a} 2 y(B,)

The following theorem shows that there exist functions that have non-
essentially separable valued range, but do satisfy LLN. Several other examples
are known (see e.g. [5]).

THEOREM 1.5. Let (S, &, u) be a probability space, where S is a Polish space
withcard S = ¢, & is the Borel o-algebra and u is a diffuse probability measure.
Then for any set T with card T 2 c we have that L} (u, B) is the proper subspace
of LLN(y, B), where B can be any of the following spaces: 1,(T) for pe (1, o]
or co(T).

Proor. It is no loss of generality to assume that card T =c. Let
F = {F,|te T} be the class of subsets of S that has been established by
Lemma 1.2 with n = 1, and let f: S x T — R be the function defined by

(15.1) £(5,t) = 1£(s).

For every seS, f(s) = f(s,-) belongs to [,(T) for all p 2 1 and also co(T).
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If we put
L= {(sk)eswlsi % sj9 Vl,],i % j}’

then u®(L) = 1 since u is diffuse. For (s;) e L we have

p 1 P 2\? P
= — l . S b =
P t:;T (" i=zl F'(Sl)> B n<"> n?~!

| S
H; i=zl S(s)

for p 2 1 and

= sup
@ teT

s £ r6

| 2
. L 1F,(s.-)| =2,

which shows that f € LLN(y, [,(T))forall 1 < p = o0, and f € LNN(y, ¢o(T)).
If seF, se€F,,and 1 < p £ o, then

(1.52)  WE-fEN,=1 if t#¢ and |If(s)—f(N,=0 if t=1.

Let Ne%. Then by (1.5.2), f(S\N) is separable if and only if f(S\N)
is countable. By definition of {F,|te T} f maps at most two elements of S \N
to the same element of f(S \N). Hence f(S \N) is countable if and only if
S \N is countable, and since yu is diffuse, we have that if f(S \N) is separable,
then u(S \N) = 0. Consequently f does not have essentially separable valued
range and therefore f is not Bochner u-measurable.

Remark. For p =1 the function defined by (1.5.1) does not belong to
LLN(u, I,(T)). In [S, Theorem 2.4], its is shown that if f e LLN, then f is
Gelfand integrable. But if f € Li(u,[,(T)), then

j S (S)u(ds) =0
S

since f(-,t) =0 pu—as.forallteT. However,ifa, = 1,then a = (a,) el (T)
= (IL(T)* and

f a(f (s)u(ds) = ZT 17,(s)uds) = 1
S

s
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a(ffd,u):O#l,

so f ¢ Li(p, 1,(T)) and consequently f ¢ LLN(y, [,(T)). With a bit more care
one can even show that f is not weakly measurable when we consider f as
an l,(T)-valued random element.

but

2. LLN for ¢-additive probability measures.

In this chapter we shall consider ¢-additive measures as defined in [4].
In [5, Corollary 4.4], it is proved that

LLN(y, C(T)) = Ly(u, C(T)) 0 Ly(u, C(T))

if T is compact, first countable and separable. We shall now see that if u is
£-additive for some cardinal & > N, then this result holds provided that the
density and the character of T are less than £. Recall that

dens T = min{card D| D dense in T} \

character(T, t) = min{card 47| #"is neigbourhood base at t}

whenever T is a topological space and te T.

THEOREM 2.1. Let (S,%,u) be a probability space, ¢ a cardinal with
& >Ny, and p a E-additive measure. If T is a compact topological space with
dens T < ¢, character(T,t) < & for all te T, then

2.1.1) LLN(y, C(T)) = Ly(u, C(T)) N Ly, C(T)).
ProoF. In [5, Theorem 2.4], it is proved that

LLN(y, B) € Lu(1, B) N Ly (4, B)

for every Banach space B. We shall prove the reverse inclusion. Let
f e Ly, C(T)) 0 Ly(u, C(T)). Then

s

2.12) f 17 (s)lutds) = f supl (5 OJu(ds) < oo
N
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which implies that f is a first order stochastic process. If we can prove that f

is totally bounded in u-mean, then by Theorem 3.3 in [S5], we have
finished. Therefore it remains to prove that

(2.1.3) Ve>0 3JAel(T): J* Wa(f(s)uds) <e, VAedd,

N

where I'(T) = {of|.o/ is finite cover of T} and

Walf) = sup 1/ ()=f ), A S T.

Since dens T < ¢&, there exists D € T such that card D < ¢ and D = T. The
functions f(s): T — R are continuous functions on T for every s€ S, and there-
fore every open U & T we have:

tt'elU telUn

Wu(f(s)) = sup |fis,t)—f (s, 1) = Sup D&f(s,t)-f(s, )l

=Wy np(f(s)), VseS.

The family {s & |f(s,t)—f(s, ')]| t,t’ € T} is a family of u-measurable functions,
so by [4, Corollary 3.2], the functions

Se UU (‘\D(f(s))’ U g T’ U open,
are p-measurable since card(U n D) < & The inequality

Wif ) =2/, VseSVAET,

and (2.1.2) implies

j* Wa(f(s))uds) < 0, VAST.
S

Hence

qu(f (s))uds) < 0, YU T, U open.
N
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For fixed t e T, we have that character(T,t) < £, and so there exists a down-
wards filtering family 4 of open neighbourhoods at ¢ such that card 4" < &,
Since f(s,* ) is continuous at ¢, we have

inf Wy(f(s))= inf sup |f(s,t)—f(s,t') =0, VseS§,
Ne s Ne ¥ treN

€N

and by [4, Corollary 3.2], we have

* inf an(f (S))#(ds)=J inf Wy(f(s))u(ds) =0,
Ne NV Ne ¥
S

N

which implies that for every ¢ > 0 there exist N(t)e .#"such that

-[WN(I)(f(S))“(ds) <e.
N

Since the family .# = {N(t)|te T} is an open cover of T, the compactness
of T ensures that there exists a finite subset o = {N(t;)li = 1,...,n} of .4
such that .« is a cover of T and such that

JWN(,i)(f(s))p(ds) <eg Viji=1,..,n.
s

Recall that a function f: (S, %, u)— B is Bochner u-measurable if f is
weakly pu-measurable and f has u-essentially separable range, that is, if there
exists a u-null set N such that f(S \N) is separable. The ¢-additive measures
give us an opportunity to extend the definition of Bochner measurability in the
following way: A weakly u-measurable function f': (S, &, u) = B is £-Bochner
u-measurable if there exists a u-null set N such that densf(S \N) < £. But
it turns out, as we show below, that we do not get more than the usual
Bochner measurability.

THEOREM 2.2. Let (S, %, u) be a probability space, where u is a E-additive
measure with £ > N, and let f: (S, &, u) = B be a weakly measurable function.
If there exists a u-null set N such that densf (S \N) < &, then f is Bochner
u-measurable.

~

PRrOOF. Let D = {x,|a < I'} be a subset of B such that f(S \N) S D and
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I' < &. Since & > N, it is no loss of generality to assume that D is a vector
space over the rationals, and so that D is a closed linear subspace of B. By
the Hahn-Banach theorem there exist functionals x* € B*, a < I, such that
(2.2.1) fIx I = x¥(x,) and |ix¥| =1, Va<T.

We claim that

2.2.2) x|l = sup x*(x), VxeD.

a<Tl

The inequality = is obvious. So let xe D and let ¢ > Q0 be given. Then
there exists a < I' with ||[x —x,|| < &, and so

lIxll = e+lIx.ll = e+x3(x2) = e+xF(x)+xF(x,—X) S 2e+x3(x).

Thus the converse inequality in (2.2.2) holds. From (2.2.2) we have that

1/6)=xsll = sup XHf(S)=x), VB<T, Vsef(S\N)

since D is a vector space containing f(s) and x,; By Corollary 3.2 in
[4], the function

s b |Lf () —x4ll

is u-measurabile for all § < I' and since f(S \N) S D, we have
S\N & ﬂU {s|1f(s)—x4ll <&}, Ve>O.
r

By [4, Theorem 3.1], there exist a countable set 4 S {®|a < I'} and a null
set Ny 2 N such that

S\No & ﬂU {slIlfG)—xgll <27}, Vn21.
€A

Hence f(S \No) € {xz|Be A}, and so f is essentially separably valued. Thus f
is Bochner u-measurable.

ProposiTION 2.3. Let (S, &, 1) be a probability space, where p is a &-additive
measure with & > N, ; let B be a Banach space, and let f: (S, ¥,u) — B be a
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function such that dens f (S \N) > & for some p-null set N. Then f € LLN(u, B)
if and only if f € Ly(u, B) n Ly,(, B).

Proor. If feLLN(u B), then by [5, Theorem 24], we have that
feLi(u, B) N Li(u,B). If f € LL(u, B) and dens f(S \N) > ¢ for some u-null
set N, then by Theorem 2.2, f is Bochner u-measurable and f e L}(u, B)
ensures that f is Bochner p-integrable; but then f e LLN(y, B) by the well-
known result due to A. Beck ([1, p. 26]).

COROLLARY 2.4. Let (S, &, u) be a probability space, where u is a &-additive
measure with £ > N, and let T be a set such that card T < £. Then

LLN(g, 1(T)) = Ly, 1,(T)) N Ly(w, 1,(T))
for 1 = p < o0.
Proor. This is an immediate consequence of Proposition 2.3 because
dens!,(T) = card T* R, < &Ny = ¢,

and therefore densf'(S) < &.

3. Functions which do not satisfy LLN.

In [3] E. Giné and J. Zinn give a necessary and sufficient condition for
S €LLN(y,1,(T)) provided that f satisfies some measurability condition
(condition NSM(P) in [3]). We shall describe this necessary and sufficient
condition. Let (S, &, u) be a probability space, T some set and f:Sx T — R
a stochastic process. Consider the random metrics defined by

(3.1) d",,(t,r')=(% z uf(si,:).—f(si,t;w’)”pv' for 0 < p < oo,

(32) dn.w(t’ t') = max lf(si’ t)—f(sb t’)|

1sign
for all ¢, € T, their covering numbers N,,(r,f) (i.c. the smallest integer N

such' that T may be covered by N,d, ,-balls of radius r), and their metric
entropies H, ,(r, f) defined by

(3.3) H, ,(r,f) =InN,(r,f).

Then under a certain measurability condition it is shown in [3] that
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feLLN(y,1,(T)) if and only if

(3.4) s »F(s) = su;T) 1f (s, t)| belongs to I!(u)
te
and
3.5)  fim gx TSP =M) _ o0y S0 a0, Vpe (o, ],

n— o n

We shall show that there exists a function f satisfying (3.4) and (3.5), but
f ¢ LLN(y, [ ,(T)), hence the measurability condition in [3] is to be necessary
for the entropy condition to imply LLN(u, [, (T)). Moreover, this function is
Gelfand integrable which shows that in general LLN(y, B) is a proper sub-
space of L§(u, B) N Li(u, B).

THEOREM 3.1. Let (S, &, u) be a probability space, where S is a Polish space
with card S = ¢, & is the Borel 6-algebra and y is a diffuse probability measure.
Let F = {F,|te T} be the class of subsets of S that is established by Lemma
1.1, and let f:S x T — R be the function defined by

(3.1.1) f(s,t) = 1g(s).

Then

(3.1.2) f €Ly, B) n Lg(u, B),

(3.1.3) f ¢ LLN(u, B),

(3.14) [ satisfies the entropy condition (3.4) and (3.5),
(3.1.5) Nup(r.f)Sn+1, Yn21, Vr20, VO < p < o0,

where B is any of the following Banach spaces

I,(T) for 1 < p= o0 or co(T).

Proor. Since

we have

YIfslP=Y 1) =1, VseS, VISp<ow
teT teT
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which implies that functions

f(s):t »1g(s)

belong to [,(T), ||f(s)ll, =1 for all se S and all p, 1 < p < oo, and that

T LS ()l pu(ds) = IIIf(S)II, pds) =1, VI =p<oo.
S N

Hence feL,(u1,(T)) for all 1 <p<oo. For every seS there exists
exactly one t such that 1g(s) = 1, showing that f(s)eco(T) for every se S
and therefore that f € LL(u, co(T)) S Ly, (T)).

Now we shall show that functions s ~ f(s) belong to Lg(u,1,(T)) for
1 <p= oo andto Li(u,co(T)). Let 1 < p < 00; let q be such that

and let x = (x,)el3(T) = I(T). Then

(3.1.6) Y Xl < o0
teT

implying that the set T, = {t|x, # 0} is countable. If
M = {seS|x(f(s)) = ), x1r(s) # O},
teT

then

Ms | F.

teT,

Since F, and T; are countable, then so is M. The measure u is diffuse, and
therefore u(M) = 0, which implies that x(f(-)) is u-measurable and

jx(f (5)u(ds) = 0

s
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for every x e I5(T) and every 1 < p < 0. Thus

(3.1.7) jf(s)u(ds) =0 and feL§ul(T), Vp, 1 <p<oo.
S

The same proof goes for co(T) because co(T)* = I,(T). The space co(T) can be
embedded naturally into [®(T). For every x € [°(T)* we define

X' = X|ey(1)-
Then x'€l,(T) and
X(f(s)) = x(f(s)), VseS.
Now working with x’ we conclude that

(3.1.8) J X'(f(s)u(ds) =0

S

and from (3.1.8) and (3.1.7) we conclude that

(3.19) Jf (s)uds) =0 and  feLglo(T)) N Lok, co(T)).
N

So we have proved (3.1.2). To prove (3.1.3), let

L,°,°={(s,.)eS°° %Zf(si) =1, VneN}, 1<p< .
i=1 p

Then by (1.1.2) we have for all 1 < p = ©

1 n
L,= {(s,-)eS‘”lEIte T: . Y 1g6s) =1, VneN}
i=1
= {(s;)eS®|IeT:{s;lieN} S F,},
and it now easily follows that

Lp= UF‘oo’ 1<p= .
teT
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By (1.1.3) we have B n L, # ¢ for every Be #® with y®(B) > 0, which implies

(w*)*(L,) =1,
and so (3.1.3) follows.

To prove (3.14), it is enough to verify (3.5) for M =1. Let r >0,
n210<p= ooand (s;) e S® be given. Choose t;€ T, j = 1,...,n, such that
s;€ Fy, (see (1.1.4)), and let

U, =T\{ty,...t,}.
If upeU,, then
Il (s) = 1g(s;) =0, Vj=1,..,n

So we have that U, is a d, ,-ball of radius 0. Clearly {t;} for j=1,..,n
are d, ,-balls of radius 0. Hence

Ny f)SN, 0, f)Sn+1, ¥n21,Vr20,¥0<p< oo
since T = U, | ) |Ji=1{t:;}. In particular we have

im £+ Mnso1) < g 10801

n— o n—+ o n

=0.
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