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A PARTIAL CLASSIFICATION RESULT FOR
NONCOMMUTATIVE TORI

KLAUS THOMSEN

Abstract.

It is shown that if two simple noncommutative tori are isomorphic via a =-isomorphism
which preserves a certain maximal abelian C*-subalgebra, then the two antisymmetric
bicharacters defining them are isomorphic.

Introduction.

In [3] the question was raised whether two non-degenerate antisymmetric
bicharacters have to be isomorphic if the simple C*-algebras which they give
rise to by the construction of Slawny [14] are *-isomorphic. The famous
classification results [7], [11], [13] for the rotation algebras give that this is
indeed the case for antisymmetric bicharacters on Z2.

In [3] the authors prove the conjecture in certain cases where the
isomorphism between the noncommutative tori preserves a certain canonical
dense *-algebra. The result of the present paper is in the same spirit. To
state the result, let § and f, be two nondegenerate antisymmetric bicharacters
on Z" and Z™, respectively, and denote by By and Bg the corresponding
simple C*-algebras. Let H and H; be subgroups of 2" and Z* which are
maximal such that

ﬁ(H’ H) = 1’ Bl(HlaHl) =L

Assume that H and H, are complemented. Denote by Ay and Ay, the
abelian C*-subalgebras of By and B generated by {u,lhe H} and {u,|lhe H,},
respectively.

The result is that if there is a *-isomorphism ¢:B; — B such that
©(Ay) = Ay, then B and B, are isomorphic.

The method we use is inspired by work of A. Kumjian [8] and J. Renault
[12]. The idea is to find an abelian C*-subalgebra of the noncommutative
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torus which has the property that pure states extend uniquely, and then
calculate the reduction of the dual groupoid to the spectrum of the abelian
C*-subalgebra. As we shall see, this groupoid contains enough information
to recover the isomorphism class of the bicharacter defining the algebra. But
to get the information out of the groupoid requires a certain amount of
calculation, involving group cohomology.

The method of calculating the dual groupoid, or rather a reduction of the
groupoid to the spectrum of a maximal abelian C*-subalgebra, has been
used before by the author, both in connection with certain inductive limit
C*-algebras [15] and in connection with discrete crossed products of abelian
C*-algebras by free actions [16]. To determine the groupoid, we closely follow
the line of ideas used in [16], exploiting the fact that a noncommutative
torus is, at least in the case we consider, a twisted discrete crossed product
arising from a free action.

For other results on the classification of noncommutative tori we refer to

(31, [4), [5], [6].

I would like to thank J. Tornehave and O. Kroll for helpful remarks on
group cohomology and A. Kumjian for a copy of [8] back in 1984. And
finally, I thank the referee for his many suggestions which have made this
final version more readable.

Let G be a torsion-free abelian group. A bicharacter on G is a map
b:GxG—>T = {zeCllz| = 1}

such thatb(g,,9, +93) = b(91,92)b(91,93) and b(g; +92,93) = b(g1,93)b(92,93)
for all g,,9,,9:€G. b is antisymmetric (or symplectic) if b(g,g) = 1.
Given any bicharacter b on G, we can define an antisymmetric bicharacter
B by

B(g,h) = b(g,h)b(h,g), h,geG.

A bicharacter b is said to be nondegenerate if §(G,g) = {1} implies g = 0
or, equivalently, if b(g,h) = b(h,g) Yhe G implies g = 0. For each non-
degenerate bicharacter b, there is (up to *-isomorphism) a unique C*-algebra
B generated by a set {u,|g € G} of unitaries satisfying

(1) uguy = b(g,h)uy4p, gheG.

This was shown by Slawny in [14].
Given two abelian torsion-free groups G, G, with nondegenerate bi-
characters b, b,, respectively, the C*-algebras B, and By are *-isomorphic
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if there is a group isomorphism ¢: G — G, such that

ﬁl ((P(g), (P(h)) = B(.q’ h)’ gah € G

In this case f and B, are said to be isomorphic. This results from [14]. In
particular, we sec that the C*-algebra B, depends only on f§, and not on b,
thus justifying our notation.

Although it is not strictly necessary for all that follows, we will restrict
our attention to the finitely generated case and take G = Z", neN. Also,
fix a nondegenerate bicharacter b on G. A subgroup H € Z" will be called
a maximal kernel group for f§ if H is maximal among the subgroups Ho
satisfying f(Ho, Ho) = {1}, that is, H is a maximal subgroup satisfying

b(g,h) = b(h,g), hgeH.

Fix such a maximal kernel subgroup H. By [10, Proposition 3.2], there is a
function f: H — T such that

bg.h) = f(@)~'f (W) 'f(g+h), gheH.
It follows that we can define a unitary representation w of H into B, by
wy = f(h)u,, heH.

Let Ay denote the abelian C*-subalgebra of B, generated by {w,|he H}.

There is a *-homomorphism =: C(I? ) = Ay determined by the requnrement
nh)=w,, heH=HSCWH). = is dual to the map n*:A,—A
given by

n*(w)(h) = w(w,), wedy, heH.
ASSERTION A: 7 is a *-isomorphism.

To prove this,-we apply a result of Arveson [2] in a form given in [9].
By this it suffices to exhibit a faithful state w on Ay such that w(w,) =0
if h # 0.

We can take w to be the normalized trace of Bj.

Now, define a homomorphism 4,:G — A by

Au(g)(h) = B(g,h), geG, heH.

Observe that keriy = H by the maximality of H. Define an action
«: G — Aut C(H) by

o0,(/)e) = f(Au(g)), feC(H), teH, geG.
AsserTioN B: n(a,(f)) = un(f u¥, geG, feC(A).
The proof of Assertion B consists of checking the identity for f = he H
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= A € C(A). We find, with we Ay,

n(ay(h)) (@) = ay(h)(n*(w)) = h(Ax(g)n*(®)) = h(A4(g))h(n*(w))
= B9, Ww(n(h)) = B(g, h)f (h)uy(w)
= f(Wuuput (@) = uw,ut(w) = um(h)ui(w).

This gives Assertion B.

AsserTION C: ug = 1 and u} = b(g,g)u_,, geZ"
Since

Uu_qu, = b(—gyg)“o = b(g,g)uo,

it suffices to show that u, = 1. For this, observe that f(0)u, = wo = 1 since
w is a unitary representation. On the other hand, f(0)~'f(0)"'f(0+0)
= b(0,0) = 1, so f(0) = 1, proving the assertion. ’

AsserTioN D: If geZ"\H, Adu,, defines a freely acting #*-auto-
morphism of A4y.

Since Ag(g) #0 in A for such g, Assertion D is an immediate
consequence of Assertions B and A.

LeMMA 1. Ay has the extension property in By, ic. the property that every
pure state of Ay has only one state extension to B,. Furthermore,

Bﬂ = A" @ Span{ab"balbeBp, aGA"}

and there is exactly one conditional expectation Py of Bg onto Ay. Py is
faithful and satisfies

Pylau,) =0, acAy, GeZ" \H.
ProoF. Set
S = {u,lge (2" \H) u {0}}.

It follows from the definition of B, that the subspace span AyS = spanSA4y
is a dense *-subalgebra of B,. Except for the faithfulness of Py all statements
of the lemma follow from the proof of [16, Proposition 4 and Lemma 11].
The faithfulness of Py is proved be showing that

is a two-sided ideal in B in the same way as in [16, Lemma 13]. Since B,
is simple by [14], Py is faithful.
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The following short introduction to the dual groupoid is also found in [16].
We repeat it here for the convenience of the reader.

Let B be an arbitrary C*-algebra. The dual groupoid G(B) of B consists
of the extreme points in the unit ball of B* endowed with the relative weak*
topology and with a groupoid structure which we now describe.

The polar decomposition of an element ueG(B) produces a triple
(uy,v, u;) where u;, u, are states on B and v is a partial isometry in B**.
The connection between p and (uy,v, u,) is given by

™ H() = @) = pa(-0)

where all functionals are considered as acting on B**. The triple (uy,0, u,)
is determined uniquely by (*) and the requirements

(**) v*v = supp up, vv* = supp
where supp y; denotes the support projection of y; in B**, i = 1,2,

Observe that u,, u, are pure states on B since u is extremal.
The groupoid structure of G(B) is given by the formulas

(Hl’va ”2)(#21 u, H3) = (ﬂhl’“, #3)
(”19”9 l‘tZ)_l = (”2’ U*vul)-

The range map r and the source map s of G(B) are given by

r(.uhv, #2) = Hy,
s(l"’l’ v, “2) = Ha.

This groupoid structure of G(B) is compatible with the weak* topology
and makes G(B) into a topological groupoid.

Now, consider our “noncommutative torus” B, with the abelian C*-sub-
algebra 4. We define

G(Bg, Ay) = {u = (U1, H2) € G(Bg)| py 4, and py 4, are pure}.

Then G(By, Ay) is the reduction of G(B;) to the spectrum of Ay. It is a sub-
groupoid of G(Bg), and it follows from [12] that it is a locally compact
groupoid in the relative weak* topology.
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Now we make the crucial assumption that H is complemented in 2", i.e.
that there is a subgroup H' S Z" such that Z"= H @ H*. We remark
that this assumption is automatically satisfied if f is locally infinite in the
sense that f(g, h)" = 1 for some meN implies that fi(g,h) = 1. In this case,
Z"/H is torsion-free so that the sequence

0-H-»2"-2"H->0

splits. Of course, H =~ Z, H* =~ Z* for some d,k €N with d +k = n.
It is easy to see that there has to be a maximal kernel subgroup for g
which is not complemented when the range of f in T contains torsion. I do

not know of an example of a nondegenerate f without any complemented
maximal kernel.

We use the notation H* for the complement even though the complement
is far from unique. In what follows, H* denotes an arbitrary subgroup of 2"
complementing H. .

In this case we can give a very convenient description of G(Bg, Ay). For
every pure state w of Ay, we use the same symbol w for the unique state
extension to By and the unique normal state extension to Bj*. For
he H', we Ay, we define [, u,] € G(By, Ay) by

[@, us](b) = w(bu,), beBy.
We find

LemMA 2. For every peG(Bg, Ay) there exists a unique triple AeT,
we Ay, he H, such that p = A[w,u,].

Proor. The existence of the triple follows the lines laid out in [16]: First,
show that
(1€ G(By, An) ut) # 0} = {neGBy Ap)|32e T, we dy: p = Ao,u]}

and then, show that for every peG(Bg, Ay) there is a he H* such that
u(ul¥) #+ 0. The details are given in the proofs of [16, Lemmas 6 and 7].

For the uniqueness we proceed as follows. Assume 4;[wy,u, ] = 4;[w2,up, ],
MeT, wye Ay, hye H', i = 1,2. Let s be the source map of G(Bg, Ay). Then

w; = s(4[wy,u,]) = s(a[wz,u,]) = 0.
In the same way,
;o Aduf = r(d[w,u,]) = r(Zao[wa, u,,]) = 0,0 Aduf.
Thus

o Aduf u,, = w;.
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It follows from Assertion C and the multiplication law (1) that Adug u,
= Aduw,, _j . By Assertion D we must therefore have h, —h, e H, that is
hy = h, since H* n H = {0}. Now A, = A, follows immediately.

Observe that the map (4,u4) — A[w,u,] from T x Ay into G(Bg, Ag) is
continuous. Since Ay is homeomorphic to A and since H is connected (H is
torsion-free), it follows from Lemma 2 that the sets

{AMlw,u]|Ae T, we Ay}, heH*,

form a partition of G(Bj, Ay) into connected compact open subsets. We can
now prove our first major result.

ProposITION 3. Let b, be a bicharacter on Z", meN and assume that
H, € Z™ is a complemented maximal kernel subgroup for B,.

If a:Bg— By is a *-isomorphism such that a(Ag) = Ay , there exists a
group isomorphism

¢:H' > Ht
such that
a(upauy) = uypya@)udy), acAy, he H-

Proor. Observe that the dual map o*:Bf — Bj induces a topological
groupoid isomorphism of G(Bg, Ay ) onto G(Bg, Ay). The proof can now
proceed as the proof of [16, Theorem 9]. We leave it to the reader to make
the necessary small changes.

Remark 4. We shall need the observation that the isomorphism ¢ of
Proposition 3 is determined by the requirement

[w,u]oa™ e T[woa " uyp], wedy, he H.

To prove our main result, we turn to group cohomology. With the aid of
Ay:H* - A we can make C(A,T) into a H'-module by defining the
Hrl-action as follows

g:f(t) = a(f)t) = f(Aulg)t), feCA,T) tehA, geH"

We consider T as a H*-module with trivial H*-action and observe that
the map

ig:T->C@,T)

which identifies Ae T with the corresponding constant function, defines a
H*-module morphism. Thus iy induces a group homomorphism

i%:H*(H*, T) - H*(H*,C(A, T)).
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This map will be of crucial importance in what follows.

Before we state our next result, we observe that a bicharacter b on Z",
neN, defines a 2-cocycle, ie. an element in Z2(Z", T) (trivial Z"-action
on T). Thus each bicharacter b defines an element [b] in H*Z", T)

= Z*(Z", T)/B*(Z", T). Only the proof of the next lemma will be used later.
It is well-known.

LEMMA 5. For every antisymmetric bicharacter [ on Z" there exists a
bicharacter b on Z" such that b(g, h)b(h,g)"' = B(g,h), g,heZ". As a conse-
quence, every element in H*(Z", T) is represented by a bicharacter in Z*(Z", T).

Proofr. There is an antisymmetric real n x n-matrix B such that
B(g, h) = e¥ia.B> g phe2m,

Here ¢ -,-> denotes the inner product in R". Let A = {B. Then 4—A' = B.
Define

b(g, h) = e2™9. 40> g heZ".

Then b has the desired property.

The last statement is now an easy consequence of, for example, [10,
Proposition 3.2].

The main step toward our main result is

ProrosiTiON 6. Let b, be a bicharacter on Z%, n, €N, and let H, & Z"
be a complemented maximal kernel subgroup for the nondegenerate anti-
symmetric bicharacter B,. Then the following conditions are equivalent

a) there is a x-isomorphism a: By — By such that a(Ay) = Ay, ;

b) there is a group isomorphism ¢:Z" — Z" such that
i) o(H) = H,, p(H*) = HA,
ii) Bg,h) = B1(@(9), @(h)), g H, heH,

iii) the bicharacter b(:,")b,(¢(-),@(-)) on H"* represents an element in
keri}.

Proor. a)=>b: By Proposition 3 there exists a group isomorphism
@: H* > H{ such that
a(upauy) = upma(@)ubn, a€Ay, he H

Using Assertions A and B, this gives us a *-isomorphism 7: cH)-»Cc#H,)
such that

1
moa, = dy,°N, gEH™
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The dual map gives a homeomorphism j: A, — H satisfying
4u(9)i() = j(u, (@(9))), geH"
Set &(-) = j(-)j(0)"". Then

™) Au(g) = ®(hy,(0(9))), geH".

Since @ is a homeomorphism and Ay (H7) is dense in H, (because B, is
nondegenerate), it follows from (*) that & is a topological group iso-
morphism. Let @,: H — H; be the dual group isomorphism. Then ¢, @ ¢:
H @ H* - H, @ H{ is an isomorphism extending ¢, and we denote this by ¢
again. By construction, ¢ satisfies i). We check ii):

B(g,h) = Au(g)(h) = ®(Ay (9(9))h) = Ay, (@(9))(Dy(h))
= Ay, (@0(@))@(h)) = Bi(e(9), @(h)), geH', heH.
To check iii) we define ¢, : G(By, Ay) - Ay x H* by
ti(A[w,u,)) = (0,9), AeT, we Ay, geH*,
and t,:G(By , Ay ) = Ay x H by
t(o,u,]) = (woa, ¢~ '(9)), wedy, geHi, AeT.

Using Remark 4, we see that the following diagram commutes:

G(By, Ay)—— Ay x H*
(@ )* 193
G(By,, Ay,)

Thus the functions
51,821 Ag x H* - G(By, Ay)
given by s,(w,g) = [w,u,] and
52(0,9) = a*([wea ' u,,)]), wedy, geH*,
both define continuous sections of the T-bundle
G(By, Ay)—— Ay x H*.
It follows that we can define a continuous function f: Az x H* — T by

f((D,g)Sl((U,g) = Sz((l),g), COEA\H, geHl'
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Now we use the groupoid structure of G(B,, Ay) to calculate
sy(w, h)sy (woAdu,,g) = [w,uy][woAduy,u,] = [woAdu,, u,u,]
= b(h, g)[woAd u,, uy,,] = b(h,g)s;(weAduy, h+g)
and
s2(, h)sz (o Adug, g) = o*([we o™ uyg Da*([we Aduyo o™t uy,])

= a*([weAdu o a™, uypiyg])

= by(@(h), p(@))o*([woAdugea™" uyp, )]

= by(@(h), p(g))s2(weAduy, h+g), weAy, h,ge H.
Inserting fs, = s,, one finds

f(w,h)f(woAduy,g)b(h,g)s(woAdu,g+h)
= by(@(h), (@))f (@°Adu,,g+h)s, (@ Aduy, g +h).

On substituting w e Adu} for w, it follows that

(**) f(woAdu}, h)f (®,9)f (w,g+h)"'b(h,g) = by(e(h), ¢(9))
for we Ay, g,he H*.
Let F: H* —» C(A) be defined by
Fut)= f(=*"'(t), —h) teH, heH"

Here n: C(A) - Ay is the *-isomorphism considered in Assertion A. Using
Assertion B, one may rewrite (**) as

g FthFg_-:hb(h’g) = bl((p(h)’ (p(g))’ h;g eHla
from which iii) follows.
b)=a): Since f and f, are trivial on H and H,, respectively, the proof

of Lemma 5 gives that we can assume that so are b and b,. This
can be done without violating iii) since this condition depends only on
B, )Bi(o(: ), 0()).

Let ¢*: A, —» A be the group isomorphism dual to ¢|,. Then there is a
s-isomorphism @:C(#)— C(H,) such that @(h) = @(h), he H S C(H). Let
n:C(A)—> Ay and n,:C(H,)> Ay, be the *-isomorphisms given by
Assertion A, and set y = myodon': Ay > Ay, . Since u = w, we find

W(uguhu:) = »B(.qa h)'ll(uh) = ﬁ(g’ h)u(p(h) = ﬂl ((p(g), (p(h))u(p(h)

1
= UyglomUa) = Yo Unligg) heH, geH™,

where we have used ii).
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Using Assertion B, the condition iii) translates into the existence of a
function f:H* — Ay taking unitary values such that

(***) Adu,(f()f @) (g+h)"'bi(e@), ¢(h) = b(g, h)

for g,he H*.
Set

Co = span{au,lae Ay, he H'}
and
Co = span{au,lac Ay , he Hi}.

It follows from Lemma 1 that every element ¢ in C, admits a unique
decomposition

c= Eh:a,,u,,, a,€ Ay, he H* (finite sum).
Define a(c) = Y4 ¥(anf (h))upp). Then « is clearly a linear map of C, onto Cg.
Using (***), we find
Y(af @)W (bf (Muymy = Y(af () (bf (h)gg)tpg)tem)
= y(af (9)Ad uy(b)Ad u,(f (h)))b1(0(g), P(h))uyg 4+ ny
= Y(aAdu,(b)f (g +h)b(g, Muyyny = alaubu,), gheH*, abe Ay.

Thus a is a homomorphism.
Inserting g = h =0 in (***) gives f(0)=1. If we insert g = —g and
h = g, we get

Adu_,(f @) S (-9)bi(9@), 9(9) = blg.g9), geH".

A direct check confirms that this equality implies that o is a *-homo-
morphism.
Since C, is dense in By and Py is faithful by Lemma 1, we have

llzll = sup{llPu(y*z*zy)lI'/*| y € Bo, Pu(y*y) = 1}

for all z € By, and the same in Bg . Since

Py (y*a(z)*a(z)y,) = Py, ° ala™ (yHz*za " (v1))
= Yo Py(a ' (yt)z*za™ (1))
and

Pu(a™'(yNa~'(»1)) = Pyoa™'(yty)) = ¢y ™' o Py (y1y1)
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for all ze C,, y, € C}, we find that « is isometric on C, and therefore extends
to a *-isomorphism of B, onto Bg .

In view of Proposition 6, it becomes interesting to obtain a description of
keri}. This is the aim of the following lemma. In particular, it follows
from this lemma and [10, Proposition 3.2], that keri} # 0 whenever
H*(H*, T) # 0, i.e. whenever Rank H* > 1. Hence we cannot conclude directly
from Proposition 6 that f and f, are isomorphic and have to investigate
ker i}y more carefully.

LeEMMA 7. Every element in ker i} is represented by a 2-cocycle

9,1~ j@)Au(h), gheH",

where je Hom(H*, H).
Conversely, every such 2-cocycle represents an element in keri}.

Proor. For the proof, we make the identifications: H = Z*, H* = Z™ and
consider the short exact sequence

*) 0->T—2—C(T,T)L— Q-0

where Q is the quotient C(T*, T)/ix(T) and q the quotient map. We also
need the real analogue of (*),

**) 0—R - C(T"R)—*—Qr — 0.

Here C(T* R) is viewed as a Z™-module with the action of Z™ given

by Ay. In order to connect these sequences, we consider the map
e:C(T* R) - C(T* T given by

e(f)t) = ™0, feC(T,R), te T~
Then e is a Z™-module map and induces a Z™-module map é: Qg — Q in the
obvious way.

Observe that every f e C(T*, T) defines an element in Hom(n,(T*), n,(T))
by the formula

Sily]=1fe7]

for all loops y: T — T*. Since the constant functions lie in the kernel of
f = f, we can define a map

t:Q - Hom(n, (T*), n,(T))
by
t@(f) = fo» feC(TAT).
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If we give Hom(n,(T*), n,(T)) the trivial Z™-module structure, the map ¢t
becomes a module map. By a well-known lifting criterion, we have an exact
sequence

0 - Qg — @ —— Hom(m,(T*), 1,(T)) - 0,
where the injectivity of & follows from the connectedness of T*.
Combining all the maps and using the functorial properties of H*(Z™,-),
we get a commutative diagram
H'(Z", Hom(n,(T*), n,(T)))
t*
H'\(@Z™ C(T*, T))—L> H'(2™, Q) —>> H2(Z"™, T)—2~ H?(Z", C(T*, T))

e* é’*
H'(@Z™ C(T* R))— H'(Z", Qr)
R

which is exact in the vertical and horizontal directions.

We want to consider yet another map, a right inverse s for ¢t. To define it,
observe that every element x of Hom(n,(T*),n,(T)) is represented by an
element (z,, z,,..., z;) in Z* such that

x[y] = [97 9]

for all loops y = (¥, 72,... 7x): T — T* Let f, be the character in C(T*, T)
defined

fx(tl7t25"" tk) - tl t2 tit’ (tl’tZ""9 tk)eTk

and let s(x) = q(f,)- Then s is a Z"-module map and tos = id.
Since

H'(Z™ Hom(r,(T*), n,(T))) = Hom(Z™, Hom(n, (T*), n,(T))),
the definition of § gives that the statement of the lemma follows from

keri¥ = rand = d(rans*).
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Observing that integration with respect to Haar measure produces a splitting
in (**) so that g¥ is surjective, the desired conclusion now follows from a
diagram chase in the above diagram.

We can now state and prove our main result.

THEOREM 8. Let B and B, be nondegenerate, anti-symmetric bicharacters on
Z" and ZM, respectively, and assume there are complemented maximal kernel
subgroups, H for B and H, for B, and a *-isomorphism a: By — By such that
a(Ap) = Ay,

Then there is group isomorphism @:2" —» 2™ such that o(H)= H, and
Bi(e(-), o(+)) = B(,-).

Proor. By Proposition 6 we may assume that n = n;, H = H,, and that

a) B(g’h)zﬁl(.q9h)’ gEHl’ hGH,

b) b(-,-)by(-,") g+ represents an element in ker .

We identify H = 2%, H* = Z"~". By a) there are a d x (n—d) real matrix A
and (n—d) x (n—d) anti-symmetric real matrices X, Y such that

ﬂ(,) — ehi(v,B-) and ﬂx(',') — e2m’<~,B,~)’

0 A 0 4
B=<—A‘ X) and Bl:(—A' Y)'

By Lemma 7, b) implies the existence of a dx (n—d) integral matrix C
such that

b(', . )bl (.’ . ) — e2m’<~,C‘A<>

on H' (modulo coboundaries). It follows that X = Y+C'A—A'C
(mod M, _,(Z)). Define
D= 1 C
“\o 1)

Then D e Gl,(Z) and D'B,D = B (mod M,(Z)).
Thus D:2Z" - 2" is an automorphism ¢ such that f;(¢('), @(")) = B(,*)
and @(H) = H. This completes the proof.

REMARK 9. An easy application of Proposition 6 gives that the converse
of Theorem 8 also holds: If ¢ exists, then a exists.
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