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M-STRUCTURE IN TENSOR PRODUCTS
OF BANACH SPACES

DIRK WERNER

Abstract.

We investigate M-summands and M-ideals in tensor products of Banach spaces, normed by
the injective tensor norm or its right-sided projective hull. Spaces of compact operators are
considered, too. The main result is that Z < X &, Y is an M-ideal if and only if there is an
M-ideal J in Y with Z = X ®,J provided {0} and X are the only M-ideals in X.

1. Introduction and notation.

The objective of this paper is to study certain subspaces of a tensor product
of two Banach spaces, the so-called M-ideals and M-summands. A closed
subspace J of a Banach space X is defined to be an M-ideal if there is an
I'-direct complement of J the polar of J, in X':

X =J®,(J)

It can easily be shown (see [4, Lemma 1.2]) that the orthogonal space (J)*
is uniquely determined in this case. It depends on whether or not it is weak*-
closed if there is an /”-direct complement of J in X. Provided this is true, i.e.

X=J®,J

we call J an M-summand. The according projections are called M-projections.
Similarly one defines L-summands and L-projections so that J < X is an
M-ideal if and only if J°<= X' is an L-summand. These concepts have been
introduced in [3] in the case of real Banach spaces, later the definitions have
been extended to complex spaces in [17]. Basic properties of M-ideals are
discussed in [4], for more recent results cf. [6].

It can be shown (see [27]) that the M-ideals of a C*-algebra coincide with
the closed two-sided ideals. In particular, J = C(K) is an M-ideal if and only
if J={feC(K): f|p =0} for some closed D < K. (Of course, there is an
elementary proof of this assertion, e.g. based on Lemma 1.1 below.) The same
characterization holds for spaces C(K,X)= X ®,C(K) of vector-valued
continuous functions if X has no M-ideal apart from {0} and X itself [4,
Proposition 10.1].
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In the second section we shall prove variants of this result for an injective
tensor product where C(K) is replaced by an arbitrary Banach space Y and
for spaces of compact operators. Particularly we solve a problem raised in [5].

In the third section we shall consider the right-sided projective hull of the
injective tensor norm. In several instances we are able to characterize the
M-summands of the thus normed tensor products. Dual versions lead to the
classification of L-summands in spaces of absolutely summing operators.

We shall study M-ideals in a Banach space by means of the extreme points
of the dual unit ball. The closed unit ball of a Banach space X is denoted
by By, Sy stands for the unit sphere. We shall use the following elementary
lemma repeatedly.

1.1 LEMMA. For X = U @, V we have ex By = ex B, uex B,.

In order to apply this lemma in the context of section 2, we need information
on the extreme functionals on an injective tensor product. We state the
fundamental result for the sake of easy reference.

1.2 THeoreM. If H is a closed subspace of K,+(X', Y), the space of compact
operators from X' into Y which are weak*-weakly continuous, containing
X ® Y, then ex By = ex By, ® ex By..

For the proof of this theorem the reader is referred to [24] (real case) and
[21] (complex case), a unified approach can be found in [23]. The special
case H = X ®, Y has been treated in [29].

Finally, let us fix some notation. We use the term tensor norm in the sense
of Grothendieck [12]. X ®, Y denotes the algebraic tensor product of X and Y
equipped with the norm a and X ®, Y its completion. & stands for the injective
and = for the projective tensor norm, that is

1Zx; ® yill. = sup{|Zx'(x;)y'(y))|: x' € Bx, ' € By.},
lulle = inf{Z|lxJl- lyill: u = Zx; @ y;}.

The dual of X ®, Y may be identified with a space of bilinear forms or,
equivalently, with a space of linear operators from X into Y’. They are called
o -integral operators in [12], we write (X ®,Y) = (X, Y’). In the case
o = ¢, the notion integral operator is used. Often the duality between some
space and its dual is denoted by ¢, ). Background material on tensor products
of Banach spaces can be found in e.g. [7, chapter VIII] and [10].

Our results refer to real and complex spaces, unless stated otherwise.

AckNOWLEDGEMENT. The author expresses his gratidute to E. Behrends and
K. Jarosz for stimulating discussions on the subject of this paper.
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2. The injective tensor norm.
We start with an elementary observation.

2.1 ProposITION. If P is an M-projection on Y, thenId ® P is an M-projection
on X ®£ Y.

ProoF. Straightforward verification.

A restatement of Proposition 2.1 is: If J is an M-summand in Y, then
X ®,J is an M-summand in X ®, Y. We are going to establish a corre-
sponding statement on M-ideals. First we present a general result on tensor
norms.

2.2 PrOPOSITION. Let a be a tensor norm having the following property for
all pairs of Banach spaces X and Y :

If P is an M-projection on Y, then Id ® P is an M-projectionon X ®,Y .
Then o also satisfies:

If J is an M-ideal in Y, then the closure (with respect to o) of X ® J
is an M-ideal in X ®, Y.

ProoF. The adjoint of Id ® P maps TeI*(X,Y')= (X ®,Y) to P'oT.
Hence, if P is an M-projection, we have by assumption on o

(1) Tl = |IP"° Tlly +|IT = P"e Tl,-.

Now recall from [12, p. 14] that T e I*'(X, Y’) if and only if T"e ¥ (X", Y")
with equality of o'-norms. Let E denote the L-projection from Y’ onto J°
It follows for Te I¥'(X, Y')

Tl = 11Tl
= |lE"e T"|ly +|IT" = E"o T"|l, (apply (1) with P = E’)
=lEeTlla +IT = E° Tl

Moreover, T = Eo T if and only if T(X) < E(Y')=J’ thatis Te (X ® J).
This means that (X ® J)™*is an M-ideal in X ®, Y.

Of course, a tensor norm which preserves M-projections of the left factor
preserves M-ideals of the left factor, too.

2.3 CoroLLARY. If J is an M-ideal in Y, then X ®,J is an M-ideal in
X®,Y.

Proor. Apply Propositions 2.1 and 2.2 and note that the e-closure of
X®Jis X®,J.
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ReMARks. 1) The “left-sided” analogues of 2.1 and 2.3 are valid, too, since
the e-norm is symmetric.

2) The importance of M-ideals in approximation theory stems from the fact
that they are proximinal subspaces (see [ 3, Corollary 5.6], [4, Proposition 6.5]).
It should be pointed out that' the analogous version of Corollary 2.3 for
proximinal subspaces is false (see [18, Theorem 2.7]).

3) A proof of Corollary 2.3 which uses special features of the e-norm rather
than general properties of tensor norms may be given as follows. Again, let E
denote the L-projection from Y’ onto J: For x€ X, yeY and ¢ (X ®, Y),
i.e. an integral bilinear form, put ¢,(y) = @(x,y) and Q(@)(x, y) = {E(@,), ¥>-
To prove that Q(p) is an integral bilinear form, too, and that Q is an
L-projection onto (X ® J)° one needs a second representation of Q(¢).
In fact, if u is a positive Radon measure on S = By. x By such that

o(x,y) = j(x’, XY, yydu(x', y')

S

for all xe X, ye Y, then also

) Q@)(x,y) = J(x’, X)}E(Y), yydu(x', y').

In the proof of (2) it is crucial that E’(y) considered as a function on By.
satisfies the barycentriccalculus (see [ 3, Corollary4.2]in the real case, [ 2, p. 240] in
the complex case). Using (2) it is easy to complete the proof.

4) Finally, let us rephrase Corollary 2.3 in terms of operators:

2.4 CorOLLARY. Let J be an M-ideal in Y and suppose V' or Y to have the
approximation property. Then the space of J-valued compact operators is an
M-ideal in K(V,Y).

Proor. If V' or Y has the approximation property, then K(V, J) (respectively
K(V,Y)) and V' ®,J (respectively V' ®, Y) are isometrically isomorphic, cf.
e.g. [7,p. 242].

We have tacitly employed the fact that the approximation property is inherited
by M-ideals. To see this, let J be an M-ideal in Y, a space with the
approximation property. Let K < J be compact and let ¢ > 0. Since J*°(= J")
is norm one complemented in Y”, it follows from the approximation property
of Y that there is a finite rank operator S: J — J” with ||Sx—x|| < ¢ for
x € K. Now choose a finite d-net {x,,...,x,} for K with é < &/(1+]|S||* (1 +¢))
and use the principle of local reflexivity (see [22, 28.1.3]) to obtain an operator

T:lin({xy,..,Xx,} US(J))—=J
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with ||T|| £ 1+¢eand Tx; = x;fori =1,...,n. We conclude ||TSx —x|| < e(2+¢)
for xe K. By the way, the same argument shows that the metric and the
bounded approximation property are inherited by M-ideals.

ReMARK. We did not succeed in removing the approximation assumption
from Corollary 2.4. It would be most interesting to consider V = Y = H®
here, since it is not known if H® has the approximation property. On the
other hand, the space of compact operators must not be replaced by the whole
operator space in 2.4, that is, L(V, J) is in general not an M-ideal in L(V, Y)
even though J is an M-ideal in Y. This phenomenon is discussed in [9]
and [31] for V = Y = C¢(K).

Our next topic is the investigation of the converses of 2.1 and 2.3. First we
are going to consider M-summands in K,«(X’, Y), the space of compact
operators from X' into Y which are weak*-weakly continuous.

2.5 THEOREM. Suppose X has no non-trivial (i.e. different from {0} and X)
M-summand. Let Z be an M-summand in K, «(X',Y). Then there is an M-
summand J in Y such that

Z ={TeKw(X,Y): T(X') < J} = Kyo(X', J).

Proor. Let us abbreviate K,«(X’, Y) by H. By assumption on Z there is a
decomposition H' = V; ®, V, with weak*-closed subspaces ¥V, and V,, say
Vi, = Z" It follows from 1.1 and 1.2 that

3) ex By = ex By, uex By,
and
4) ex By = ex By ® ex By..

Now, fix geex By.. Since the map x' —» x' ® q from X' into H' is weak*-
continuous, the spaces

Ngii={x':x®qeV}

are weak*-closed (i = 1,2). It follows that N, ; and N, , are L-orthogonal,
and N, @; N, , is a weak*-closed subspace of X' (by virtue of the Krein-
Smulyan theorem) containing ex By. (according to (3) and (4)). Hence
X' =N, ®; N, , by the Krein-Milman theorem. By assumption on X,
however, we must have

) Ngi=X or N,,={0}.
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In an analogous manner, fix peex By and define weak*-closed subspaces of
Y’ by

M, :={y:p®yeV}

Again we deduce a decomposition Y' = M, ; @; M, ,. By (5), all the spaces
M, ; coincide, as their unit balls have the same extreme points. Thus, we may
write

Y,=MI®IM2

with M; = {y': p ® y' €V for some (hence all) p e ex By} being weak*-closed.
Finally, let J be the closed subspace of Y such that J°= M,. By con-
struction, J is an M-summand in Y. It remains to show that

(6) Vi ={TeH:T(X')<J}"

which implies Z = K,«(X', J).

In fact, both spaces occurring in (6) are weak*-closed L-summands of H’
(cf. [19, Proposition 6.1]). Therefore it is enough to show that their unit balls
have the same extreme points, which are necessarily of the form p ® q. To
finish the proof just note p®qeV, iff ge M, = J° iff p ® q annihilates
K(X', J).

ReMARKs. 1) Theorem 2.5 generalizes previous results in [16] and [21].

2) The proof applies to operator spaces H = K,+(X’, Y) containing the
finite rank operators, which are invariant under T - Po T for M-projections
P,eg. H=X®.,Y, as well.

3) The isometric isomorphism between K(V, Y) and K,«(V", Y) yields the
following result:

2.6 CorOLLARY. If V has no non-trivial L-summand, then every M-summand
in K(V,Y) has the form K(V,J) with some M-summand J in Y.

Proor. Apply Theorem 2.5 with X = V' and note that M-summands of
a dual space are necessarily weak*-closed (see [4, Theorem 5.6]).

We remark in passing that the same method as in the proof of 2.5 yields
a dual result for L-summands of the projective tensor product if the extreme
point structure of the spaces involved is sufficiently rich. The following result
can be proved in analogy to 2.5, one only has to take into account (see

[25], [30])
dent By 3 y = dent By ® dent By,

where dent C denotes the set of denting points of a subset C of a Banach space.
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2.7 ProposITION. If By = codent By and By = codent By and if X has no
non-trivial L-summand, then every L-summand in X &, Y has the form X ®,J
with some L-summand J in Y.

This proposition applies in particular to spaces with the Radon-Nikodym
property (see [7, Theorem VII.3.3]).
Next, we shall consider M-ideals.

2.8 THEOREM. Suppose X has no-non-trivial M-ideal. Then every M-ideal Z
in X ®, Y has the form Z = X ®,J with some M-ideal J in Y.

To prepare the proof we present two results which are of independent interest.

29 LeEMMA. Let peexBy., yeSy. Suppose u is a Radon probability on
S = By x By such that

p(x) = fx ® ydu

5
for all x e X. Then supp(u), the support of u, is contained in

r-{p} x{y'eBy: Ky, | =1},
where I is the set of scalars of modulus one.

Proor. Consider the measurable mapping U: S — By, U(X', y') = (), y>- x".
Then we have for the image measure v = U(u) and xe X

dev= Jxo Udu

By s

= fx ® ydu = p(x).

S

Since p is extreme, it follows v = §, [1, Corollary 1.2.4], hence

1=v({p}) = wU~'({p})
= pu({(x,y)eS: (Y, y> x' = p}
S u-{p} x {y' e By.: Ky, > = 1}).

2.10 ProPOSITION. Let peex By and suppose Z is an M-ideal in X ®, Y.
Then the closure of (p ® 1d)(Z) is an M-ideal in Y.
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Proor. Let E denote the L-projection from (X &,Y) onto Z: Given
Yo €Sy, consider E(p ® yo). We shall prove the existence of a (uniquely
determined) functional P(y,)e Y’ such that

(7 E(p ® yo) = P ® P(yo).

To this end, represent the integral bilinear form E(p ® y,) by a positive Radon
measure u; on S:= By x By such that [|[E(p @ yo)ll = 1;(S).- In the same
manner, let p ® yo—E(p ® yo) be represented by u,. Since E is an L-
projection, u := u, +u, is a probability measure for which

P®yo,x®y) = Jx®ydu

N

forall xe X, yeY.
Assume for the moment that y; attains its norm on By. In this case

p(x) = Jx ® yodu

S
for a suitable y, € Sy and all x € X. Then we have by Lemma 2.9

supp(y;) < supp(u) < I' {p} x By.

so that there are A, e I', y| € By with

CE(p®yo), x®y) = fx ® ydp,

S
= p®Y, x®y)
={P @ LY, xRy

for all xe X, ye Y. Thus (7) is valid in case y; attains its norm.

In the general case, the Bishop-Phelps theorem (see [7, Theorem VII.1.4])
yields a sequence of norm attaining functionals y, € Sy. converging to y, 1n
norm. The validity of (7) for y, gives

E(p ® yo) = imE(p ® y,) = limp ® P(y,)

so that P(y,) = lim P(y,) exists, and (7) is proved in the general case, too.
Now define a mapping P from Y’ into itself by (7). Obviously, P is an
L-projection. It is left to prove

P(Y') = (p ® 1d)(2)’
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“c” is immediate from the definitions of E and P. Conversely, suppose y' € Y’
satisfies

0=<y, (p®I)u)=<{pRy,u)

for all ue Z. Then p ® y' € Z"so that

PPy =E(Pp®)y)=prQ®Y.
Hence Py’ = y’, and Proposition 2.10 is completely proved.
Proor oF THEOREM 2.8. Again, we denote the L-projection onto Z° by E.

By Proposition 2.10 we may partition the set ex By. into the two subsets

C, ={qeexBy:E(xX ®q)=x'®¢q forall x'e X'}
C,={qeexBy:E(X ®q) =0 for all x' € X'},

becaus¢ X was assumed to have no non-trivial M-ideals. Next, we apply
Proposition 2.10 once more to obtain a family of L-projections P, on Y/,
indexed by the extreme functionals peex By., with weak*-closed ranges
which satisfy

E(p®Y)=p® P,y)
for all y' € Y'. Furthermore,
PY)={y:p®yeZ}=:M,.
Obviously, C; = M, for all peexBy. On the other hand, let geex By,.

Then geex By (since M, is an L-summand) and p ® qe Z that is ge C,.
M, is weak*-closed and thus

M P = i;r—lw'c 1
independently of p. In other words,
J:={yeY:q(y)=0 forallgeC,}
is an M-ideal in Y. To prove X ®,J = Z it is enough to show (X ®,J) = Z°
Both spaces are weak*-closed L-summands (Corollary 2.3), therefore it is
enough to check the coincidence of the extreme points of the unit ball, which

must have the form p ® q with p and g extremal (cf. 1.1 and 1.2). In fact,
P®qeZiff qeC, iff ge J iff p® qe (X ®.J)"
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2.11 CoroLLARY. Let X and Y be Banach spaces without proper M-ideals
(i.e. every M-ideal is an M-summand). Then X ®,Y fails to have proper
M-ideals.

Proor. It is known that‘a Banach space without proper M-ideals is iso-
metrically isomorphic to a cy-sum of Banach spaces without non-trivial
M-ideals, (see [15, Proposition 1.2.11]). If X = (®;X,), and Y = (®;Y)),
are represented in this way, then

X ®z Y = (@i,jxi ®s Yj)co,

and X; ®, Y; has no non-trivial M-ideal by Theorem 2.8. Now an application
of [4, Proposition 4.9] completes the proof.

Remarks. 1) Classes of Banach spaces without proper M-ideals are spaces
which are M-ideals in their bidual (see [16]) and spaces which do not contain
a copy of ¢, (see [16]). Neither of these classes is stable with respect to
forming injective tensor products. For example, consider I? = I?[0,1] for
1 < p < o0, p # 2. By Khintchin’s inequality, I is isomorphic to a subspace
of I? (respectively I4, where 1/p+1/q = 1).

Thus,
oo P®. 1P IR, [P =K(IP),

moreover K(I?) is not an M-ideal in its bidual L(I?) for p as above (see [20]).
2) The operator version of Theorem 2.8 is:

2.12. CoroLLARY. If V' has the approximation property and if V' fails to
contain non-trivial M-ideals, then every M-ideal in K(V,Y) has the form
K(V,J) where J is an M-ideal in Y.

In particular, this corollary applies to V = I?(u), 1 < p = o0, in the case
of real scalars one has to exclude V = [®(2). Thus, we recover the result
from [28] that K(/?) has no non-trivial M-ideal for 1 < p < 0.

Without the approximation assumption in Corollary 2.12 we have the
following weaker result.

2.13 ProposiTION. If X and Y have no non-trivial M-ideals, then neither has
Ky (X', Y).

Proor. The proof of Proposition 2.10 shows that the closure of {T(p): T e Z}
is an M-ideal in Y if peex By and Z is an M-ideal in H := K,«(X',Y). As a
matter of fact, the essential property to be used is that H may be embedded
isometrically into C(By. x By.). Analogously, {T'(q): T € Z} ~ is an M-ideal in X
for g eex By.. One can, therefore, partition ex By, = C; u C, in the same way
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as in the proof of Theorem 2.8. Parallelling this proof one arrives at the
conclusion that

J={y:q(y)=0 forallgeC,}

is an M-ideal in Y. Hence, J = {0} or J = Y. In the first case it follows that
exBy. = C; and Z = {0}. (The L-summand which is complementary to Z°
is isometrically isomorphic to Z’, but has no extreme points because of
C, =®.) In the second case ex By. = C, holds and thus Z = H.

2.14 CorOLLARY. If X' and Y have no non-trivial M-ideals, then neither has
K(X,Y)

This conclusion has been established in [16] and [21] for reflexive spaces.

The results achieved so far support the point of view that M-structure
properties are very well reflected by the injective tensor norm. So it may come
as a surprise that there is an injective tensor product with non-trivial L-
summands.

2.15 PROPOSITION.
12(2’ R) ®e 12(2’ R) = 12(2’ R) ®l 12(2, R)'

Proor. Let X = I>(2,R) ®,/*(2,R = L(1*(2,R)). It is well-known that
ex By = O(2, R), the group of orthogonal 2 x 2 matrices. Let E (respectively E)
denote the linear span of all orthogonal matrices with determinant +1
(respectively —1). Then X = E® E and E = E =~ I*(2,R). If P denotes the
projection from X onto E, then P(exBy) < {0,1}-exBy so that P is an
L-projection by [19, Theorem 4.6].

The exceptional character of Proposition 2.15 is underlined by the following

2.16 ProposrTiON. If H is a complex Hilbert space or a real Hilbert space
of dimension = 3, then H ®, H contains no non-trivial L-summand.

Proor. If H is infinite-dimensional, then H ®, H = K(H) is an M-ideal in
its bidual L(H) (see [8] or [27]) and hence cannot contain a non-trivial
L-summand (see [4, Corollary 1.14]).

In the rest of the proof assume dim(H) < co. We shall make use of the
following observation. If an L-summand J of X contains an extreme point
xo of By, then the whole connected component of x, (with respect to the
norm topology) is contained in J. This remark proves 2.16 in the case of
complex scalars, since ex By g g, the group of unitary complex matrices, is
connected.
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Next consider Euclidean spaces of odd dimension n. In this case we have
exByg.n = O(n,R) = SO(n,R) v —SO(n, R).

The above remark shows *SO(n) = J for every L-summand J # {0} in
H®,H, hence J = H®,H.

Now let H = H, be a Euclidean space of even dimension n 2 4. As in the
proof of 2.15 write E, (E,) for the linear span of the orthogonal matrices of
determinant +1(—1), of course, E,~ E, and H,®, H, = E,+E, The
connectedness of SO(n) shows that E, and E, are the only candidates for non-
trivial L-summands, again according to our observation. But it is quickly
verified that R @ 0€ E, N E, for n = 4, where R denotes the rotation operator
with angle n/4 on H, and 0 is the zero operator on H,_,. Hence the sum
E,+E, is not direct.

Using the same method one can show that the L-summands in K(/?(2))
must be trivial, this time the proof depends on the extreme point character-
ization in [13], here 1 < p < 0.

3. The projective hulls of the injective tensor norm.

Let a be a tensor norm. Then there is a tensor norm o/ with the property:
If X, Y, and Z are Banach spaces and if Q: Z — Y is a quotient map, then

Id@Q:X@,,ZﬂX®a/Y

is a quotient map, and «/ is the smallest tensor norm dominating « with
respect to this property. It can be defined by considering any L'-space Z
and quotient map Q:Z — Y and transporting the a-norm on X ® Z to
X®Y via Id®Q (cf [12, p. 30, Corollary 4]). a/ is called the right-
sided projective hull of a; the modifications for the left-sided version are
obvious.

We are interested in the M-structure properties of a/ in comparison with
those of a. First of all, it is routine to establish the following:

3.1 ProposITION. Let J be an M-summand in X and J ®,Y be an M-
summand in X ®,Y. Then J ®,,Y is an M-summand in X ®,,Y.

3.2 CoroLLARY. If J is an M-summand in X, then J ®,, Y is an M-summand
inX®,Y.

Proor. Immediate from Proposition 2.1.

3.3 CoroLLARY. If J is an M-ideal in X, then the ¢/-closure of J ® Y is
an M-ideal in X ®,/ Y.
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Proor. Immediate from Corollary 3.2 and Proposition 2.2 (and the comment
following it, to be sure).

ReMARKS. 1) Since an M-summand J is (by its very definition) the range of
a contractive projection, the a-closure of J ® Y coincides with J ®, Y for all
tensor norms a.

2) If J is an M-summand in Y, then X ®£,J need not be an M-summand
in X ®, Y, see below.

3) It is well-known that X ®,Y = X ®,, Y whenever X is an L'-predual,
cf. e.g. [14].

In the remainder of this section we shall be concerned with the converse
of Corollary 3.2. To this end, we need some information on the extreme
points of the unit ball of (X ®,, Y)Y = [*(X, Y’). It is known that the space
of (¢/)-integral operators coincides isometrically with the space of absolutely
summing operators, this is, of course, implicit in [12] and is stated explicity
in [26, Theorem 3.2]. Recall that an operator T between Banach spaces X
and Y is called absolutely summing, if there is a number ¢ 2 0 such that

I\ Txy|| < c-sup{Z|x'(x;)|: x" € By}

for every finite family {x,,..., x,} = X. The smallest such number c is denoted
by n,(T), n, defines a complete norm on the space I1'(X, Y) of absolutely
summing operators.

The following results are implicitly contained in [29]. We prefer, however,
to give a simple proof based on Lemma 2.9.

3.4 LeMMa. Suppose T e IT'(X, Y) withn,(T) = 1 and T'(q) € ex By. for some
g€ Sy.. Then T'(Y') = lin{T'(q)}, in particular, T is a one-dimensional operator.

Proor. Considering jT instead of T (with j:Y — [®(By) the canonical
embedding) we may assume that T is integral with integral norm one (see
[22, Theorem 19.2.7]). Consequently, there exists a Radon probability 4 on
S := By. x By.. such that

(Tx,y") = jx ® ydu

N

for all xe X, y’ € Y'. Particularly we have, letting p := T'(q) eex By,

p(x) = fx ® qdp

N
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for x e X. From Lemma 2.9 we infer supp(u) < I'- {p} x By so that there is
a measure v on I x By.. with

(Tx,y» = f <AY", ¥ Ddv(4, ") p(x).
I'x By.

Hence T'y' elin{p}.
3.5 ProposITION. For peex By and yoeex By, p ® yo€ex By (x, v).

Proor. (Cf. [29, Proposition 2]:) Suppose p ® yo = (T;+T;)/2 with
ny(T;) £ 1. Choose q € Sy with q(y,) = 1. Hence p = (T{(q) + T>(q))/2. Since
T @l = Tl = =y (T) = 1 and since p is extreme, Ti(q) = T3(q) = p. By
Lemma 3.4, T, = p ® y; for some y,e Y, and the result follows.

We now pass to the main result of this section.

3.6 THEOREM. Let X or Y have the approximation property. In case Y has
no non-trivial M-summand, every M-summand in X ®,, Y has the formJ ®,Y
with some M-summand J in X.

ProoF. Suppose there is a decomposition H := X ®,, Y = Z, ®,, Z,. Then
there are weak*-closed L-summand ¥, = Z;such that H' = V; ®, V,. As in
the proof of Theorem 2.5 we obtain a decomposition X' = N, @, N, where

N;={xeX:x®qeV, forsome qeexBy}
={xeX:xX®yeV, forall yeY'}

is weak*-closed. (To see this it is enough to know ex By. ® ex By. = ex By,
this follows from Proposition 3.5 since H' = I1'(X, Y').)

Now let J; be the closed subspace of X with J'= N,;. J; and J, are
complementary M-summands by construction. It is left to prove Z; = J; ®E, Y.
Using Corollary 3.2 we see that it suffices to show Z; = J, @.;/ Y. In fact,
if ueZ,, then (u,x’ ® y'> = 0 for x'e N,, y € Y. Denote the M-projection
from X onto J, by P,. It follows

0 = (u, P3(x") ® ) = <(P, ® ld)(u),x' ® y")

for x’ e X’,y’e Y. Hence ®((P, ® Id)(u)) =0, where #: X ®, Y > X ®.Y
denotes the natural operator. It is a consequence of the approximation
assumption that & is injective (see [12, p. 15]). We conclude (P, ® Id)(u) = 0,
thatisueJ; ®, Y.

3.7 CoroLLARY. Under the assumption of Theorem 3.6, and L-projection E
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on IT*(X, Y') which is continuous with respect to the weak*-operator topology
has the form E(T) = T o P, where P is an M-projection on X.

Proor. E is the adjoint of an M-projection on X ®,, Y.

ReMARKS. 1) In the special case of reflexive spaces X and Y no additional
continuity assumptions on an L-projection E need be made in 3.7, if we specify
X to have the approximation property. The reason is that in this situation
IT'(X,Y) is reflexive (see [11, Theorem 4.2]).

2) Pietsch’s factorization theorem (see [22, Theorem 17.3.2 and 17.3.3])
can be employed to prove that T —» TP is an L-projection on I1*(X,Y)
for M-projections P without recourse to tensor products.

3) The non-symmetry of the ¢/-norm is stressed by the following example:
Let X =I'(3,R), Y =[*(3,R), and let P denote the M-projection from Y
onto the first two coordinates. Then Id ® P is not an M-projection on
X ®,, Y, equivalently T — P’'o T is not an L-projection on IT'(X). In fact,
it is quickly established by means of elementary calculations that 7, (Id — P") = 1,
n,(P') = ny(Id) = 2.

The author is grateful to H. U. Schwarz for pointing out this example.
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