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FROBENIUS SYMBOLS FOR PARTITIONS AND
DEGREES OF SPIN CHARACTERS*

JORN B. OLSSON

In 1900 Frobenius [4] determined for the first time the irreducible characters
of the finite symmetric groups S,. Although he was aware of the fact that the
irreducible characters of S, may be indexed canonically by the partitions of n,
he preferred a “more useful” indexation of the characters by what he called
“characteristics”. Using these he gave some elegant formulae for special
charactervalues. Frobenius also considered f-sets for partitions which arose
naturally in his construction of the characters. As is known now, the f-sets
are useful in the study of the hook structure of partitions and thus for the
practical recursive computation of general character values in §,. In the first
section of this paper we describe a theory of cuts in partition sequences which
associates to a given partition A an infinite sequence of symbols which
include all the f-sets for 4 as well as Frobenius® “characteristic” for i. Also
we study the relation between an arbitrary Frobenius symbol for 4 and the
hook structure of A. The author discovered the Frobenius symbols during a
study of the “bar-structure” of 2-regular partitions of n. These partitions index
the spin characters of a covering groups S, of S,. It was first realized by
Morris that “bars” play a similar role for spin characters as hooks for
ordinary characters of symmetric groups. The results of section 1 may be
used to give a perhaps more transparent description of the p-bar quotient of
a 2-regular partition (see [12]) which is essential for further work. Theorem
(2.3) is particularly important. It leads to an explicit description of the power
of an odd prime dividing the degree of a spin character. This is done in
section 3. In section 4 we study then the power of 2 dividing the degree of
a spin character. Again the results of section 1 are essential. Whereas the
distribution of spin characters into p-blocks is known for p odd (see [5],[14])
the same question is open for p = 2. We apply the results of section 4 to
determine those spin characters, which are contained in 2-blocks of small
defect, and finish with a conjecture.

* Partially supported by Deutsche Forschungsgemeinschaft.
Received November 06, 1986.
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1. Partition sequences and Frobenius symbols for partitions.

The idea that a partition can be represented as a binary sequence was
apparently first used by Comét [2] around 1960 to calculate character values
for S, on a computer. We start by developing this idea further.

We fix the following notation. Let

(1) A= (ay,a,,..,4a,), a;2a,2...24a,>0

be a partition. If a; +a,+...+a,, = n we write 4 + n. The dual (or conjugate)
partition of 4 will be denoted by

@) A% = (by,by..by), by ZbyZ...2b, >0
(see e.g. [9, p- 2]). The set of first column hook lengths of A is defined as
3) X, = {a+m—-i)li=12,..,m}
50 X; E Ng (= N U{0}). If X £ Ny and r e N, we define
X' ={x+rlxeX} v{r—-1,r-2...,1,0}

(s0 X*% = X). Then the B-sets for A are by definition exactly the sets
X", reNy. From the definition we get immediately :

LemMa (1.1). If X is a finite subset of N, then there is a unique partition
A having X as a B-set. We then write P*(X) = A.

A partition sequence A is a double infinite sequence of zeros and ones, such
that if we consider the sequence going from the left to the right we have:

1) All entries to the left of a certain point are zeros.
2) All entries to the right of a certain point are ones.

Thus for example

@) ...0010011010011...

is a partition sequence, where the dots on the left and the right represent
infinite sequences of zeros and ones, respectively. For simplicity we may
symbolize infinite sequences of zeros and ones by 0 and 1, so that (4) may be
written

) 01001101001.
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In a partition sequence 4, the zeros will be numbered 1,2, 3,4, ... in the order

they occur moving from the right to the left in A, and similarly the ones

will be numbered 1,2,3,4... in the order they occur moving from the left

to the right in A. We call this the natural numbering of the zeros and ones in A.
In the above example

.. 54 321 Natural numbering of the zeros.
6) 01001101001

1 23 4 .. Natural numbering of the ones.

If the number of ones to the left of the ith zero (in the natural numbering
of A)is a;, we write

7) P(A) = (ay,a,,....4,)

if a, #0, a,,+; =0, so that P(A) is in fact a partition.
ExampLE. If 4 is the partition sequence in (5) then
P(A) = (4,4,3,1,1) = (4%,3,1%).
This is seen from (6).
It is obvious from the definition that

Lemma (1.2). The map P is a bijection between the set of all partition
sequences and the set of all partitions of nonnegative integers.

Note. The sequence A = 01 is mapped onto the empty partition 0 of 0.

If P(A) = A, we call A the partition sequence of A. The partition sequence A
of the partition 1 incorporates in a natural way all the f-sets for A as we
shall see. This is one of the reasons why we, contrary to Comét, formally
consider infinite sequences.

A B-numbering of a partition sequence A is obtained by numbering some
entry in A occurring before the first entry one (or the first entry one itself)
as 0 and then the following entries as they occur going from the left to the
right by 1,2, 3,... . In such a f-numbering the numbers of zero entries form a
finite subset of N, i.e. a B-set. If P(A) = A, this B-set is in fact X", where r
is the number of first entry 1 in the f-numbering.

Exampii. Let A be as in (4) and (5). A f-numbering of A is

0123456789 1011 1212 .. p-numbering
000010011010 0 1 1 1.

The corresponding B-set is {11, 10,8, 5,4,2, 1,0} (representing the numbers of
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the zeros). This equals {8,7,5,2,1}*% and {8,7,5,2,1} is the set of first
column hook lengths of P(A) = (42,3, 12).

For completeness we note the following: If A is a partition sequence, we
may define its dual A° as the partition sequence obtained by reading A from
the right to the left with zeros and ones interchanged. We then have, of course :

LEMMA (1.3). In the above notation
P(A)° = P(A°).
EXAMPLE.

A =0101101001, P(A) = (4,4,3,1)
A° = 0110100101, P(A°) = (4,3,3,2).

Lemma (1.3) is in a certain sense generalized in the theory of cuts
described below.

A B-sequence is an infinite sequence of zeros and ones, such that if we
read the sequence from the left to the right all entries to the right of a
certain point are ones. We number the entries in a f-sequence by 0,1,2,...
form the left to the right. Obviously f-sequences correspond bijectively to
B-sets. Namely, if y is a f-sequence we put

8) Q(x) = {i € Ng| The ith entry of yx is zero}

so that Q(x) is a f-set. By adding an infinite number of zeros in front of a
B-sequence, it is turned into a corresponding partition sequence.

LeMMA (1.4). If x is a B-sequence and A the corresponding partition sequence,
then Q(x) is a B-set for P(A), i.e.

P*(Q(x)) = P(A).

Proor. Obviously the numbering of y described above gives a f-numbering
of A, so the results follows.

Suppose that the partition A’ is obtained from another partition i by
removing a hook of length [ (see [7, §2.3]). If X is a B-set for 4, we obtain
a fB-set Y for ' by replacing an element ¢ (= 1[) in X by c—I, whereby
c—1¢ X (see [7,2.7.13]). Thus

Y = (X ufc—I)\{c}, IY]=|X].

Thus the f-sequence of Y is obtained from that of X by exchanging the
zero in the cth position and the one in the (c —I)th position.
This shows that it is natural to define a hook in a partition sequence A
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as a pair of entries in A, a zero and a one, such that the one (called the arm)
is to the left of the zero (called the leg). The hook is removed by exchanging
the arm and the leg. The hook is said to be in the ith row and the jth column
if its leg has the number i and its arm has the number j in the natural
numbering of the zeros and the ones. By definition there are a; ones to the
left of the ith zero, so there are g; hooks in the ith row. Thus there is a
canonical bijection between the hooks of A and the hooks in the (Young
diagram of the) partition A = P(A). Moreover the map P is compatible with
the removal of hooks.

The leg length bf; (arm length a}) of the (i, j)-hook in A or A = P(A) is
by definition the number of zeros (ones) between the arm and the leg of the
hook (excluding these). The length I}; is defined as I} = afj+b}+1. These
definitions coincide with usual ones for hooks of partitions (see [7, §2.3]).

EXAMBPLE.

arm leg
A=01001101001, i=(@4%3,1%).
| |

hook

The hook considered is the (2, 1)-hook in 4 as illustrated.

leg
length

The length is 7, the arm length and the leg length is 3. Removing the hook
weget /'=01101101 and A =PA)=4,2)

Let us remark that when hook is réemoved, its leg length is the difference
between the number of the leg in the natural numbering after and before the
removal. (In the above example the leg length is 3 = 5-2.)

A cut in a partition sequence A is a dividing line between 2 entries, such
that A is divided into 2 disjoint parts A, and A,, where A, (A;) consists of
all entries to the right (left) of the dividing line.

ExAMPLE.

cut
A: 010011l01001
4, 4,

The coordinates of the cut are (g, h), where g is the number of zeros in A,
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and h is the number of ones in A,. The position of the cut is then defined
as h—g.

ExampLE. In the above example the coordinates are (3, 3) and the position
is0=3-3

Suppose that a cut with the coordinates (g, h) is moved one step to the
right, so that an entry is added to A, and the same entry is deleted in A,.
Then the new cut has the coordinates

(g, h+1) if the entry is one,
(g —1, h) if the entry is zero.

Thus in any case the position is increased by 1. This shows:
LEMMA (1.5). For each i € Z there is exactly one cut in A with i as its position.

We fix a partition sequence A and let P(A) = A be as in (1). Moreover
we let (g;, h;) be the coordinates of the ith cut in A (the cut with position i),
so that

9) hi—g; =i forallieZ.

Each cut in A determines 2 B-sequences, namely A; and A9. Here A9 is
the dual of A,, that is A, read from the right to the left with zeros and ones
interchanged. If the cut is in the ith position, i e Z, we write

(10) Fi(4) = Fi(4) = (Xi|Y)

where
Xi=0,), Y.= Q(A(z))

and call Fy(A) = F;(A) the ith Frobenius symbol of A or A. By (8), X; and Y,
are f-sets and by definition we get
(11) IXil =gi Y] =h
so that | Y| —|X;| = i by (9). In the symbol (X;|Y;) we simply write the elements
of X; and Y; in decreasing order.

ExampLE. Consider the cut with position 0 in the previous example. We have

Xo = {3, 2,0}, Yo = {3, 1, 0},
SO
Fo(A) = (3,2,0]3,1,0).
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Further examples of Frobenius symbols for our given A are

F_,(A)=(4,3,13,0), Fi(A) = (2,1]52,1)
F_s(A)=8,7,521|9), FiuA)= ®I8,5,4,2).

(Note that 8,7,5,2,1 and 8, 5,4, 2 are the first column and first row hook-
lengths of 4.)

From the definition and Lemma (1.3) we get
ProposITION (1.6). If Fi(A) = (X|Y) then F_,(A°) = (Y|X).
It is also easy to see that the following holds:

ProprosiTION (1.7). If X and Y are B-sets, there exists a unique partition
A = P(X|Y) having (X|Y) as a Frobenius symbol. Then (X|Y) = F,(A), where
i=1Y|—-|X].

Proor. We simply write the dual B-sequence of Y in front of the f-sequence

of X to get a partition sequence with a cut at the place, where the f-sequences
meet.

ExampLE. X = {4,2}, Y = {3,2,1}.

B-sequence for X : 110101.
Dual f-sequence for Y: 0111 0.
Partition sequence: 01110110101.

Partition 4 = (6, 5, 3).
If again Fi(4) = (X;|Y;), then X; and Y, are f-sets for certain partitions, say
% 1= P*(X)), A :=P*Y).
ProrosiTION (1.8). In the above notation we have

(i) The Young diagram of A is obtained by removing the first h; columns
from the Young diagram of 4, i.e.

A = (bn41>bnr25 -0 bu)’-

(i) The Young diagram of (47)° is obtained by removing the first g; rows
from the Young diagram of 4, i.e.
A.: = (agi,H, ay‘+2, ceey a,,,)o.
In particular A =0 if h, Z2m and 2; =0 0f g, Z m.

Proor. The hooks of 4 are recognized as pairs of zeros and ones in A as
described above. But the partition sequence of 4{ is obtained from that of 4
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by changing the first h; ones (in the natural numbering) into zeros. The
result (1) follows and (ii) is proved similarly.

We now give a complete description of the hooks of A(4) in terms of
Fi(A) = (X,|Y)), where again X; = Q(4,), ¥; = Q(43).

Proposition (1.8) suggests that the Young diagram of A may be decomposed
into 3 parts as follows

h;

A B
gi

Part A is the intersection of the first g; rows with the first h; columns. The
nodes in A correspond to those hooks of A whose, leg is in A, (to the right
of the cut), and whose arm is in A, (to the left of the cut). These hooks
are called mixed (relative to (X;|Y;)). Part B is the Young diagram of 4§
and the nodes represent hooks, whose arm and leg are in A,. Similarly part C
is the Young diagram of (4;)° and the nodes represent hooks whose arm and
leg are in A,. The hooks in the parts B and C are called unmixed.
To compute the mixed hook lengths write

X;={ci,ch..nch}, ci>ch>...>c 20
Y, = {di,d},....dj}, di>dy>...>dj 20.

As before aj., bk, 1% denotes the arm length, leg length and length of the
(k, k')-hook in A.

Lemma (1.9).
() For 1Sk Sg;:ci =ay—k —i=a}, —i.
(i) For 1 k' < h;:di = by —k' +i = by +i.

Proor. Since X; is a B-set for A7 we have that for 1 =k < g, ci—(gi—k)
has to equal the kth part of the partition in A, that is a,—h; (by (1.8)).
Thus, using (9) we have

ck=gi—k+a,—h;=a,—k—i.

Trivially a,—k = al,, so (i) is proved and (ii) is proved in a similar way.
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(It should perhaps be noted, that in the above notation a,—h; = 0 for
k=1,2,...,9; since by the defintion of the coordinate of a cut, the first &;
ones are to the left of the first g; zeros. Thus the first g; parts of 4 are at
least equal to h;.)

In particular for i = 0 we have

CoroLLARY (1.10). For k = 1,2,....,hy = ¢
ey =a,—k, dY =b,—k.

This corollary shows that the entries of Fy(4) are also the entries in
Frobenius’ “characteristic” for 4 ([4, §4]) (see also [9, p. 3] or [15, p.49]). So
Fo(4) consists of the arm lengths and leg lengths of the diagonal hooks in 4.
If i > 0, we shift the diagonal by i positions starting then at the (1,i+ 1)-node.
If i <0, we start at the (—i+1, 1)-node. Going diagonally we shall in any
case hit a rim node in the position (g;, ;). Then the hook lengths I, in
Part A of the Young diagram are exactly all the the possible sums of an entry
in X; with an entry in Y; plus 1. Indeed, adding the equations in (1.9) we get:

CoroLLARY (1.11). For 1 £k £ g, | £ k' = h; we have
ci+dy =15 —1.
(Note also that
(12) apye = ci+i, by = die—i,
which explains the shifting mentioned above.)
Collecting the information above we have:

ProrosiTiON (1.12). In the above notation:

(i) For 1 £ k £ g; the hook lengths in the kth row of A are
{ei+di+11k = 1,2,..,h} u{1,2,..,ci} \{ck—ci|l > k}.
(i) Forall j=1,2,...,h;

{l;.-+l,j’I;.-+2,j"~"lli,j} ={1,2,..,di}\{di—d}|j > j}.

ProoF. (i) describes the hook lengths in parts A and B using (1.11) and
(1.8) (i), and (ii) describe the hook lengths in part C using (1.8) (ii).

ExampLE. Let 4 be as in (5),
A=(4%3,1%), F,A)=(2,1|521), g, =2h =3.
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19

-9 N x
n
4

The hook lengths in the first row are
245+ 1,242+ 1,2+ 1+1) U {1,2}\{2—1] = {8,5,4,2].

(Similarly the hook lengths in the second row may be computed as {7,4, 3, 1}).
Using (ii) we get for instance

{131,14|,I§l} = {1,2,3,4,5}\\{5—2,5—1} = {5,2, 1}

We may of course also cémpute directly the first column hook lengths of 4,
that is X, from the Frobenius symbol:

ProposITION (1.13). In the above notation
X,={c+di+11j=12,..,9:} v{1,2,...d}} N{di —=dilj=2,....h}.

Remark 1. Mixed hooks (relative to (X;|Y;)) correspond canonically to pairs
of elements (c,d), ce X;, deY,. The corresponding hook length is c+d+1,
by (1.11). Removing this hook we get a partition having (X;\{c}|Y;\{d})
as Frobenius symbol!

ReEMARK 2. We may compute |A| = a, +...+a,, from (X;|Y;). Indeed

1Al = ch+ de+2(q.+h) $(g:— ).

This follows easily, since part A contains g; h; nodes, part B constraints
Y xck— (4) nodes and part C contains ¥ ,.di. — (}) nodes.

For i = 0, the formula coincides with Frobenius’ [4, formula (7) in §4].

RemARk 3. (1.12) allows us to generalize two further formulas of Frobenius
(for the degrees of the irreducible characters in S,). Let as in [4],

Axy,..ox)= ] xj—x)

Isi<jst

Let f; be the degree of the irreducible character of S, corresponding to A. Then

nlA(ch,ch,...,ch)Ad}, ds, ....d},)

fi= .
cileyl. i didy! . di ] (ch+di+1)
k,k’
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This is a common generalization of [4, (6) in §3 and (9) in §4].
As a preparation for section 2 we mention the following:

In [12] a mixture of the ordinary notation and the “Frobenius notation”
for 4 is used. The authors write

Ao (ay,dz,. .05 (Civyy e Csdistyeendm)),
where
Fo(@is1y-es@m) = (Civt1yerorColdiviyeeos ).
(Their assumption that m = m; is generally not correct!) Using (1.9) we get:
CoRroOLLARY (1.14). For i 20
F_i{A)=(a+(—=1)a+(1—=2),..0,a;,Cit1s e Coldis1senerdpy)
(the number m'’ is really g_;).

This result and a similar result for F;(4) (which is obvious and left to the
reader) shows that Morris’ and Yaseen’s definition of the p-bar quotient is
equivalent to ours, which will be given in section 2.

2. On p-bar cores and p-bar quotients.

If A is a partition of n with all parts different (i.e. a 2-regular partition
in the notation of [7]) we write 4 > n and call 4 a bar partition. We assume that

(1) A= (A, e0lp), Ay >d3>...>a,>0

is a bar partition of n. Let S(4) be the shifted Young diagram of 4 (see e.g.
[9,p. 135]). It is obtained from the usual Young diagram of 4 by shifting
the ith row (i — 1)-positions to the right. For example, if 4 = (4,2, 1) then

| Il

S(4):

—

The jth node in the ith row will be called the (i, j)-node. To each node in
S(A), we associate an integer bar length as follows: The bar lengths in the
ith row are obtained by writing the elements of the following set in
decreasing order:

() {1,2,...,a;} u{ai+ajlj> i} \{a;—ajlj > i}.
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(So in {1,2,...,a;} one replaces a;—a; by a;+a;). Thus the first (m—i)-bar
lengths are a;+a;,,,...a;+a, (in this order), and then the remaining
a;—(m—i)-bar lengths are the hook lengths in the ith row of the partition
A* = P*(A) (considering A as a S-set!).

In the above example the bar lengths are

6541
32
1

(Note that 3 2 " is the hook daigram for (2, 1%) = P*({4,2, 1}).

We denote the (i, j)-bar length by T%.

To each node (i, j) in S(4) we associate a bar, ie. a subdiagram of S(4)
consisting of T nodes. If i+ j>m the (i, j)-bar consists of the last T}
nodes in the ith row of S(4). Such a bar is called unmixed. If i+j < m, the
(i, j)-bar consists of all the nodes in the ith and all the nodes in the
(i+j)th row of S(4) (a mixed bar). If we remove the nodes of the (i, j)-bar
from S(4) and rearrange the rows of the diagram obtained according to size
we obtain a new shifted diagram S(u) and say, that u is obtained from £
by removing the (i, j)-bar. Thus u > n—T}. The parts of u are

Ay, Ay, oy, =15 iy, .y ifi+j>m
and
al’--"ai—lﬁai'*la~..9ai+j—l’a|'+j+l""’am Ifl+.]§’n

If the (i, j)-bar is removed from A to get u we write u = ANH/. A bar of
length / is called an l-bar. The (i, j)-bar is said to be of

Typel, ifi+j=m+2

3) Type 2, ifi+j=m+1
Type 3, fi+j=<m mixed bar.

} unmixed bar.

This is illustrated in the following shifted diagram:

mixed, unmixed

We investigate all bars in A whose lengths are divisible by a fixed positive
integer p. As is done in [6] (for B-sets of partitions) and in [12] (for bar
partitions) we represent the parts of A as beads on a p-abacus. This abacus
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has p runners numbered 0,1,2,...,p—1 going from the north to the south.
Contrary to [12] the rows will be numbered 0, 1,2, ... .
For 0 =i = (p—1) we define

) X} :={aeNog|la, =ap+i for some ke{l,2,...,m}}

so that the X/ are B-sets. The bead configuration of 4 on the p-abacus then
includes a bead in the jth row of the ith runner, if and only if je X%

We define a p-bar core 4; (abbreviated j-core) and a p-bar quotient A(?)
(p-quotient) for i having properties analogous to the p-core and p-quotient
for arbitrary partitions ([7, § 2.7]). Especially we want the structure of A?) to
describe the bars of length divisible by p. In general this is only possible for
p odd. Consider the following:

431

ExampLE. 4 = (3,1). The bar diagramis 1 . So A contains a 4-bar, but

no 2-bar.

This shows that for p = 2, there cannot be a p-quoteint having the property
of Theorem (2.3). The same difficulty arises when p is even (then (3p/2, p/2)
has a 2p-bar but no p-bar). This also shows that both statements of the
Corollary in [12, p. 31] are false for p(= q) even. Another difficulty arises as
well when p is even. Part of it is reflected in [12, Theorem 2 (2)]. In [12],
p-quotients are also defined for p even but they are not suitable for our
purposes.

However, a careful examination of the arguments below shows that the
difficulties will not arise for A, when X}, = ®. (For a special case of this
see section 4.)

We assume from now on that p is odd and put ¢t = (p — 1)/2. Then we define
the p-quotient

l(ﬁ) = ()‘05 )‘l, L] Al)?

where 1, is the bar partition whose parts are the elements in X3 and where
forlsj=t

(5) Ay = P(X}1X};-))

in the notation of (1.7). Thus 4,,..., 4, are partitions. The runner 0 determines
4o and for 1 £ j <t the conjugate runners j and p—j determines 4;. (As
mentioned in section 1, (1.14) shows that our definition of A() coincides
with the one in [12].)

The removal of a p-bar is registered on the abacus as follows (see (3)):
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Type 1: Move a bead one position up on the same runner.
©6) Type 2: Remove the bead in the first row on the Oth runner.
Type 3: Remove the 2 beads in the Oth row on the jth and the
(p—j)th runner for some j, 1 £ j < t.

When we remove recursively all p-bars from 4 we see (using (6) repeatedly)

that the p-abacus configuration is changed until the following configuration is
obtained :

(i) There are no beads on the Oth runner.
(i) For 1 =j<p—1 the jth runner contains [; = Max(X% —|X}_;],0)
beads in the [ first rows.

Thus (see also [12]):

ProrosITION (2.1). The p-core A of i obtained by removing all p-bars
from A is uniquely determined by A and p.

Putting f; = |X}|—|X3_;| for 1 £ j < t, we see that the t-type (fi,....[;)
of integers determines 4(;) completely. We call it the characteristic of A;).
(Not to be confused with Frobenius’ concept.)

ExampLE. 4 = (17,14,13,11,9,5,2),p = 5

S-abacus: 0 1 @ 2 4
® 6 17 8 ©@
0@ 12 QP

15 17 @ 18 19

= {1}, X{={2}, X3={3,0}, X3={2}, Xi={21}. Thus 4 = (1),
A = PQI2,1) = (4,2), A, = P(3,012) = (3, 1%).

Partition sequence for 4,: 01 10/1 10 1.
Partition sequence for 1,: 0 1 0 001101.
Characteristic: (-L1). 435 = 4,2).

Suppose that (4¢,4;,...,4,) is given, where A, is a bar partition and
Ay,..., A, are partitions, and suppose that (f,,...,f;)€Z". Let X, be the set of

parts of 4o and for 1 =i =t let
Ff.»('li) = (XIIXp—i)'
Then the bar partition A having X} = X;fori =0, 1,...,p— 1 has (4, 4,,..., 4,)

as a p-quotient and its p-core has (f}, ..., f;) as characteristic. (As in section 1,
F denotes a Frobenius symbol.) We have proved :
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PROPOSITION (2.2). A bar partition determines and is uniquely determined by
its p-core and its p-quotient.

We may generalize (6) as follows:

The removal of an Ip-bar, | Z 1 is registred on the p-abacus as follows:

Type 1: Move a bead [ positions up on the same runner.
Type 2: Remove the bead in the Ith row on the Oth runner.
Type 3: (i) Remove the 2 beads in the Oth runner in the /,th and
7 } Lthrow, 1 =1, <l +1, = 1.
(ii) Remove the bead in the I/;th row and the jth runner
and the bead in the [,th row and the (p—j)th runner,

| 1sjst L+, =1-1.
Defining an l-bar in AP) = (Ay, 44,...,4,) to be either an l-bar in 4y or an
[-hook in one of the partitions 4,,...,y, and the removal of an [-bar in A(P)

correspondingly, we have the following important result:

THEOREM (2.3). There exists a canonical bijection g between the set of bars
of A of length divisible by p and the set of bars in AP). Thereby an lp-bar
of A is mapped onto an l-bar of AP). Moreover, for the removal of corresponding
bars we have

ANH)P) = 20 \g(H).
Proor. Suppose that H is an Ip-bar, | Z 1. We adapt the notation of (7).

Type 1. The removal of H is registred by moving a bead ! positions up
on (say) the jth runner. In A() this corresponds

if j = 0 to the removal of an [-bar of type 1 in 4,,

if 1 £ j<t to the removal of an I-hook in part B of the Young
diagram of 4,

ift+1 = j<p—1 to the removal of an [-hook in the part C of the
Young diagram of 4,_;.

(The letters B and C refer to the decomposition of a Young diagram described
in section 1.)

Type 2. The removal of H is registred by removing a bead from the Oth
runner. Corresppndingly the [-bar of type 2 is removed in 4.

Type 3. (i) The removal of H is registred by removing beads representing
l,p and I, p. Correspondingly a mixed I-bar (of type 3) consisting of the parts
ly,1; is removed from 4,.
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(ii) The removal of H is registred by removing beads on the jth and
p-jth runner (1 £ j < 1). Correspondingly a mixed hook relative to (X}|X2_;)
is removed from 4; (in part A of the Young diagram).

The above describes how the map g has to be defined in order to be
compatible with the removal of bars and shows its existence. Thus (2.3) is
proved.

If AP) = (4g, A4, ..., 4,) we define the p-weight of 4 as
wi(4) = Aol + 41| +... +]4,].
Repeated use of (2.3) (with [ = 1) shows:

CoROLLARY (2.4). The number of p-bars to be removed going from i to 7
equals ws(4). Thus

4] = |'1(,3)|+PW,7(;1)'
Moreover exactly w;(4) bars in A have lengths divisible by p.

CoROLLARY (2.5). If A contains an Ip-bar, | Z 2 then A contains also a p-bar
(p odd).

NotEe. As a matter of fact an Ip-bar may be “decomposed” into | p-bars.
This will be discussed in [11].

As we have seen, w;(4) p-bars have to be removed going from 4 to 4.
One may ask how many of these p-bars are of type 1, 2 and 3 respectively.
This number will depend on 4(; and A?) as follows: (Let m(4) denote the
number of parts in the bar partition A).

COROLLARY (2.6). Let AP) = (g, Ay,...,4,).

(i) The number of p-bars of type 2 being removed going from A to A is
m(Ag).

(i) The number of p-bars of type 3 being removed going from 4 to A is
%(m(i)—m(l(ﬁ))—m(lo)).

PRroOF. (i) is an easy consequence of the proof of (2.3)

(ii) By the removal of a bar of type 2, the number of parts in a bar
partition is reduced by 1, and By the removal of a bar of type 3 the
number of parts is reduced by 2. So if a is the number of p-bars of type 3
being removed going from 4 to 4;), then by (i)

m(d) —m(4z)) = m(do)+2a.

The result follows.
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ExampLE. In the previous example, ws(4) = 13 = 1+6+6. Of the 13 5-bars
being removed going from 4 to 43, 1 is of type 2, 2 are of type 3 and the
remaining 10 of type 1.

3. The power of an odd prime dividing the degree of a spin character.

In [13] the author introduced the p-core tower of a partition as an array
of p-cores which uniquely determined the partition. Using this the power of p
dividing the degree of an irreducible character of S, could be described in a
way, which was useful for enumeration (see [8]). The p-core tower has had
other uses also. Here we define in an analogous way the p-core tower of a
bar partition and use it to study the degree of a spin character of S, (i..
an irreducible character of S, which is faithful).

If A > n, then the degree g(4) of a spin character indexed by 4 is (see [10,
Theorem 1])

(1) g(h) = 2™ 1/R()

where A = (a,,a,,...,a,), h(4) is the product of all the bar lengths of 4 (see
section 2) and generally [x] denotes the integral part of x. If p is a prime and z
an integer we write v,(z) = a if p*|z and p** ¥ z. We denote the multiset of all
bar lengths of a bar partition A by # (1) that is J#(4) lists all bar lengths
of A with the multiplicity to which they occur). Similarly # (u) denotes the
multiset of the hook lengths of a (general) partition u. The product of the
hook lengths of u is denoted by h(u).

ExampLE. (i) A = (4,3) > 7, #(A) = {7,4,3,3,2,2,1}, h(A) = 1008.
(i) A =(4,3) F7, #(A)={5433,21,1}, h(A) = 360.

From now on we assume that p is an odd prime and that A > n. Let 4
and AP) = (Ao, 4,,...,4,), t =p—1/2, be the p-core and p-quotient of A.
Let w = w;(4) be the p-weight of 4. By (2.4)

Moreover by (2.3)

(3) vp(R(A) = wv,(R(Ao))+ Y v,(h(4;)).
i=1

Now we may of course also apply to formula (3) to the bar partition A,.
The result analogous to (2.3) for hooks shows that if u is a partition and
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P = (o, py, ... My ) its p-quotient then

p-1

@) 0plh(u) = W'+ 5 olhie))
is

where w' = Y .|| is the p-weight of pu.

In analogy with [13] we define the p-core tower of i > n as follows: It
has rows numbered 0, 1,2,..., where the ith row contains one p-core and
(p'—1)/2 p-cores. The zeroth row consists of 4. If AP = (Ao, 4y,..., 4)
the first row consists of /lo(‘-,,, ,{l(p,,..., }t,",,. Now the bar partition 4, has
a p-quotient and the partitions 4,,...,4, have p-quotients. Then the second
row consists of the p-core of the first partition in ,11;‘ " and the p-cores of the
remaining partitions in }tf,ﬁ ) followed by the p-cores of the partitions in
AP, ..., AP, Continuing this way we get the p-core tower.

ExampLE. Consider again the example following (2.1). We have 45 = (4,2),
A9 = ((1), 4,2), (3, 13)). The 3-core tower is the following:
4,2)
(1) (1) (3,13
© © © O © © 1 © © © © © ©.

The remaining entries are (0).

Using (2.2) and the corresponding fact for partitions and p-cores and
p-quotients, we see that we may always recover a bar partition from its
p-core tower. Let f;(p,4) be the sum of the cardinalities of the partitions
in the ith row of the p-core tower of 4. Then we get from the definition

5 A=Y B, )p".
iz0
In analogy with the computations in [8] and [13] we get by an inductive
argument based in (2), (3), and (4):
ProposITION (3.1). In the above notation
vp(h(A)) = ("— ) ﬁi(ﬁ,l)) /(p—=1).
iz0

If n=Y,,0ap is the p-adic decomposition of n then

vp(n!) = <n~ Y ai)/(p—l)

iz0

(see eg. [13]). Using this fact we get:
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ProPOSITION (3.2). In the above notation

vp(9(4)) = ( > (Bub, l)—a.-)) /(p—1).

iz0

This proposition makes it possible for a given a = 0 to compute the number
of bar partitions 4 of n with v,(g(4)) = a. The formula is similar to (3.4)
in [13]. The results in this section will be applied in [14].

4. The power of 2 dividing a spin character degree.

Let A = (a,,a,,...,a,) > n. We consider the power of 2 dividing the degree
(1 g(4) = 21" 2n1/h(2)
(see section 3). We define
a(4) := [(n—m)/2] = [(14—m(4))/2]
(where generally m(4) denotes the number of parts in the partition 1)
t2(4) = vy(h (4))
t3(4) := t2(A)—a(d),

s0 v3(g(4)) = v,(n!)—t¥(A). First we show to reduce the computation of
t,(A) and t¥(4) to the case where all parts of 4 are odd. In that case a
theory of 4-quotients is relevant.

If A > n let Ay(A,) be the partition consisting of all the odd (even) parts of 4.

ExampLE. 4 = (8,5,2,1), 4 = (5,1), 4. = (8,2).
LEMMA (4.1). In the above notation
t2(A) = t2(Ao) +t2(4,).
Proor. The power of 2 dividing the product of the integers in the set
(1,2,..,a;} v {a;+ajlj > i})\{a;—ajlj > i}

(which are the bar lengths in the ith row of 1) equals the power of 2
dividing the product of the integers in

({1,2,...,a} v {ai+a;lj > i, a; = aj(mod 2)} \{a;—a,| j > i, a; = a;(mod 2)}

because when a; # a;(mod 2), then v,(a;+a;) = v,(a;—a;) = 0. From this (4.1)
follows easily.

LemMma (4.2). If all the parts of A are even, let A’ be the bar partition obtained
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by dividing all the parts of 4 by 2. In that case
t2(A) = |4+t (4).

Proor. Let 4 = (ay....,a,), a; = 2a;. Then the even bar lengths in the ith
row of 4 are in the set

({2,4,..., 205} U {20+ 20| j > i}) \{20,—2a;] j > i}.

Dividing all integers in this set (which is of cardinality «;) by 2 we get the
bar lengths in the th row of A"

This is all we need to derive a formula for ¢,(4) in terms of partitions
with all parts odd. We define for i = 0 inductively bar partitions i,
A0 29 as follows:

i) A9 =4,
(i) AD(AY) is the partition consisting of the odd (even parts of i,
@(iii) AY“*Y is obtained by dividing all parts of i by 2.
The above lemmas imply
[AD] = |AQ|+ 2|46 fori=0
t2(AD) = t,(A) 4+ ATtV +£,(A* D) fori = 0.

Using these equations we get by an easy calculation

n=l= Y e

i2z0
() = Y AN+ Y Q-1
i20 izl
Y L0g)+ (n— » ms'n).
iz0 iz0

To simplify notation, we put A’ = A{, i 2 0 and so each A’ has only odd
parts. In fact, t is a part of A’ if and only if ¢ is odd and 2't is a part of A.
We have proved :

ProPOSITION (4.3). If A > n write
A=20422"+427+ ...
where each A' is a bar partition with all parts odd. Then

@) n=Y |42

iz0
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3) t2(A) = Y t(A)+(n—Y|A)).
iz0
Next we make a similar decomposition for a(4) = [(n —m(4))/2].
LEMMA (4.4. In the notation of (4.3)

@) a() = Z:Miﬂ+[%<n— Z|IO].

iz0 iz0

Proor. Trivially m(Z) = Yz om(4)). Moreover || —m(4%) is even for all i,
since A' has only odd parts, so a(i’) = (|A| —m(A?))/2. Using this and (2),
then (4) follows by an easy calculation.

ProrosiTION (4.5). In the notation of (4.3)

5) t3(A) = Y 34+ [1<n+1—— Y 1A )]

iz0 iz0

Z tF(A) + [Z(H— Z M‘l(Z'—l))]
iz0 iz1

Proor. Use (4.3), (4.4) and the fact that for any integer k we have
k = [k+1/2]+[k/2].

COROLLARY (4.6). For all A > n, t3(A) 2 0.
Proor. By (5) it suffices to show t¥(1) = 0, when A has all parts odd.

In that case, a(4) is just the number of even bar lengths in 4, as is easily
seen. (There are (a;— 1)/2 even bar lengths in the ith row of 4.)

We have reduced our problem to the case, where all parts of 4 are odd
(ie. A = 1%. As we just mentioned, a(4) is then the number of even bar
lengths in A. Therefore, to compute t;(4) or t3(4) we need only consider
bars of a length divisible by 4. Let (as in section 2)

X} ={aeNg|la;=4a+1 for some je{l,2,...,m}}
X4 ={aeNgla;=4a+3 forsome je{l,2,..,m}}
(so |X?|+]X3% = m) and put

u(4) := P(X11X3)

in the notation of section 1. So u(4) is a partition. An argument analogous
to the one used in the proof of (2.3) (the bars of type 2 do not occur)
shows that we have:
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ProPOSITION (4.7). Let A > n have all parts odd. For | 2 1 there is a canonical
bijection g between the set of 4l-bars in A and the set of l-hooks in (). If
H is a 41-bar in i we have

wANH) = p(2)\g(H).

Norte. The reason that the difficulties mentioned in section 2 do not occur
here is really that A has no parts which are congruent 2 modulo 4.

If u is an ordinary partition, let s,(u) = v,h(u), where h(u) is the product
of the hook lengths of u. Then s,(u) may be computed as in [8], [13] (see
also section 3). We have

ProPOsITION (4.8). Let A > n have all parts odd. Then

t3(4) = |u(A) +s2(n(4)).

Proor. If u = u(4), then a(4) bar lengths of A are divisible by 2 and |yu|
bar lengths are divisible by 4 (using (4.7)). The bars of length divisible by at
least 8 are registred as hook of even length in u (by (4.7)). Thus

t2(A) = a(A)+|ul +s2(u)
as desired.

This finishes our study of the power of 2 dividing spin character degrees.
We apply our result to study 2-blocks of low defect in a covering group
S, of S,.

Let Z be the central subgroup of order 2 in §,, so that S, ~ §,/Z. It is
clear that each 2-block B of S, (considered as a set of irreducible characters)
is contained in a unique 2-block B of §, and that each B will contain both
ordinary and spin characters (see [3, V.4]). Obviously we have for the defects
of the blocks that d(B) = d(B)+1. So if d(B) = 0, then B has a cyclic defect
group of order 2. If d(B) = 1, then the defect group of B is cyclic or elementary
abelian of order 4, depending on which of the 2 covering groups of S, we
consider. In any case, the blocks considered will have just one modular
character by the general theory (Dade and Brauer). If d(B) =0, then B
contains one spin character, and if d(B) = 1, then B contains 2 spin characters.
We determine the bar partitions indexing these characters. Since the blocks
considered have just one modular characters, the spin characters given in (4.9)
and (4.10) below from 2 infinite series of spin characters, which remain irre-
ducible modulo 2. It is not at all obvious from the degree formulas why the
ordinary and the spin characters have the same degrees.

Let (A1) denote a spin character of §, indexed by A > n. Generally, if B < B
and (A) e B, it follows from the definition of the height of a character in a
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block, that

(6) d(B) = t3(2)+height (1)) = 13(4).

Suppose first that t3(4) = 0 for some 1 > n. By (4.5) we get t¥(4') = 0 for all i
and that in fact A' = A% = ... = 0, so that 4 = A°. Then (4.8) forces |u(4)| = 0,

so that 4 has no bar of length divisible by 4, by (4.7). Thus either X} = ¢
or X3 = @, which shows that 1 must have the form

A=@f+1,4(-1)+1,..,51)
) or for some f2 0
A= @f+3,4(f—1)+3,...,7.3).

(Note that also P*(X{) = P*(X%) = 0.) The partitions in (7) are partitions
of triangular numbers. Using (6) we conclude:

ProprosITION (4.9). If d(B) = O, that is B = {[k,k—1,..., 1]} for some k, then
the spin character in the block B is (2k—1,2k —5,.. ..

Suppose next that t¥(1) = 1. By (4.5) we get that either
(i) A'=(),t3(A°)=0,4=0 fori=2 or
(i) t¥A°) =1,A4 =0 fori=1.

In case (i), we get from the analysis leading to (7) that 4 is obtained by
adding a part 2 to a partition in (7), i.e.

f20

A=@f+1L,4(f-1)+1,...,521)
(8) or |
A=@f+3,4(/-1)+3,..,7,3,2).

In case (ii), |u| = |u(A°)] = 1 so that the partition sequence of pis 0 1 0 1.
Looking at the cuts in this sequence, we get the following possibilities only,
which are obtained by removing a single nonmaximal part from the partitions
in (7)

A=@f+1,..,4+1)+1,4e—-1)+1,..,51)
®) {Or 0<e<f-1

J=@f+3,..,4+1)+3,4e—-1)+3,...,7,3).
ProposITION (4.10). If d(B) = 1 (that is d(B) = 2), then

B={[k+2,k—1,k=2,...2,1], [k k—1,k—=2,...,2,13]}

for some k = 0. Then the spin characters in B are the 2 characters indexed by
(2k—1,2k—5,...,2), (which is one of the partitions occurring in (8)).
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Proor. By (6) only spin characters indexed by the partitions in (8) or (9)
can occur in B. There are 2 characters indexed by each partition in (8) and
one character indexed by each partition in (9) (see [16]). So if (4.10) is false,
the spin characters in B must be indexed by one partition of each of the types
in (9) (for reasons of cardinality). Thus the spin characters in B are
A4f+1,...,1> and {4g+3,...,3) for suitable f,g = 0 (where in each partition
a part 4e+1 or 4¢’ +3 is missing). If 4/ +1 > 4g+ 3, the first character has
a nonzero value on a (4f + 1)-cycle and the other has the value 0 on the same
cycle (by the Murnaghan-Nakayama formula for spin characters (see
[10], [11])). If 49+ 3 > 4f + 1, we have the converse situation. In any case this
is impossible: The characters in B must have the same value on 2-regular
elements, since they are in a block having only one modular character.

Let us consider briefly the other extreme of the principal 2-block. Since a
basic spin character {n) may be seen as a “spin version” of the trivial
character [n], one may ask whether {n) is in the principal block of §,.
Computing the value of the central character of (n) on the class (3, 1" ),
we get that if n = 4k +3, then (n) is not in the principal block. A general
result of Benson [1] shows that these are the only exceptions to the
above question.

As mentioned, the spin characters in (4.9) and (4.10) remain irreducible
modulo 2, and it is easy to see which is the natural index of the 2-modular
they restrict to. But the general question of which spin characters are irre-
ducible modulo 2 and which modular character they then correspond to
seems very difficult to answer. It is not even clear what a reasonable con-
jecture would be. However, there is a conjecture due to R. Kndrr and the
author, how the spin characters should distribute into 2-blocks, which of course
fits the facts mentioned above.

The 2-blocks of S, (and S,) are indexed canonically by the 2-cores of
partitions of n. So there is a 2-block of S, for each k >0 such that
n = kk—1)/2mod2) and k(k—1)/2 = n.

ConsecTuRE. If 4 = (ay,...,a,) > n, let £ +n be defined as

-} 2D

Then {4) is in the 2-block indexed by the 2-core of X
ExampLE. A = (7,2), £ = (4,3,1, 1), 2-core of 1:(2,1).

There is an easy way of computing the 2-core of 1 directly from A, which
may be illuminating for the conjecture: Given 4, disregard all the even parts
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and consider 4°. Suppose that f parts of 1° are = 1 modulo 4 and that g parts
of A% are = 3 modulo 4. Ifa = f—g > 0, the 2-core of Lis 2a—1,2a—2,...,1).
If b=g—f 20, the 2-core of 4 is (2b,2b—1,...,1). (The above example
correspondstog =1, f =0,b = 1,)
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