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SERIES OF INDEPENDENT VECTOR VALUED RANDOM
VARIABLES AND ABSOLUTE CONTINUITY
OF SEMINORMS

T. BYCZKOWSKI and M. RYZNAR

Let E be a separable metric vector space and let g: E > [0,x] be a
measurable seminorm. Suppose, further, that (X;) is a sequence of E-valued
independent and symmetric random vectors such that ) . X, converges a.s. in
E. The purpose of this paper is to investigate conditions under which series
of this kind converge a.s. with respect to q. We also extend here results of
[4] concerning absolute continuity of seminorms, under various assumptions.

Section 1 is preliminary. In Section 2 the basic result is contained in
Theorem 2.2, which is a version of It6-Nisio Theorem concerning convergence
of random series with E-valued independent and symmetric components. Let
us note that although some partial results of this type have been known for
some time (see [4], [17]) our theorem seems to be new even in the case of
E = R® and q being the supremum seminorm. In the sequel of this section
we study, for a measurable seminorm g, the relation between the g-separability
of random vectors and the condition that all g-balls centered at O are of
positive mass. Given a seminorm g we also prove a creterion of concen-
tration of p-stable measure on the subspace {q < oo}, in terms of its Lévy
measure, for 0 < p < 1. In the end of this section we present some examples
clarifying problems discussed there.

Section 3 is devoted to investigation of absolute continuity of distributions
of seminorms of random series, under some assumptions on independent
components. In particular, absolute continuity of distribution of Gaussian
seminorms follows at once from our result. We improve also earlier obtained
results concerning absolute continuity of stable seminorms.

Let us note that Section 2 is essentially self-contained. Section 3 relies more
on results of the paper [4] and some acquaintance with [4] may be necessary.
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1. Preliminaries.

Throughout the whole paper E will denote a complete separable metric
vector space over the real numbers, unless stated otherwise. We assume that
the reader is familiar with standard concepts of weak convergence, properties
of convolutions of probability measures, etc.

A Borel measurable function gq: E — [0, o] is called a measurable semi-
norm if it is subadditive and homogeneous, i.e. if g(x+y) £ q(x)+q(y) and
g(ax) = lalq(x), for all x,ye E and aeR.

We first state some versions of the Lévy Inequality, needed in the
sequel (see [11]).

Lemma 1.1. Let X,,..., X, be E-valued independent and symmetric random
vectors and let q be a measurable seminorm. Then for every ¢ > 0 we have

2
(a) P{max q(Xj)>s}§_2P{q<Z X,-)>£},
1sjs2 i=1

o e a($0)-d52efa(3 )=

Now, we collect some basic facts concerning convolution semigroups on E.
Note that when E is a Banach space or locally convex space, then every
infinitely divisible probability measure is embeddable into a unique con-
tinuous convolution semigroup, as a consequence of the Lévy-Khinchine
Theorem. Thus, the readers interested only in these spaces may use the
standard form of the Lévy-Khinchine Theorem [1] or [5], instead of facts
stated in the remainder of this section.

A convolution semigroup on E is a family (y,),, of probability measures
such that p, * u, = p,,,, for t,s > 0. It is called continuous if u, converges
weakly to &, (the point mass at 0) as t —» 0+ ; it is called symmetric if all
u’s are symmetric.

Next, let m be a finite Borel measure on E. For every t > 0 we define

a0
exptm =e~"™B Y (t*/k ym**,
k=0

where m*® = §,. It is easy to see that the above series converges in the total
variation norm and defines a continuous convolution semigroup.

We also need a version of the Lévy-Khinchine formula for continuous
convolution semigroups. Suppose that (y,), o is @ symmetric continuous con-
volution semigroup on E. Then there exists a nonnegative measure v such
that for every open neighbourhood U of 0 v|y is finite and (1/t)ply-
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converges weakly to v|y, as t— 0+, whenever v(0U)= 0. Moreover,
W = % *7,» where (x),>0 and (7,),>0 are symmetric and continuous con-
volution semigroups, y, = limexptv|r, for every increasing sequence of
symmetric Borel subsets such that v|¢_is finite and n,F; = {0} and

lim (1/t)%,(U) = 0,

t—0+
for every open neighbourhood of 0. The measure v, appearing in the above
theorem will be called the Lévy measure of (y4,),-¢. The semigroup y, will
be denoted in the sequel by exp tv. All these facts are taken from [4].

Now, let (y4),-, be a symmetric continuous convolution semigroup on E.

(4); > o 1s called symmetric p-stable, 0 < p < 2, if yu, = exptv and

(L.1) v(sA) = (1/sP)v(A),
for all Borel sets 4 and all s > 0. (1.1) is equivalent to the following property:
(A) = p(s''PA),

for all t,s > 0 and all Borel sets A. Again, this last property shows that in the
case of locally convex spaces this definition is consistent with the usual
definition of stable measures.

Finally, we need one simple consequence of Lemma 1.1. We begin with a
definition.

Let g be a measurable seminorm. A convolution semigroup (y,),> o is called
g-continuous if

lim u{q >¢} =0, foralle>0.

t—0+

It is easy to see that if (i)~ is p-stable symmetric semigroup then it is
g-continuous for every measurable seminorm g satisfying q < oo p; —as.
The next lemma is taken from [3]. ¢ stands here for a measurable seminorm.

LemMmA 1.2. Let (i), >0 be a q-continuous convolution semigroup on E. Then
for all e >0

(1.2) lim sup (1/t)u,{q > ¢} < .
=0+

2. Convergence and boundedness of random series.

Let (X;) be a sequence of E-valued independent and symmetric random
vectors and let g denote a measurable seminorm. We always assume that
S = Y2, X, converges as. in E and that g(5) < oo as. Let us denote
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x
S" = Z Xl; R" = Z X,'.
i=n+1

We begin with a simplified version of Lemma 5.1 from the paper [4]. Its
proof is included here for the sake of completeness.

LEMMA 2.1. Under the assumptions as above limsup g(R,) is equal as. to a
finite constant.

Proor. That limsup g(R,) is a.s. constant is a well-known consequence of
the Kolmogorev 0—1 Law. Denote this constant by c¢. We show that
q(S) < oo a.s. implies that ¢ < oc. Applying the inequality (b) from Lemma 1.1
we obtain that

P{ max ¢(R,) > a} < 2P{4(R,) > a},

ksnsm

for every a > 0. When m — oo we get

P{sup q(R,) > a} < 2P{q(Ry) > a}.

nzk

This, in turn, gives

2.1) liminf P{q(R,) > a} 2 1/2P{limsupg(R,) > a}.

Next, applying the part (a) of Lemma 1.1 with S, as X, and R, as X, we get
P{q(R,) > o} = P{max(q(S,),q(R,)) > a} = 2P{q(S) > a},

for n=1,2,.... When a < c¢ = limsupgq(R,), then by (2.1) and the above
inequality we obtain 2P{q(S) > a} = 1/2. This clearly ends the proof.

Now, we are ready to state and prove the basic result of this section.

THEOREM 2.2. Let (X;) be a sequence of independent symmetric random
vectors with values in E and let q be a measurable seminorm. Suppose that
S = )2, X; converges as. in E and that q(S) < o as. Then q(R,) converges
a.s. to a constant ¢ < . Moreover, q(R,) 2 c as., for n =0,1,.... The series
Z,-"":,X ; converges a.s. with respect to q (that is ¢ = 0) whenever S satisfies
the following condition :

™*) P{q(S) <€} >0, for every ¢ > 0.

Proor. 1. We first prove our theorem under the assumption Eq(S) < oo.
Note that then we have Eq(R,) < o, for n=1,2,.... This follows
by Lemma 1.1 (a) and by integration by parts formula. Next, let
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#An = 6{(Xi)i2n+1}- By the assumptions of separability of E and measurability
of g it follows that we can compute conditional expectations in the same way
as for real random variables:

E{q(Rn)tﬂn+l} = En+ lq(Xn+l +Rn+l)

where E,,, denotes the integration with respect to the distribution of X, ,.
Next, by the symmetry of X,,; we obtain that

E,o1q(Xpi1+Rot1) = Eni [39(Xps i + Ry ) +H39(— X, iy +R,.1)]
; (I(R,,+1),

This shows that {q(R,), 4,} is a reversed positive submartingale, thus it con-
verges a.s. and in L'. By the Kolmogorov 0—1 Law, lim ¢(R,) is constant a.s.
Denote this constant by c.

If we now denote by #, = o{(X;);c,, then, by the same arguments as
before, we obtain

E{q(S)|#,} = E"q(S,+R,) Z Eq(R,),

where E™ denotes the integration with respect to (X,4,.X,.2....). Since
lim Eq(R,) = ¢ and lim E{q(S)|.#,} = q(S), a.s., we get

q<§ X,~>§c as.

i=1

Since it is clear that the above inequality remains valid if we replace i = 1

by i =n, for n =2,3,..., this proves our theorem under the assumption
Eq(S) < oo.

2. To remove the assumption of integrability of g(s) we consider the case
when X; =rx; (r;) is a Rademacher sequence and (x;) is a sequence of
elements of E. As before, we assume that § = )2 r;x; converges as. in E
and that q(S) < oo a.s. Then we have

Eq(S) < 0.
Indeed, an obvious inequality
q(S) = supq(S,)+limsup q(R,)

and the fact that limsupgq(R,) is equal as. to a constant, show that it is
enough to prove that E sup g(S,) < oo and that this constant is finite. The first
fact is well-known for Rademacher series (see [8]), the second one is contained
in Lemma 2.1.

The remaining part of the proof is standard; it is included here for the
sake of completeness. Let (X;) be an arbitrary sequence of E-valued random



64 T. BYCZKOWSKI AND M. RYZNAR

vectors, defined on a probability space (,, «,, P,) with the properties as in
our theorem. Let (r;) be a Rademacher sequence defined on another space
(2,, o5, P;). Then (r;X;), defined on the product space, has the same
distribution as (X;) hence it satisfies all the assumptions of our theorem. Let
¢ = limsupq(R,) a.s. By the Fubini Theorem, the first part of 2. and part 1.
of the proof we obtain that q(z,-“;,,“r,» X(w)) converges P, — as. for P, -
almost all w to the constant ¢ and that q(Z{“;,,HriX,-(w)) 2 ¢ P, - as. for
P, - almost all w, for n =0, 1, ... . Applying once more Fubini’s theorem and
the fact that the distributions of (X;) and (r;X;) are identical, we obtain the
conclusion.

The next theorem is a version of It6-Nisio Theorem (see [10] and [8]).
Let us recall that a random vector Y is called g-separable if for every
¢ > 0 there exists a sequence K(x;, ) of g-balls with centers x; and of radius &
such that Y e UK(x;, ¢) a.s. Equivalently, Y is g-separable if there exists a
Borel vector subspace F which is g-separable and such that Y € F as.

THEOREM 2.3. Let (X;), E, q be as in Theorem 2.2. Suppose that Z,-“;,X;
is g-separable. Then Y | X, converges a.s. with respect to q.

We first prove a lemma.

LEMMA 24. Let X be a g-separable random vector with values in E. Then
Y = X5, the symmetrization of X, has the property (*).

Proor. Let ¢ > 0. Denote by K(¢) the closed ball of radius ¢ centered at 0.
Let

E, = {x;P{XeK()+x} = P{q(Y) < ¢&}}.
We claim that P{X e E,} > 0. Indeed, if not, then
P{XeK()+x} > P{q(Y)S ¢} as.

Integrating the both sides with respect to the distribution of X we obtain a
contradiction :
P{q(Y)=¢} = JlP{XeK(s)+x}Px(dx) > P{q(Y) S ¢}.

Now, let {x;} be a countable subset of E, such that

P{Xe O (K(€)+x;) n E,} = P{X eE,}.
i=1
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Then we have

i=1

0< P{XeE,} £ P{Xe U (K(s)+x,-)}.
Let N be a positive integer such that

N
P{Xe U (K(e)+xi)} > 0.
i=1
Since x; € E,, we obtain

N
0< P{Xe C) (K(£)+x,-)} S Y P{XeK(E)+x;} S NP{q(Y) <S¢},

i=1 i=1
which complets the proof of the lemma.

Proor oF THEOREM 2.3. Let (X,) be an independent copy of the sequence
(X,) and let

Then Y is the symmetrization of ) ,°_, X,, thus by Lemma 2.4, Y satisfies (+).
Applying Theorem 2.2 to the sequence Z,, where Z, = Y, X, Z,., = X,,
we obtain that g}, X,) converges to 0O as. This ends the proof of
Theorem 2.3.

CoOROLLARY 2.5. Let (T, #,v) be a finite measure space and let (X(t)) be a
sequence of independent symmetric measurable stochastic processes. Suppose
that for v — almost all t the series ZiX i(t) converges a.s. and that

< o0 as.

ess sup

in(t)

Then Y ;X; converges as. in L*(v) provided Y =) ;X satisfies (*) with respect
to g = q, = esssup or when Y is q,, — separable.

Proor. Let E = Ly(v) be the space of all measurable functions on T with
convergence in measure. Denote by ¥ and X, the E-valued random vectors
determined by Y(t) and X,(t), respectively. Using results of Chung and Doob
[6] we infer that ¥ and X; have separable ranges in E. Restricting our
attention to a separable subspace of E containing the ranges of X; and
applying Theorem 2.2 and Theorem 2.3 we obtain the conclusion.

ReEMARK 2.6. (i) One may ask what is the relation between the g-
separability of a given symmetric random vector Y and the property (*).
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By Theorem 2.2 and Theorem 2.3 it follows directly that for a given
measurable seminorm ¢ and Y of the form Y = Z,Xi, where X; are g-
separable, ) ;X; is a.s. convergent in E and g(Y) < oo as., we have that Y
is g-separable if and only if Y* satisfies (*) and this is exactly the case when
Y'iX; converges in g as.

(i1) By the proof of Lemma 2.4 we obtain that if (y4,),-, is a symmetric
convolution semigroup on E and q is a measurable seminorm such that yu,
is g-separable, then u,{q < ¢} > 0, for every ¢ > 0 and every t > 0.

(iii) If E is locally convex and Y is symmetric Gaussian, then applying (i)
we obtain that Y is g-separable if and only if Y satisfies (*). Indeed, in this
case Y can be represented as the distribution of a series of the form
Y i&e;, where (&) is a sequence of independent standard normal random
variables, e; € E and the above series converges a.s. in E. The same fact is also
true when Y is p-stable, 0 < p < 2, with the purely atomic spectral measure.
However, as we will see later, for every p, 0 < p <2, it is possible to
construct p-stable Y satisfying (*), which is not g-separable.

Now, we investigate when for a given lower semicontinuous seminorm g
the concentration of a stable measure on {g < oo} can be expressed in terms
of the corresponding Lévy measure.

THEOREM 2.7. Let g, be a nondecreasing sequence of continuous seminorms on
E and let y, = exptv be a symmetric p-stable semigroup with the corresponding
Lévy messure v. Define ¢ =supq,. If 0 < p <1, then q < oo p, —as. if and
only if v{ig > 1} < 0.

Proor. In Section 3 we show that ¢ < oo pu; —a.s. always implies that
v{q > 1} < oo, for every measurable seminorm g, regardless of p. For the sake
of simplicity we prove this fact here only for lower semicontinuous semi-
norms ¢q. To do this, we use the definition of v. Namely, since {q > 1} is
open, for every open neighbourhood U of 0 such that v(6U) = 0 we get

v({g > 1} N U®) < lim inf (1/t)p,|y<{q > 1}
t—0+

< lim inf (1/t)u,{q > 1} < oo,
1—0+

where the last inequality follows by Lemma 1.2. Thus, v{q > 1} < oo.
Now, let ¢, = v{q, > 1}. Since g, are continuous, by the definition of Lévy
measure we obtain

lim (1/0){qn > 1} = cp.
t=0+
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On the other hand, when n — oo, we obtain
V{q,, > l} = Cn—*CO = V{q > l}

Assume that ¢, < o0. Let X; be independent copies of a random vector X
with the distribution y,. Then

k
(2.2) P{g.(X)> 1} = P{(l/k”") 2 4a(X) > t}-

Now, ¢,(X) belongs to the normal domain of attraction of non-negative real
p-stable random variable @, with the Lévy measure m, satisfying

mf{usu > 1} =c, = lim t?P{O, > t|

| S &

(see, e.g. [7, chapter XVII]).

When k — o0, (2.2) implies that P{q,(X) >t} < P{©, > t]. On the other
hand, as n - oo, then ¢, — ¢y, S0 6, - O in distribution, where O, is a
nonnegative real p-stable random variable with the Lévy measure m, deter-
mined by the condition

mol{usu> 1} =co =v{g > 1}.

Thus, as n - o0, we obtain

P{q(X)>1t} S P{Oy >t} < 1.
By the 0—1 Law for stable measures we conclude that ¢ < oo u; —a.s.

The following example indicates that the weaker condition v{q = oo} =0
is not sufficient to ensure that u{q < o0} = 1, for u = expv.

ExampLE 2.8. Suppose that 0 < p <2 and that (Z;) is a sequence of
independent symmetric random variables with the following properties:

E|Z|P < o0, Esup|Z|? = oo but sup|Z;| < .

Let o be the distribution of the sequence (Z;) on R®. Define dv = do x dt/t' *?,
that is, for every nonnegative and product measurable function f we put

J‘f(x)dv(x) = ij(tx)/t“’da(x)dt.

It is easy to check that v satisfies (1.1), so it is a Lévy measure of a
symmetric p-stable semigroup on R®. Let g(x) = sup|x;|.
Now, since g(Z) = sup|Z;| < oo a.s., we get
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0= jo{q = o0}/t'*Pdt = jlia:x}(x)dv(x) = v{q = o0}.
0

On the other hand, as we have seen in the first part of the proof of
Theorem 2.7, the condition u,{q < oo} = 1 implies that v{q > 1} < co. Using
the explicit form of v, we see that this last condition is equivalent to the
following one: [q’ds < co. However, because of the following equality
{gPdo = Esup|ZJ? = oo, we obtain that y,{q < o} = 0.

The next example shows that for p 2 1 the condition v{g > 1} < © no
longer guarantees the concentration of p-stable measure y, = expv on the
subspace {q < o0}.

ExampLE 2.9. Let (©;) be a sequence of independent, identically distributed
standard symmetric p-stable random variables, 1 < p <2, and let B; be a
sequence of real numbers such that Z,-Iﬂ,—l” < oo but

TIBIPIn(1+1/16]) = o.

Let u be the distribution of (8;0;) on R®. It is easy to check that
dv = do x dt/t'*? is the Lévy measure of u, where

G = 1/2Z|ﬁ,.|"(5ei+6_¢,),

with e; being the ith coordinate unit vector. Now, if we put

1
qm=@m@T

1/p
9((6:6)) = (Z IﬂsI’I@.-I") ,

then

hence g(x) = oo p—a.s. However, v{q > 1} = Y IBi” < oo.

Since p-stable random vextors with p < 1 always satisfy (*) (see [12]),
application of Theorem 2.2 and Theorem 2.7 gives:

CoroLLARY 2.10. Let (X;) be a sequence of independent E-valued symmetric
p-stable random vectors, 0 < p < 1, such that X =Y ;X; converges as. in E
and let q be a measurable seminorm. If q(X) < co as. then Y ,X; converges
as. in q. When, additionally, E is locally convex and q lower semicontinuous
then q(X) < oo a.s. whenever v{q > 1} < oo, where v is the Lévy measure of X.

The above corollary generalizes the fact that in Banach spaces the
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boundedness of ) , X; implies its convergence, for p-stable X;’s,0 < p < 1. That
result was proved in [14], by domination technique. For a similar result,
see [13].

The following example indicates that the condition (*) does not imply
g-separability.

ExampLe 2.11. Let (&) be a sequence of independent standard normal
random variables. Now, if (a,) is a sequence of positive numbers such that
sup|&il/a; < oo as., but Y ;exp(—a}) = oo, then g(x) = sup|x;| has the property:
g(x) < oo as. and g(x) = 2'/? as. with respect to the distribution on R*
induced by (&;/a;)) =Y (see [9]). By Remark 2.6, (i), it follows that this
distribution is not g-separable. Now, let 0 < p < 2 and let @ be a positive
p/2-stable random variable with the Laplace transform exp(—t??), which is
independent of Y. Then Z = \/5}’ is a p-stable random vector (see e.g.,
[7, chapter VI]). It is easy to see that g(Z) < oo a.s. and that Z satisfies (*).
However, Z is not g-separable.

3. Absolute continuity of seminorms.

In this section we extend the main result of [4] for series of the form
Y i&ix;, where x; € E and ¢&; are independent symmetric real random variables
with absolutely continuous distributions. As before, we assume that ) ;&x;
converges a.s. in E and that g is a measurable seminorm on E such that
q(}.i&ix;) < oo as. Let u be the distribution of ") ;£;x;. Then we have the
following result : :

THEOREM 3.1. Under the assumptions as above, F(t) = u{q < t} is absolutely
continuous on (c, 00), where ¢ = inf{t; F(t) > 0}. When u is gq-separable or q is
strictly convex, then F is absolutely continuous on (0, ).

The proof is an adaptation of that of Theorem 5.4 in [4] and is based on
the following lemma (see Corollary 4.2 in [4]):

LemMMA 3.2. Suppose that q is a measurable seminorm on E and that y,
X1,..., X, are elements of E such that q(x;) < o, q(y) < co. Let

(3.1) m=inf{q<i rjx,-+y);r=(r1,...,r,,)eR"}.
r j=1

Then

(3.2) J‘IN <q( i rij+y>>dr1 ...dr,, =0
i=1
Rﬂ

for each N of linear Lebesque measure O that does not contain the point m.
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Proor oF THEOREM 3.1. Let y, be the distribution of Z;‘;,, +1&x;. Suppose
that N is a subset of linear Lebesque measure 0 such that inf N > ¢ > ¢. Then

()= e

J JIN( ( Z r xj+y)> I_] Sirj)dry...drody,(y) + xalq > &},

{gse) R

where f; is the density of ;. Using Theorem 2.2 we obtain that q(}.2 ,,&:x;)
converges a.s. to some constant, which is < ¢, as n — o0. Since ¢ > ¢, we

obtain that
xn{q>8}=P{q( 5 c)>}
i=n+1

tends to 0, as n — co. Moreover, since the constant m determined by (3.1)
has the property m < q(y), the first part of our conclusion follows by
Lemma 3.2. When p is g-separable, then by Theorem 2.3 we obtain that
xniq > €} = 0 for every ¢ > 0. Finally, when q is strictly convex, then the
inffimum m in (3.1) is attained exactly at one point, as a conse-
quence of strict convexity, hence (3.2) holds for all N of Lebesque measure 0.
This clearly ends the proof.

CoroOLLARY 3.3. Let E be a locally convex separable vector space and let u
be a Gaussian measure on E. Suppose that q is a measurable seminorm on E
with the property q < oo a.s. Then F(t) = u{q < t} is absolutely continuous on
(c, 00), where ¢ = inf{t; F(t) > 0}. When u is g-separable or q is strictly convex
then F is absolutely continuous on (0, c©).

Proor. Our corollary follows immediately by Theorem 3.1 and the well-
known fact that u can be represented as the distribution of a.s. con-
vergent series of the form ) .&x;, where ¢ is a sequence of independent
standard real normal random variables and x; are appropriate elements of E.

The absolute continuity of F(t) = u{q < t} was proved by Tsirel’son [18],
for Gaussian p. This result can also be obtained using logarithmic convexity
of Gaussian measures [2]. Our method is more elementary and much more
simple.

Now, we improve somewhat the main result of [4], dropping the assumption
that g is lower semicontinuous. To do so, we need some preparatory lemmas.
The first one is taken from [4].

LemMMA 34. Let pu, = expté *v,, where & is symmetric and finite and v, is
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a continuous and q-continuous symmetric semigroup. Then for every n > 0
and all open subsets A of E we have

r—

LEMMA 3.5. Let q be a measurable seminorm on E. Suppose that u, = exptv,
is a symmetric continuous semigroup. If it is g-continuous then v{q > n} < oo,
for every n > 0.

Proor. Using formula (1.2) and some standard compactness arguments
(see [4] for details) we obtain that (1/t)uly, ., is weakly conditonally
compact, as t - 0+. Let v be an accumulation point of this family, as
t - 0+. By (1.2), v™(E) < o0. Now, let U be an open neighbourhood of 0.
Then

e = exptvye = 7,
for some symmetric continuous and g-continuous semigroup y'. Using (3.3)
we obtain
VP(E) Z vly{q > n} Tv{q >nj.

THEOREM 3.6. Let (1,), > o be a symmetric p-stable semigroup on E, 0 < p < 2,
and let q be a measurable seminorm such that q < oo u,—a.s. Then
F(t) = uy,{q < t} is absolutely continuous on (c, ), where

c = inf{t; F(t) > 0}.

If either 0 < p < 1 or u, is q-separable or q is a strictly convex norm, then F
is absolutely continuous on (0, o).

Proor. We first prove that F is absolutely continuous on (c, o), with ¢
determined as above. To show this, let U, be a decreasing sequence of
symmetric open neighbourhoods of 0 such that n,U, = {0}. Further, let us
decompose v into two parts: v = v"4v? where v = Vl{g=0; and
v =y 50 Then g = pf»pu®, with u? =exptv®, i=1,2, being
symmetric p-stable semigroups. Note that if v = 0 then, by virtue of Lemma
5.2 in [4], q = const. a.s., in which case the conclusion is trivially true. Hence,
we may assume that v'») # 0. Now, put

x(") = exp(vmlu_ + v(2)l{q > 1/n} )'

Then

(34) M = exp(v“’lU:) * CXP("(Z)I{q > 1)) * ™,

for n=1,2,.... Moreover, u, can be represented as the distribution of a.s.



72 T. BYCZKOWSKI AND M. RYZNAR

convergent in E series ) 2, X; of independent symmetric random vectors
X; with distributions

exp(vVPlw,_ vy + Vm'{l/i <qstji-1)h
where U, = E. ™ is then clearly the distribution of Y=, . X, Applying
Theorem 2.2 we obtain that
(3.5) limy™{q > a} =0, for every a > c.

On the other hand, the fact that vV, {q > &} = 0, for every ¢ > 0, and the
trivial induction yield

(3.6) =0 exp(v"|y)—as.

The formulas (3.4) and (3.6) thus show that on the sets of the form {ge N},
with Borel N, we get

ti{ge N} = exp(v?, 5 ym) * X" {qeN}.

Since, by Lemma 3.5, v?{q > 1/n} is finite, the above formula can be written as

mi{geN} =e P 3 (kDD s ) x X" {qe N} +e Py "{qe N},
k=1

forn =1,2,.., where B, = v®{q > 1/n} - o0, as n - 0. The remaining part
of the proof is the same as in [4]. Namely, it is enough to show that each
component of the above series vanishes when N S (c, ) is of Lebesque
measure 0. To show this, suppose that N & («, o0), where a > ¢. By (3.5)
we have only to show that

j (V(Z)l{q > U} )#k{x 1q(x+y)e N}x(ﬂ)(d}’) = 0,

{g=a}

fork =1,2,...and n = 1, 2,.... By the property (1.1) and measurability of q
the expression under the integral sign is equal to

* dry...d
3.7 J J J.ln(q(j;r,s,+y))ﬁ7¢(dsl)...a(dsk)

St Un... Un

where S, = {¢ = 1} and ¢ is a finite nonzero Borel measure on S,. Since we
integrate the above expression over the set {y;q(y) < a}, the same arguments
as in the end of the first part of the proof of Theorem 3.1 show that (3.7)
vanishes, which completes this part of the proof.

When y, is g-separable or 0 < p < 1 then our conclusion will follow by the
first part of the theorem if we show that ¢ = 0. In these both cases, however,
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we have u;{q < ¢} > 0; in the first one, by Remark 2.6 (ii); in the second,
by the property of p-stable random vectors, 0 < p < 1, mentioned before the
formulation of Corollary 2.10. Finally, when g is a norm then v'!’ = 0, so v?
is nonzero. Hence, if g is a strictly convex norm, we can apply the same
observation as in the end of the proof of Theorem 3.1.

ReMark 3.7. Theorem 3.6 was also proved in [15], [16], and in [13] under
the assumption that E is locally convex, by means of a representation of
p-stable measures as mixtures of Gaussian measure and application of
Tsirel'son’s theorem for Gaussian measures.

AckNOWLEDGEMENT. The authors are grateful to the referee for suggesting
the use of the martingale method in the proof of Theorem 2.2 which
considerably simplified the original version of that proof, based previously on
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