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BILINEAR REPRESENTATION FORMULAS
FOR POLYNOMIALS

HAROLD S. SHAPIRO

1. Introduction.

Recently A. Ramm showed that the set of finite sums ) u;v; where each
u; and v; is a polynomial solution of the three-dimensional Laplace equation,
is dense in I?(D) where D is any bounded domain in R3. He presented this
result at a seminar in Stockholm in the spring of 1985, after which I
pointed out that an analogous result is true for arbitrarily many variables and,
moreover, with the Laplace equation replaced by any one of a large class of
partial differential equations with constant coefficients. These results appear
in a paper of Ramm [5].

The purpose of this note is to extend Ramm’s contribution (i.e. Theorem 1
of [5]) in another direction. As A. Atzmon remarked to the author, the sums
figuring in Ramm’s theorem in fact comprise all polynomials in the two-
dimensional case (i.e. every polynomial in x, y is representable as ) c,,z"z",
where z = x+iy). We show here that this phenomenon persists in more
variables, and for a large class of constant-coefficient partial differential
operators. Since the argument builds on our earlier theorem, a version of
which was incorporated as Theorem 2 of [5], our proof of this is also included
in the present paper, as Theorem 2.1.

NotaTions. We use usual multi-variable notations, as in [3]. For each
polynomial PeC[¢,,...,£,] we denote by P(d) the differential operator that
arises upon replacing each {; by 0; = (9/0x;). V(P) denotes the set of
z = (z4,...,2,) in C" where P(z)=0. For xeR" and zeC" we denote
Z1X;+ - +2z,x, by z*x. We tacitly assume n Z 2 always. We use often the
familiar fact that P(0)(e* *) = P(z)e*’* and so, in particular, P(0)(e**) =0
for ze V(P).

For any t= (t;,...,t,) with all ¢, >0, the t-degree of a monomial
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x* = x}'--x;" (where a; are integers 2 0) is Y ta;, and P(f) = Yc,x* is
t-homogeneous if all x* with ¢, #+ 0 have the same t-degree.

(In case t = (1,1,...1) the t-degree of x* is its degree, and t-homogeneity
coincides with the usual notion of homogeneity). Until further notice all
polynomials may have complex coefficients. We can now state our main result,
to be proved in Section 3:

THEOREM 1.1. Let P, Q be nonconstant polynomials, t-homogeneous (for the
same t) and satisfying:

(1.2). P, Q are not constant multiples of powers of one and the same linear
polynomial.

Then every polynomial f is representable as a finite sum Y u
are polynomials, and

(1.3) P(@)u; = Q(@)v, = 0.

v, where u;, v;

Remarks. For P = Q = Y7_, & we get the refinement of Ramm’s theorem
alluded to above. We do not know whether the requirement of t-homogeneity
is essential for the conclusion in Theorem 1.1. (Of course, if P has a non-
vanishing constant term, P(0)u = 0 has no polynomial solutions. Observe that
the hypothesis of t-homogeneity implies P(0) = Q(0) = 0.) As an illustration,
take P = Q = ¢#—¢&, which is t-homogeneous with ¢t = (1,2). Thus, the
conclusion of the theorem holds, when uj, v; are polynomials solutions of the
heat equation (02 —d,)u = 0.

2. Exponential solutions.

TueoreM 2.1. If P, Q are any polynomials satisfying (1.2) then

(@) V(P)+V(Q) contains a ball in C",

(b) the set of finite sums Y c;uv;, where c;eC, u;=e""*, v; = &, and
a,b; are in V(P), V(Q) respectively, is dense in C(K), for every compact
K < R". (Note that u; and v; satisfy (1.3).)

Proor. We show first (a) = (b). Assuming (a), if u € M(K) (complex bounded
measures on K) satisfies
f uvdu =0

whenever u = ¢**, v = ¢~ and a, b are in V(P), V(Q) respectively, then

F@y):= Ie""du(x) =0
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for all y in an open subset of C" and hence, since F is entire, for all
yeC". It follows from the Hahn-Banach theorem that the closure in C(K)
of the above sums ) c;u;v; contains all ¢ * with y e C" and hence the algebra
of all finite sums ) d;e’””™ with arbitrary d;,y; in C. By the Stone-Weier-
strass theorem these are dense in C(K), proving (b).

Proof of (a). If Py, Q, are nonconstant irreducible (over C) factors of
P, Q respectively, then V(P) o V(P,) and V(Q) > V(Q,). Moreover if (1.2)
holds we may choose Py, Q, so that they are not both constant multiples
of the same linear polynomial. Hence, there is no loss of generality if we
assume henceforth (dropping the subscripts):

(2.2). P and Q are irreducible over C, and not constant multiples of the same
linear polynomial.

If P,Q are both linear then V(P) and V(Q) are both hyperplanes and,
because of (2.2), V(P)+ V(Q) = C". So assume, say, deg P 2 2. Then the span
of the vectors

grad P(z) := (P1(2),..., Pa(2)), zeV(P),

where P; denotes dP/dz;, is of dimension at least 2. For otherwise, there exist
complex wy,...,w, not all 0 such that Y w;P;(z) = O for every ze V(P) and,
since P is irreducible, ) w;P; is divisible by P in C[¢,,...,&,]. However its
degree is < deg P so Y w;P; = 0. Writing f(s) = P(w;s, ..., w,s) for seC we
have df /ds = 0 so f is constant. Letting (a,,...,a,) be complex numbers, not
all zero, with Y aw; = 0, we see that P(z)—P(0) and L(z) := Y a;z; have
infinitely many common zeroes (namely {sw:seC}). Since P—P(0) is irre-
ducible it divides L, a contradiction since deg P = 2.

Hence we can find z' e V(P) and z?e V(Q) such that grad P(z') and
grad Q(z?) are linearly independent (over C). To complete the proof we shall
assume (purely for notational reasons, as will be evident) n = 3. Let {eC?
be such that grad P(z'), grad Q(z?), and { are linearly independent over C
and consider the map

@:q b (PE'+w), Q@ —w), Y.{w)

from C3* — C3. Note that ¢(0) = 0 and the Jacobian of the map at 0 does
not vanish. Hence by the implicit function theorem, there exists ¢ > 0 such
that ¢ maps the ball

B, = {weC?:|wll < ¢}

homeomorphically (even, biholomorphically) onto a neighborhood of 0 in C3.
Moreover the Brouwer degree of the image point 0, written deg(¢, B,,0) in
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the notation of [6, p.7] is + 1. By homotopy invariance of the degree, each map
w b (P(A' +w), Q(22 —w), Y .L;w))

has the same property so long as A', A% lie sufficiently close to z!, z% respec-
tively. Hence each of these maps takes the value (0,0,0) for some we B,
and, a fortiori, the equations

P(Al+w)=0, Q(A2—w) =0

are solvable for w. In other words, for all A’ in suitable neighborhoods U;
of z'in C? (i = 1,2), A' +we V(P) and A2 —we V(Q) hold for some w, that is
A+ A% e V(P)+ V(Q). This completes the proof.

ReMARK. In the last part of the proof the fact that P,Q are polynomials
played no role. This allows (b) to be extended to convolution equations,
however, we will not pursue this here.

3. Fischer spaces and Theorem 1.1.

In this section we make use of the Fischer space F, of holomorphic
functions f on C" such that

W2 = Yalle,)? =n~" Jlf(z)|2e‘lz|2dz1 A A dz,

is finite. Here Zc,,z’x is the Taylor expansion of f. For basic properties of this
space see [1] or [4]. Especially important for us is the identity

FQ) =<{f,Kp
where K (z) = exp({,z, + - {,z,) is the reproducing kernel (rk.) of F,.

Proor oF THEorReM 1.1. Let H,, for each ¢ > 0, be the set of polynomials
which are t-homogeneous, of “degree” ¢ (i.e. linear combinations of monomials
of t-degree @). Then H,, augmented by 0, is a finite-dimensional subspace of
F, whose rk. J, is the orthogonal projection of K; into H,. Since the set
{Jo.c: L €9} spans H, if Q contains a ball of C" and every polynomial has a
(unique) decomposition as a sum of elements of different H,, it is enough
to show that each J,, with { in © admits a representation Y u;v; where (1.3)
holds. Now, for each { e C" we have

(3.1 exp (Z{,zj) =Y J;(2)

the summation being over that discrete set R of ¢ € [0, o) which are of the
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form ¢ = Y7_,t;; for some integers o; 2 0. In view of Theorem 2.1, the set
of {=a+b with aeV(P) and beV(Q) contains a ball of C". Now, if
exp(} a;z;) is expanded in a series of t-homogeneous polynomials:

(3.2) exp (Zajz,) = Yu,(z,a)

where u, € H,, each u, satisfies P(0)u, = 0. To see this, observe that
P@)xP = Y e (0°xF) = ¥ xP 2,

where )’ means that only terms with « < B in the lexicographic order of
2", are counted. This shows that P(d) maps H, to H,_; if ¢ 2 0 = t-degree
of P, otherwise to 0. So, if u is any entire solution of P(d)u = 0 we have

u=>u,
0 = P@)u = Y PO,

and hence the P(0)u, are all 0. The formal steps are all justified because
the series converge in the space F,, indeed the spaces H, for different ¢ are
mutually orthogonal.

Hence, coming back to (3.2) and the analogous decomposition

exp (Zb,-zj> = Yv,(z,b)

where v, € H, and Q(0)v, = 0, we have for all { in an open set of C"
(3.3) exp (Z(,z,) = Y u,(z,a) Y v,(z,b).

The series on the right converge absolutely and uniformly on compact sets
of C" so we may write the expression on the right as

Y Y uza),zb)

teR ¢g+o=1

(note that the product of a polynomial in H, with one in H, is in H,,,).
Combining this with (3.3) and (3.1) gives, since the expansion into elements
of distinct H, is unique,

J(.t(z) = z uq(z’ a)vd(z9 b)’

eto=t

a representation of the form required, and the proof is complete.
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4. Concluding remarks.

(4.1). Hitherto we have allowed all functions to be complex-valued. If
however P, Q have real coefficients, then in Theorem 1.1, if f has real coeffi-
cients, u; and v; can also be chosen to have real coefficients. Indeed, writing
f = Yujv;, where u; = uj+iuj, v; = vj+ivj and uj etc. have real coefficients,
we have

[ =X Wyph—ujvy)
i

and P(Q)uj = --- = Q(d)v] = 0. A similar remark applies to Theorem 2.1.

(4.2). It is possible to generalize the above theorems in (at least) two ways:
(a) use a multilinear representation, e.g.

f= Z“iviwi

trilinear), where P(0)u; = Q(0)v; = R(0)w; =0 for suitable polynomials
P,Q,R. Provided that V(P)+V(Q)+V(R) has interior points one can
formulate similar results to (1.1) and (2.1).

(b) Replace P,Q,... by polynomial ideals. To take a simple illustration
when n = 3 we can consider the ideal generated by (&,, £3), which we write
I, = (&,,¢&3), and the ideals I, = (¢, ¢&3), I3 = (£, &,). This gives us three
corresponding sets of polynomials, namely

U, ={u:P@u=0,VPel,}

and correspondingly U, and U,. Here U; consists precisely of polynomials
in the variable x;. Since the vector sum of the varieties (i.e. zero-sets) of these
ideals has interior in C> (here of course it is all of C?) we have the
corresponding algebraic result that every polynomial in (x,, x,, x3) is a finite
sum of terms of the type a(x,)b(x;)c(x3) with a, b,c polynomials. (Nontrivial
examples can easily be supplied.) Since the formulation of general theorems
along these lines is somewhat unwieldy we content ourselves with the above
indications.

(4.3). Bilinear representations of another kind, for polynomials, are also
known. For example, it is well-known from the theory of spherical harmonics
that every polynomial is a finite sum ) u;v, where u; satisfies the Laplace
equation and v, is of the form (}j-,x}Y (r = 0, 1,...). Using Fischer’s results
in [2] one can extend this as follows: if Py, ..., P, are arbitrary homogeneous
polynomials, every polynomial is representable as a finite sum Zuivi where

P](a)ui-_—o, j=1,2,...,r
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and v; is in the algebra generated by P,,..., P,. These representations seem
essentially different that those yielded by (1.1).
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