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POLAR SETS FOR SUPERSOLUTIONS OF DEGENERATE
ELLIPTIC EQUATIONS

JUHA HEINONEN* and TERO KILPELAINEN

1. Introduction.

Let us consider the homogeneous second order differential equation
(L.1) V-A(x,Vu) =0,

" where A: R"x R" — R" is an elliptic nonlinear operator with A(x, h)-h = |h|?,
1 < p < o0} see Section 2 for the precise assumptions. Weak solutions of (1.1)
are always continuous and we call them A-harmonic. A prototype of the
operators considered here is the ‘p-harmonic operator A(x, h) = |h|P~2h, and
solutions of the equation

V- (IVulP~2Vu) = 0

are customarily called p-harmonic.
A function u in an open set G = R" is A-superharmonic if

(1.2) u is lower semicontinuous (l.s.c.),

(13) —oo <u = +o0, and

(1.4) for each domain D cc G and for each A-harmonic function he C(D),
h<u in 6D, implies h Su is D.

The authors have shown in [5] that weak supersolutions of (1.1) are
A-superharmonic when properly pointwise redefined, see Proposition 2.8
below, and therefore the above definition allows us to study also supersolutions
as pointwise defined functions. On the other hand, we obtain a larger class of
functions since an A-superharmonic function need not be in the Sobolev space
loc W}(G). Previously, S. Granlund, P. Lindqvist, and O. Martio have used
this approach in the conformally invariant case p = n, and it has turned out
that a nonlinear potential theory can be developed where A-superharmonic
functions play a role similar to that of superharmonic functions in the'
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classical theory, see [2], [5], [8], [9]. It is our hope that this approach will
also shed some light on topics in nonlinear variational problems, especially
in the regularity theory for obstacle problems, cf. [14], [15], and [6].

In this paper we study balayage and polar sets in a nonlinear situation. As in
the classical potential theory we say that a set E in R" is A-polar if there is an
open neighborhood V of E and an A-superharmonic function v: ¥V - R L {0}
such that v = oo in E and that v # oo in each component of V. Also the
balayage of an A-superharmonic function is defined analogously to the
classical case; see Section 3 for this.

The efficient use of the obstacle method yields the following result which
relates potential theoretical polar sets to other small sets ubiquitous in Sobolev
space theory and in the theory of partial differential equations, cf. [11], [13],

[17].

1.5. THEOREM. Let E be a set in R", n = 2. Then the following are equivalent:

(i) Eis A-polar;

(i1) there is an open neighborhood G of E such that if u is a positive A-
superharmonic function in G, then the balayage R vanishes identically in G ;

(iii) E is of (outer) p-capacity zero;

(iv) there is a nonnegative ls.c. function w in W, (R") such that E = w™! (o).

1.6. CoroLLARY. A-polarity depends only on p, not on the operator A.
1.7. CorOLLARY. A countable union of A-polar sets is A-polar.

Observe that Corollary 1.7 is not immediate since the sum of two A-super-
harmonic functions is not A-superharmonic in general.

We are also able to show that if 1 < p < n, then there is a positive A-
superharmonic function u in. R", u # oo, such that u = oo in a given polar set;
if we insist on u being positive, this result is no longer true for p = n.

Theorem 1.5 for 1 < p <n is proved in Sections 3 and 4, and the
somewhat different borderline case p = n is studied in Section 5.

In the final section, Section 6, we prove the Fundamental Convergence
Theorem in the nonlinear case, cf. [1, p. 70].

In the proof of Theorem 1.5, only variational methods are used. For
example, the passage from (iv) to (i) derives from solving the obstacle problem
with the function w as an obstacle and, consequently, in the well-known
equivalence of (iii) and (iv) no reference to Bessel potentials is made. On the
other hand, in higher order spaces our method is of no use since we strongly
employ the lattice property of the space W1 cf. [4]

Polar sets in a nolinear situation were first cons1dered by P. L1ndqv1st and
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O. Martio [10]. They have established the equivalence of (i) and (iv) when the
equation (1.1) is the Euler equation of a convex variational integral in the
borderline case p =n. We wish to thank both of them for inspiring
discussions.

2. Preliminaries.

Our notation is standard. Throughout, G will be an open set in R"
n =2, and D c= G means that D, the closure of D, is compact in G. If
B = B(xy,r) is an open n-ball and ¢ > 0, then 6B = B(x,, or). The comple-
ment of a set F is marked as (F = R"\F.

Let A: R" x R"— R" be an operator satisfying the following assumptions
for some numbers 1 <p< oo and 0 <a = f < oo:

(2.1) the function x> A(x, h) is measurable for all heR", and the function
h A(x, h) is continuous for a.e. xe R" for all he R"” and a.e. xeR",
(2.2) A(x,h) - h 2 alh|?,
(2.3) |A(x,h)| = B>~
(24) (A(x,h)—A(x,h3))  (hy —h;) >0
whenever h,; # h,, and
(2.5)  A(x, Ah) = |A|P~22A(x, h)
for all 1eR, 4 # 0.

A function u in the Sobolev space loc W,(G) is a solution (a supersolution)
of (1.1) if

(2.6) jA(x, Vu) - Vepdx =0 (20)

G

for all p e C§(G) (¢ € CF(G), ¢ 2 0). It is well-known that solutions of (1.1)
are locally Holder continuous ; for this and other properties we refer to Serrin’s
fundamental work [17]; for supersolutions see also Trudinger [18].

We recall some basic properties of A-superharmonic functions. For the
proofs see [5].

First observe that if u is A-superharmonic, then so is Au + u whenever 1 = 0
and peR; this property can be used in many places to compensate the lack
of linearity. Further, if ¥ and v are A-superharmonic, then so is min(y,v).

The class of A-superharmonic functions is closed under upper directed
monotone convergence: if u; is an increasing sequence of A-superharmonic
functions, then u = limu; is A-superharmonic.

The comparison principle holds: if G is bounded, if u and —v are 4-super-
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harmonic in G with

lim sup v(y) < liminf u(y)

yox yox

for all x€dG and if the left and the right hand sides are not simultaneously
oo or — oo, then v £ u in G.

If u is A-superharmonic in G, then

2.7) u(x) = ess lim infu(y)

y—x

for all xeG; this important property is well-known in the clasical theory.
The following result is nontrivial and essential in what follows.

2.8. PROPOSITION. [5,3.13 and 3.17] If u is locally bounded and A-super-
harmonic in G, then u belongs to loc W1(G) and is a supersolution of (1.1).
Conversely, if u is a supersolution of (1.1) in G, then there is a unique A-super-
harmonic representative of u, given by (2.7).

It follows from Propositon 2.8 that a function u is A-superharmonic if it
is locally A-superharmonic.

Observe that while every supersolution of (1.1) can be considered as an
A-superharmonic function, the converse is not true unless p > n.

2.9. Condensers and capacity. If E < G, then the inner and the outer
p-capacity, 1 < p < oo, of the condenser (E, G) is defined, respectively, by

+Cap,(E,G) = sup  cap,(C,G)
C < Ecompact
and
*cap,(E,G) = inf ,cap,(U,G)
U>Eopen
where

cap,(C,G) = inf J|Vu|”dx.

ueW(C,G)

W(C,G) = {ueC? (G): u=1in C}, is the usual variational p-capacity. The
set function E b *cap,(E, G) defines a Choquet capacity, cof. [1, AII].

A set E in R" is of (outer) p-capacity zero, abbreviated cap,E =0, if
*cap,(E N G,G) = 0 for all open G — R". It is an easy task to show that if E
is bounded, then cap,E = 0 as soon as *cap,(E, G) = 0 for some bounded G,
cf. [13,Chapter 9], [16].
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For a thorough discussion of variational capacities we refer to [13], [16].

2.10. Regular open sets. Let G be bounded and 6e W,(G). Then there
is a unique A-harmonic function u in G such that u—0e W}, (G), cf. [12].
A boundary point x € dG is said to be regular if
(2.11) lim u(y) = 6(x)

y—Xx
whenever u and 6 are as above and, in addition, 8 € C(G). As is well-known,
the boundary point x is regular if the Wiener criterion
1
B ~ 1(p=1)
(2.12) capy(Bx, 1) 0 LG, B(x, 21) dt _
cap,(B(x, t), B(x, 2t)) t

holds, see [12]. It is an open problem whether (2.12) is also necessary for (2.11)
when p = n—1;for p > n—1 the necessity has been proved in [9], see also
[6]. If each boundary point of G is regular, then G is said to be regular.

L. I. Hedberg and Th. H. Wolff have shown that the Wiener criterion holds
except on a set of zero p-capacity [4] (see [16] for the equivalence of the
two capacities), that is, the Kellogg property holds.

2.13. Obstacle problem. Let G be bounded and let y € W,(G). Then there
is a unique function u € W,(G) such that u is A-superharmonic in G, u 2 y
ae. in G, u—y e W} ,(G), and

JA(x, Vu)-Vodx = 0
G

for all p e C§(G) with ¢ = Yy —u a.e. in G. The function u is the solution to
the obstacle problem with the obstacle . See [S] for this.

2.14. Poisson modification. Let u be A-superharmonic in G and let
D cc G be a regular open set such that u # oo in each component of D.
Then the Poisson modification of u in D, abbreviated P(u, D), is constructed as
follows. Let ¢; be a sequence of functions in C*(R") such that ¢; ~ u in D.
Let w; be the unique A-harmonic function in D with boundary values ¢;.
Then w; £ w;,; < u and, by Harnack’s principle, see [5, 3.3], w = limw; is
A-harmonic in D. Define
inD

w
P, D)= {u in G\D.

Then P(u,D) is ls.c. in G and it is easy to verify that P(u, D) is indeed
A-superharmonic in G. Moreover, P(u,D) = u in G.
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3. Balayage, capacity and polar sets.

In this section we study polar sets and the balayage of an A-superharmonic
function. The balayage seems to be a natural tool, and (ii) a natural
auxiliary, in establishing the implication (i) = (iii) in Theorem 1.5.

Let A: R"x R" — R" be an operator satisfying (2.1)-(2.5).

Let u:G — R U {o0} be nonnegative and A-superharmonic in G and let E
be a subset of G. By ®f we denote the set of all nonnegative A-superharmonic
functions v in G such that » 2 u in E. The function

% = RLG: A) = inf Py
is called the réduite of u relative to E in G. If u = ¢ = a constant, we write
R = R%. The lower regularization

RE(x) = RE(G; A)(x) = lim inf R&(y)

y—=x

is the balayage of u relative to E in G. It is clear that u = R} in E, that
u = R% = RY% in the interior of E and that E; c E, c G implies R%, < R%..
For a more general approach to balayage see [7].

The following three propositions are well-known in the classical theory.

3.1. PropOSITION. (i) R% is A-superharmonic in G.
(ii) RY% is A-harmonic or R% = oo in each component of G \E.

Proor. Since RY is the greatest lower semicontinuous minorant of R,
(1) follows directly from the definitions.

To prove (ii), note first that if »,,v, € ®%, then min(r,,r,)€ ®%, and it
follows from Choquet’s topological lemma [1,p. 792] that there is a decreasing
sequence of functions v;e ®f with the limit v = limo; such that

lim info(y) = d(x) = R¥(x).
y—x
Pick a ball B == G \E and let w; = P(v;, B) be the Poisson modification of t;
in B. Then w; e %, w; 2 w;,, and w = limw; £ ¢. Since w = R} and since, by
Harnack’s principle, w is either 4-harmonic or identically co in B, the claim
follows.

3.2. ProrosITION. Suppose that G is a bounded domain and that E cc G.
Let x € 3G be a regular boundary point of G. If Ry is not identically « in G,
then lim, ., R%(x) = 0.

PROOF. Let ved%, v# oo in G. Choose a regular neighborhood D of dG
such that DnE = (5. Replacing v by its Poisson modification in an
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appropriate neighborhood U of dD n G, U < G\E, we may assume that
v <M < o in dD N G. Let h be the A-harmonic function in D n G with the
boundary values 0 in G and M in 0D n G. Then the function

_ {v in G\D

min(v,h) in D

belongs to @f, and since x is a regular boundary point of D n G (it follows
from the barrier characterization that the regularity is a local property; see
e.g. methods in [3]), lim,_ w(y) = 0 as desired.

Next, we turn to study A-polar sets.

3.3. ProposiTiON. Let u be positive and A-superharmonic in G and let E < G.
Then

(i) if E is A-polar, then there is an open neighborhood V of E, V c G,
such that RE(V ; A) has a zero in each component of V ;
(i) if R4G;A)(x) =0, then R% = 0 in the x-component of G.

Proor. The claim (i) is a trivial consequence of the fact that if v is
A-superharmonic and if D is a component of the open set {x:v(x) > 0}, then
either v = o0 or the set {xeD: v(x) < o0} is everywhere dense in D, cf. [ 10, 2.6],
[7,2.10]. The minimum principle yields (ii).

3.4. THEOREM. Let u be positive and A-superharmonic in G and let E < G.
Then R%: = R4(G; A) = 0 implies cap,E = 0.

Proor. Since it suffices to show that *cap,(E’, B(x,,r)) =0 whenever
B = B(xy,r) = G and E’' = En 1B, we may assume that G = B is a ball and
that E c 4B. Since u 2 6 > 0 in E, for w = min(1,6 'u) we have R} =0;
hence we are also free to assume that u = 1 in E.

Let 2> 1. We can find a function ve &%, v < 1, such that v is continuous
in a neighborhood of 3B and that v < 1/4 in 03B, cf. the proof of Proposi-
tion 3.2. Then the function

" = min(1, Ar) in B\3B
AT e in 3B,

is a locally bounded A-superharmonic function in B, and therefore a super-
solution of (1.1) in B by Proposition 2.8. Using the estimate (2.25) in [5]
yields

(3.5) ~I‘IVlog uy|Pdx < ¢,
iB

where ¢ does not depend on 4.
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To complete the proof, fix ¢ > 0. Choose 1 = exp{(c/e)*/?} +1 and let
E,={xeB:u; > Ai-1}.
Then E, is open, E c E; and
h = max(0, (¢/c)"?logu;) 2 1 in E,.
Now h is admissible for each condenser (C,B), where C < E; is compact,

and, by (3.9),

J \Vh|Pdx ég JIVlogull"dx <.
B 3B
This establishes the desired conclusion.

3.6.THEOREM. Let E be a set in R" with cap,E = 0. Then there is a non-
negative ls.c. function w: R"— Ru {oo} such that we W)(R") and w= oo
in E.

Proor. Fix a positive integer k and write B = B(0,k), E' = E n ! B. Choose
for each i = 1,2,... an open neighborhood U; of E', U; = 1B, such that
cap,(C,B) <i~?*

whenever C < U, is compact. Next, choose an increasing sequence of compact
sets C; ;< C;j+; © U; such that BNC;; is a regular open set and that
(Jio1 Cij= U, Let ¢, ;e C(B) be the p-superharmonie function for which

jlv¢i.j|pdx = cap,(C; j, B),

B

and ¢, ;=11in C;;, ¢, ;=0 in JB. Since @, ; is p-harmonic in B\C; ;, the
comparison principle yields ¢; ; < ¢; ;. in B. Let

¢; = lim ¢, ;.

jo %
We easily infer that ¢; belongs to W, ,(B), whence V¢, ; » V¢, weakly in
I?(B) and, by the weak lower semicontinuity of norms,

IV@ill,. S liminf ||V, jll, 5 =i
s
The function ¢; admits the zero extension in all of R", and this extension is

a nonnegative ls.c. function in R". By the Poincaré inequality

Npilly,pe + 1Vl e = €i™ 2,
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where ¢ = c(n, k) < .00 is a constant. Hence the function y, = Z?‘_’__l(pi is non-
negative, l.s.c., and belongs to W}(R"). Moreover, ¥, = o in E n 3B. Finally,
choose positive numbers 4, 4,,... such that

w = Z AW
k=1

is the desired function. The theorem is proved.

We are in the position that the implications (i)=> (ii) = (iii) = (iv) of
Theorem 1.5 are established. The rest of the paper is divided into two sections ;
the first deals with the case 1 < p < n and the second with the case p = n.
These two cases differ in that there is no nonconstant positive A-super-
harmonic function in R" if p = n, see Remark 5.4. At this point it is convenient
to point out that the case p > n is rather uninteresting, since then A-super-
harmonic functions are continuous, see [5, 3.20], and hence the only A-polar
set is the empty set; thus Theorem 1.5 is trivial when p > n.

4. Polar sets when 1 < p < n.

The main result of this section is Theorem 4.1; it completes the proof of
Theorem 1.5for 1 < p < n.

4.1. THEOREM. Let 1 < p <n and let we W,(R") be a nonnegative ls.c.
function. Then there is a nonnegative A-superharmonic function u in R", u # oo,
such that u = o in E = {x:w(x) = co}. In particular, the set E is A-polar.

Proor. Let B; = B(0,i),i = 1,2,..., and let v; be the solution to the obstacle
problem in B; with the obstacle w. Then v; is A-superharmonic, whence,
together with (2.7),

v;(x) = ess lim inf ;(y) 2 ess lim infw(y) 2 w(x)

yox yox

for each x in B;. The sequence 1, is increasing. Indeed, since v;,, is A-super-
harmonic in B; and since

min(e;,q, ;) —Ww = Min(t; 4 —wW, 1, — W)€ W;l;‘o(B.‘),
then r;,, 2 ¢; ae. in B, see [5,2.8], whence

tipq(x) = essliminfe;, (y) 2 essliminfey(y) = v4(x)
y-x yox
for each x in B;. Thus, r = lime; is A-superharmonic in R* and r 2w 2 0;
in particular, v = o0 in E.
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We proceed to show that v # 0. For this observe first that

0= jA(x Vv,)- V(w—v;)dx,

B;

and hence using Holder’s inequality yields

4.2) IIVvi|”dx Sc lewV’dx <c JIlepdx,

where ¢ depends only on n,p,a and B. Next, we employ a Poincaré type
inequality: if u e W} o(B(0, R)), then
4
’ p) j IVu(x)iPdx;

4.3) j WO e < (
Ix1? n

B(O,R) B(O,R)

the proof of (4.3)is an easy integration by parts procedure. Since w —v;€ W}, 4(B;),
(4.3) and (4.2) yield

'L("ll_;_l,:fﬁ‘)_'d <ec j IVo,(x) — Vw(x)Pdx < ij(x)l"dx,

B; B, R

where ¢ depends only on n, p,a and . Letting i — oo yields

J b)) —wx)l?

Ix|?

x=c¢ JIVw(x)I"dx < 0,

R*

whence v # oo. The theorem is proved.
4.4. COROLLARY. Let 1 < p < nand E = R". Then the following are equivalent:

(i) Eis A-polar;
(i) if G is open in R", then Rg ~c(G;A) has a zero in each component of G :
(iii) RE~g(G; A) = 0 whenever G is open in R".

4.5. REMARK. The A-superharmonic function v constructed in Theorem 4.1
belongs to loc W}(R"). Thus v is a supersolution of (1.1) in R", see [5, 3.14].

4.6. REMark. We mention the following result which is well-known in the
classical theory: Let E be a closed set in R". There exist non-constant bounded
A-harmonic functions in the complement of E if and only if E is not A-polar.

Indeed, the necessity follows from Theorem 1.5 together with well-known
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Liouville and removability theorems. If p =n, see Remark 5.4 for an
explication.

To prove the converse, recall that if E is not A-polar, then there are at
least two distinct regular points x4, x; € 0CE (this follows from the Kellogg
property [4] and from Theorem 1.5, see 2.10). We may assume that CE is
connected and that xg,x,€B(0,1). For each j=1,2,... choose functions
¢;€C§(B)), B;=B(0,j), such that 0= ¢; = ¢;,; =1, and ¢;=¢;,, =i
in a fixed neighborhood of x;, i = 0,1. Let u; be the unique A-harmonic
function in B; \E, u;—¢;€ W}, ,(B; \E). By the uniqueness, u; < u;, ;, whence
u = limu; is A-harmonic in CE. Moreover, appealing to the strong boundary
estimate [12, p. 51] yields that

lim u;(x) =i, i=0,1,
XX,

uniformly so that the function u is not constant.
Note that the above construction works for each p, 1 < p < oo.

5. The borderline case p = n.

In this section we establish the missing link (iv) = (i) in Theorem 1.5 in the
case p = h.

In effect, the implication (iv) = (i) has been proved by P. Lindqvist and
O. Martio if p =n and if the equation (1.1) is the Euler equation of a
convex variational integral, see [10,3.13]. By appealing to the “ess lim inf-
property” (2.7), we obtain this result in a more straightforward way.

5.1. THEOREM. Suppose that w: R" - R U {00} is a nonnegative ls.c. function
in WY(R"). Then the set

E = {xeR":w(x) = o0}
is A-polar.

Proor. It is not difficult to verify that the Hausdorff dimension of E is zero;
hence there are bounded domains G, G,,... such that E < U{";,Gi and that
G; n G; = ¢ whenever i # j, cf. [10,3.11]. Thus, we may assume that G is a
bounded, connected neighborhood of E. Let u € W} (G) be the solution to the
obstacle problem in G with the obstacle w. Now, by 2.13, u is A-superharmonic,
and hence

u(x) = essliminfu(y) 2 ess liminfw(y) 2 w(x)
y—x y—x
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for x € G. In particular, u = oo in E. What is more, u ¥ oo in G since u € W(G).
Thus E is A-polar as required.

5.2. REMArk. The above proof and Remark 4.5 yield (for each pe(l, «)):
a set E is A-polar if and only if there is a neighborhood V of E and a ls.c.
supersolution u of (1.1) in V such that u = o in E.

Corollary 4.4 has the following counterpart when p = n.

5.3. CorOLLARY. Let p = n and let EcR" Then E is A-polar if and only if

Ii'fg ~G(G;A) =0 whenever G is a bounded open set and u > 0 is A-super-
harmonic in G.

Proor. The sufficiency follows from Theorem 1.5. To prove the converse,
let E be A-polar and G a bounded open set. As in the proof of Theorem 5.1
above we construct a nonnegative A-superharmonic function v in G such
that v = o0 in E n G and that the set {x € G: v(x) < o} is everywhere dense

in G. This shows that RF ,(G:4)=0 in G and the claim follows since
R;:'or\G g REnG‘

5.4. RemMark. Corollary 4.4 fails if p = n since in this case there is no
nonconstant lower bounded entire A-superharmonic function. To see this, let

u be a bounded A-superharmonic function in R" The estimate (2.25) in [5]
yields

_ R 1-n
j |Vlogu|"dx < ccap,(B(0,r), BO,R)) = ¢ (log 7)
B(O.r)

for 0 < r < R; the constant ¢ depends only on n and f/o. Letting R - oo
establishes the desired conclusion.

Consequently, by the removability theorem [5, 4.7], we have the following
generalization of a classical result in a nonlinear situation:

if p=nand uis a lower bounded A-superharmonic function in a complement
of a closed polar set, then u is a constant.

However, also when p = n it should be possible to construct an A-super-
harmonic function u in R", u # oo, such that u = oo in the given A-polar
set E. The authors have not yet been able to do this.

5.5. QUESTION. Suppose that E < R" is A-polar (1 <p <n) and that
xo€E\E. Is it true that there is an A-superharmonic function u in a
neighborhood V of x, such that uy .p= o and u(x,) < o0?
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6. The fundamental convergence theorem.

Appealing to the Kellogg property [4] and to Theorem 1.5 we prove in this
final section the following theorem, well-known in the classical potential theory
[1, Theorem VI, 1].

6.1. THEOREM. Let & be a family of A-superharmonic functions in G. Let
w = inf ¥ and let W be its |s.c. regularization,
W(x) = lim inf w(y).
y—x
If & is locally uniformly lower bounded, then W is A-superharmonic and W = w
except on an A-polar set.

For the proof, we require the following lemma.

6.2. LEMMA. Let u be nonnegative and A-superharmonic in G and let E < G
be compact. Then the set

S = {xeG:R¥(x) < Ri(x)}
is an A-polar subset of OE.

Proor. It is clear that S « OE and that we may assume E = JE. Then
choose a regular open set D-cc G with E < D and an increasing sequence of
functions ¢; e C§(D) with lim ¢; = u in E. Let h; be the A-harmonic function
in D\E with h;—¢;e W], ,(D \E). Then by 2.10,

lim hi(y) = ¢i(x)
y—x

for each x € EN\T, where
1

1 —

T {er: J'(capp(ﬂ(x,t)n E, B(x,2t))>""£ < oo}
0

cap,(B(x, 1), B(x, 2t)) t

By the Kellogg property [4, Theorem 2] and Theorem 1.5, T is A-polar. Thus
it suffices to show that S < T.
To this end, note first that
R = h;
in D\E. Indeed, let ve ®% and write v’ = min(v, maxh;). Then v'e€ W}(D)

by Proposition 2.8, and since for each ¢ > 0,

min(v' +¢, h;)— ;€ W} o(D\E)
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implies v'4+¢& 2 h; in D\E by [5, 2.8 and 3.15], we infer that R% 2 h; in
D\E.

Thus, we obtain for xe E\T

g(x) = sup inf RY%
r>0 B(x,r)

=min<lim inf Rg(y),u(x))
y—+x,yeD\E

= min< lim u(x)) = Pyx).

y—x,yeD\E

Letting i —» oo yields R%(x) = u(x) = R%(x) whenever xe E\T. Thus S T
as desired.

Proor oF THEOREM 6.1. It is clear that w is A-superharmonic. Next, we may
assume that & is downward directed, cf. [1, p. 37], and hence by applying
Choquet’s topological lemma as in Proposition 3.1 we may even assume that
F consists of a decreasing sequence of A-superharmonic functions w; with
w = limw,.

Now for each positive integer j write

S;={xeG:Wwx)+1/j < w(x)}.

By Corollary 1.7, it suffices to show that S; is A-polar for each j. For that,
fix j and let C < §; be compact. Since §; is a Borel set and since Borel sets
are capacitable, it suffices to verify that C is A-polar. To this end, let
D =< G be an open neighborhood of C. If v = W + 1/j, then each w; belongs
to & in D (we may clearly assume that W is nonnegative), whence

YD;A)S<w in D. Thus Ri(D;A) <w+1/j=v in C and hence, by
Lemma 6.2, C is A-polar as required.

Added in October 1988: It was later proved by the second author, that if E is
A-polar (1 < p < n)and x, ¢ E, then there is an A-superharmonic function u in R"
such that ulp = 00 and u(x,) < co.
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