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EQUIVARIANT ALEXANDER-SPANIER COHOMOLOGY

HANNU HONKASALO
Introduction.

Let G be a finite group. In this paper we construct an equivariant cohomology
theory defined on the category of all G-pairs. We call this theory “equivariant
Alexander-Spanier cohomology”, because our construction generalizes the con-
struction of ordinary Alexander-Spanier cohomology (see [6, 6.4]) in approxi-
mately the same way as Illman’s construction of equivariant singular cohomo-
logy (see [4]), valid for any topological group G, generalizes the construction of
ordinary singular cohomology.

The contents of the paper are as follows: In section 1 we define the cohomology
groups and in sections 2—4 we show that all the Eilenberg-Steenrod axioms for an
equivariant cohomology theory, including the dimension axiom, are satisfied. In
section 5 we prove a tautness property for this cohomology theory. The main
result of section 6 is that for a paracompact G-space X the equivariant
Alexander-Spanier cohomology groups can be interpreted as ordinary cohomol-
ogy groups of the orbit space X/G with coefficients in a suitable sheaf. This fact is
used in section 7 to show that equivariant Alexander-Spanier cohomology agrees
with equivariant singular cohomology on G-locally contractible paracompact
G-spaces. In the final section 8 we give some comments on equivariant
Alexander-Spanier cohomology with compact supports.

I wish to thank Erkki Laitinen and S6ren Illman for useful discussions.

1. The construction.

As stated in the Introduction, G will always be a finite group.

Let X be a G-space. If ne N, we denote by V,(X) the set of all G-maps ¢:
G/H x {0,1,...,n} — X for various subgroups H < G, where G acts trivially on
{0,1,...,n}. We call H the type of the above ¢ € V,(X), denoted H = t(¢). We
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often write ¢ = (¢g, P1,- .., D,), Where
¢ =¢J|G/H x {i}:G/H->X, 0<i<n
Let m be a contravariant coefficient system, i.e. a contravariant functor from the
category of the G-spaces G/H (H < G)and G-maps between them to the category
of abelian groups (or R-modules, R a ring with unit).

Let M = @y <¢m(G/H). The n’th cochain group of X with coefficients m is

C"(X;m) = {c: V,(X) > M | c($)em(G/t(@)) ¥ ¢}.
Equipped with the usual differential d: C*(X;m) —» C**1(X; m),

n+1

(dNDos- > ns1) = 'Zo (- l)iC(Cbo’- s d;i’- s Purt)s

C*(X;m) is clearly a cochain complex. A cochain ce C"(X; m) is equivariant, if
c(¢p oa) = m(a)(c(¢)) whenever ¢ € V,(X) and a: G/K — G/t(¢) is a G-map; here
oo = (py0a,...,¢,0x). We denote

Cg(X;m) = {ce C"(X;m)|c is equivariant}.

Clearly C&(X;m) is a cochain subcomplex of C*(X; m).

We call a covering % of X a G-covering, if gU e % for all U e % and g € G (this is
called an invariant covering in [1, Chapter III]). A cochain ce C"(X) (we occa-
sionally omit the coefficients m in the notation) is locally zero on X, if there is an
open G-covering % of X such that ¢(¢) = 0 whenever {¢o(eH),...,¢,(eH) = U
for some U e (H = t(¢)).

We set

Co(X;m) = {ce C(X;m)|c is locally zero on X},
C o(X;m) = C(X;m) A C(X; m).
Evidently dC%(X) = Ca*'(X), and therefore the quotients
C(X;m) = C"(XGm)/Cy(Xsm),  Ch(Xsm) = Ch(X;m)/Cl o(X; m)

form cochain complexes C*(X;m) and C%(X;m).
An equivariant function f: X — Y between G-spaces (f need not be continu-
ous) induces a cochain map f*: C*(Y) —» C*(X) by the formula

(S¥N (Do, ... ¢,) = c(fodg,....f0d,); ceCY), eV, (X)

Obviously f*C¥(Y) < C¥(X). If f is a G-map (i.e. continuous), then f*C}(Y) <

o(X) (if ce C"(Y)is locally zero with respect to the open G-covering ¥ of Y, then
f*c)eC"(X) is locally zero with respect to the open G-covering f ¥ =
{f~YV)| Ve ¥} of X). Therefore the G-map f: X — Y induces cochain maps
f* C*(Y) - C*(X) and f*:C%(Y) - CX(X).
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Let A = X be a G-subspace and i: 4 — X the inclusion. The cochain map i*:
C¥(X) — C¥(A) is surjective: if c € C?(A), then ¢ = i*¢ where ¢ e C%(X) 1s defined
by &) = c(¢) for g€ V,(A4) and &(¢) = 0 for pe V,(X)\ V,(A4).

DErFINITION 1.1. C¥(X, A;m) = ker [i*: C&(X;m) — C%(A;m)] is the equiva-
riant Alexander-Spanier cochain complex of (X, A) with coefficients m. Its coho-
mology groups H%(X, A;m) = H(CX(X, A;m)) are the equivariant Alexander-
Spanier cohomology groups of (X, A) with coefficients m.

THEOREM 1.2. The functors H satisfy all the Eilenberg-Steenrod axioms for an
equivariant cohomology theory, including the dimension axiom.

Exactness is clear from the definition: the short exact sequence
0 CHX,A4) - CHX) - C¥A4) -0

of cochain complexes induces the long exact cohomology sequence

0 — HYX,Am — HYX;m) — HYAm) — HYX, Am) —— ...

— HyX, Aim) — HyX;m) — HyAim) — HG (X, Aim) —— ...

The remaining three axioms are proved in the next three sections.

2. The dimension axiom

PROPOSITION 2.1. Let H £ G be a subgroup. For n # 0, H%(G/H;m) = 0. For
n = 0 there is an isomorphism H%(G/H;m) —~— m(G/H), natural with respect to
G-maps G/H - G/H'.

PROOF. Let =, = (idgy,....idgu)€ V,(G/H) and define D" = Homg(Zm,,
m(G/H)), ne N. The homomorphisms d: D" — D"* !,

c(m,), nodd

: ceD",
0 , neven

(d(ceN(mysy) = {
make D* into a cochain complex. We can define a cochain map u: C§(G/H) - D*
by (u(c))(n,) = c(n,) for c e C%(G/H). We show that u is surjective:
Given ceD", define ¢eCYG/H) by ddg,---.¢,) = mdolc(n,). If o
G/K — G/t(¢) is a G-map, then

dpooa,...,d,0a) = m(pyoa)c(n,) = ma)m(do)c(mn,)) = ma)APo.,- ...,

so ¢e Cg(G/H). Clearly u(é) = c.
On the other hand, Lemma 2.2 below shows that ker u = C§ (G/H). There-
fore u induces an isomorphism C¥%(G/H) —~— D* and
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m(G/H), n=0
0 , n#0.

LEMMA 2.2. Let c e C(G/H). Then ce Cg o(G/H) if and only if ¢(n,) = 0.

H%(G/H) =~ H"(D*) = «{

PrOOF. The “only if’-part is clear. Conversely, assume that ¢(n,) = 0. Then
coa,...,0) = c(n,oa) = m{a)(c(n,)) = 0
for any G-map o: G/K — G/H. This implies that c is locally zero with respect to
the open G-covering {{gH}|gHe G/H} by singletons of G/H. Namely, if
¢ = (¢o>---,d,)€V,(G/H), t($p) = K and ¢(eK)e{gH} (i =0,...,n) for some
gH e G/H, then ¢y(eK) = ¢,(eK) = ... = ¢ (eK), sO0 ¢pg =, =... = ¢,, and
finally c(¢) = c(¢o, ..., $o) =0

REMARK 2.3. Contrary to the non-equivariant case, the passage from C¥ to
C% is essential even for the dimension axiom, because H"(C%(G/H)) can be
nonzero for n # 0, too.

For example, in the case H = {e} we see that C¥(G; m) = Hom,g(F,, m(G)),
where 0 « Z « F, « F, « ... is the standard resolution of Z by right ZG-modu-
les, that is F, is free abelian with basis {(go,...,g,)|¢;€ G} and G acts on F, by
Gos---+90)"9 =(gog - - - »9gn9); this follows easily from the fact that every G-map
G — G is of the form r: x — xg for some geG.

Therefore

H"(CE(G; m)) = HY(G; m(G)).

3. The excision axiom.
Let X be a G-space, A = X a G-subspace and i: A — X the inclusion. We first
give a slightly more concrete description of the cochain complex C¥%(X, A). Define
Ce(X, A;m) = {ce CE(X; m)| i*(c)e Cp(A; m)},

the G-cochains of X which are locally zero on A. Clearly C§ ,(X) < C¥(X, A)and
the image of the homomorphism

CX(X,A) = C4X)- C4X)
equals ker [i*: C%(X) - C%(A)] = C%(X, A), so
CH(X, A;m) = CE(X, A;m)/C¥ o(X; m).

The excision axiom is a consequence of the following result:
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PROPOSITION 3.1. Let B = A be a G-subset and W an open G-neighborhood of
B in X such that W < int A. Then the inclusion j: (X\B, A\B) c- (X, A) induces
an isomorphism

J*CoX, A;m) =— C¥X\B, A\B;m).

Proor. This is quite similar to the non-equivariant case (see [6, 6.4.4]). We
prove surjectivity and leave injectivity to the reader.

Let ce C5(X\B, A\B). Then c is locally zero on 4\ B with respect to an open
G-covering % of A\B. Define ¢e C%(X) by

@) if peV,(X\W)
0 otherwise.

a¢) = {

Evidently ¢ locally zero on A = (A\B) u W with respect to the open G-covering
{UuW|Ue%} of A, and thus ¢e C%(X, A). By construction j*(é) — c is zero on
X\W and locally zero on A\B. Because the interiors of X \Wand A\B cover
X\B, j*(c) — cis locally zero on X\B, that is j*(¢) = ¢ in C%(X\B, A\B).

4. The homotopy axiom.

In this section we adapt Spanier’s proof of the homotopy axiom for ordinary
Alexander-Spanier cohomology, given in [6, §6.5], to the equivariant case. First,
following [6, 6.5.2], we represent the equivariant cohomology groups as a direct
limit.

Given an open G-covering % of the G-space X, let X(#) be the following
simplicial complex: its set of vertices is V,(X) and the vertices ¢, ¢, ..., d, span
a simplex, if t((¢y) = t(¢p,) = ... = t(¢,) and {¢Py(eH),..., P, (eH)} = U for some
Ue, where H = t(¢,). Further, let C, (%) be the ordered chain complex of
X(4), that is C,(4) is the free abelian group with basis

VX, ) = {$ € VyX)| {$oleH).. ... d,(eH)} < U for some Ued(H = ()}
and 0: C(¥)— C, () is given by

or- 8= T (=1 (Bore o P10

Let 4 = X bea G-subspace. If %' < 4 is a G-subset whose sets cover A, we call
(#,4') an open G-covering of the pair (X, 4). Given such a (#,¥’), let A(#’) be
the subcomplex of X(#) consisting of those simplices s = {¢,,...,¢,} which
satisfy {¢po(eH),...,¢d,(eH)} =« An U'forsome U' e’ Also,let Co(#') = C(¥)
be the ordered chain complex of A(#’).
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We define a cochain complex C¥(#, %'; m) as follows:
s, U';m) = {u: C,(¥) » M |u is a homomorphism;
u(@)em(G/UP)Y peV (X, U); u| C(U') = 0;
if a1 G/K — G/t(¢) is a G-map, then u(¢ o a) = m(a)(u(P))};

d: Cu(U, ') > CEH Y (U, U')is given by (d(u))(¢) = u(0@). If (¥, ¥"')is a refinement

of (U,4'), that is each Ve ¥  is contained in some Ue% and each V'e ¥ is

contained in some U’e#’, then there is a canonical injection (C.(¥"),

C (V") = (Co(%),C (') and a canonical restriction homomorphism

CEU,U')— CEY",7"'). Weform lim with respect to these restriction maps.
(U, ')

Let ce Cg(X, A). Then there is a G-set %, of open subsets of X covering A such
that c is locally zero on 4 with respect to %y If we denote #, = U, U {X}, c
determines an element A(c)e CE(#¥ o, %) by (A P) = c(P), peV(X,%,). In
this way we obtain a cochain map

A CEX,A;m) > lim CEU,U';m).

B —
The following fact is evident from the definitions:
LemMa 4.1. 1 is surjective and ker A = C¥ o(X; m).

COROLLARY 4.2. 4 induces an isomorphism

15X, A;m) —— _lim _ HCYU,U';m)).
(%, U)

Let I = [0, 1] be the closed unit interval with trivial G-action. To verify the
homotopy axiom, it is enough to consider the G-maps ig, i;:
(X,A) > (X x I,A x I), ig(x) = (x,0), iy(x) =(x,1), and prove the following
result:

PROPOSITION 4.3. i* = i*: HX(X x I, A x I;m) - H(X, A;m).

Let (#,4') be an open G-covering of (X x I, A x I). Given x € X, we can using
the compactness of I, find an open neighborhood V, of x in X such that the
following condition holds:

there is an n = n_e N with the property that for each
(4.4) ke{0,1,...,2" — 1}, V, x [k/2",(k + 1)/2"] = U, for some
Uce (Uel' if xeA).
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We may assume that V, is G,-invariant (replace V, with mxeG,, g V,,if necessary).
If yisin the orbit of x, y = gx with ge G, welet V, = g- V; this is independent of
the choice of g. Performing this construction for all G-orbits of X, we obtain an
open G-covering ¥~ = {V,|xe X} of X, and each V, €7 satisfies 4.4. Let also
v = {V,|xe A}. Then (¥, %) is an open G-covering of (X, A), and the maps i,
and i, induce chain maps

fogs T4t (Co(¥7), CL(V) = (Co(%), Co ("))

The compatibility condition in the next lemma causes the only additional
difficulties compared to the non-equivariant case (cf. [6,6.5.5]).

LEMMA 4.5. There is a chain homotopy
h: (C (7)), CL(¥) = (Cy 41 (%), Cy 4 1(W))

Sfromig, to iy, such that h(¢ o a) = h(¢) o o« whenever ¢ V,(X,?"), t(¢) = H and
o: G/K — .G/H is a G-map.

Proof. Given a simplex s of X(7"), let n(s) be the smallest integer n such that
for each ke{0,1,...,2" — 1} there is a U,e# containing {¢(eH)} x [k/2",
(k + 1)/2"] for all pes (H = t(¢)); if s is a simplex of A(¥"'), we require that
UceU'.

To construct the chain homotopy we use the method of acyclic models. Let
% be the category whose objects are the subcomplexes of X(77); a morphism
7: K — K’ in % is a simplicial embedding satifying n(s) = n(z(s)) for every simplex
se K. If Ke Ob ¥, let F(K) = C,(K) be the ordered chain complex of K. Also let

R = (s x D(s,n(s))

sek

be the subcomplex of (X x I)(#) defined on p. 314 in [6]; a simplex of
(s x I)(%(s,n)) is a subset

{(do:t0),- -+ (@t} =5 x 1

such that {t,,...,t,} = [j/2",(j + 1)/2"] for some je{0,1,...,2" — 1}. Further
let F'(K) = C*(K) be the ordered chain complex of K. Then F and F" are functors
from % to the category of augmented chain complexes over Z.

We define an equivalence relation ~ on the set of simplices of X(¥7) by

s ~ t <> there is a simplicial isomorphism t: §—
satisfying n(s’) = n(t(s")) for every s < s;

here § is the simplicial complex whose simplices are the faces of s. Let S be a set
consisting of one representative from each equivalence class, and define
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M = {§|seS} = Ob¥. Then the functor F is free with models .#. On the other
hand, by [6,6.5.3], C~*(s:) is acyclic for every §e # and so the functor F’ is acyclic
on the models .#. The maps i, and i, induce natural chain maps ig,,i;,: F = F’
preserving argumentation and hence, by the acyclic model theorem (see [6,
4.3.3]), there is a natural chain homotopy k from iy, to i,,.

We contend that the chain homotopy

h=hX():Co(#) = Cyrs(XON) = Cyr (@)

satisfies the required conditions. It is clear by naturality that W(C(¥") = C, . ,(%)).
To prove the compatibility condition, assume that ¢ = (¢o,...,¢,) € V,(X,¥"),
t(¢) = H and a: G/K — G/H is a G-map. Then s = {¢,,...,¢,} and soa=
{¢po0a,...,¢,00a} are both g-simplices of X(¥"), where g = card(s) — 1, and we
can define a simplicial isomorphism & §—50a by ¢;+— ¢;0a. If d(eK) = gH,
geG, then(¢;0a)eK) = g- ¢;(eH)forie{0,...,n}; because % is a G-covering, it
follows that n(s') = n(a(s")) for every s’ <s, that is ae Mor%. The formula
h(¢ oa) = h(¢p) o a now follows from the commutativity of the square

FG) —— F©
1F(oz) lF'(cz)
F(503) —— F'(500)
ProoOF OF 4.3. Consider an element of
Hi(X,A) = lim HY(CYZ, X))

represented by a cocycle ue C(#,%') where (%,') is an open G-covering of
(X x I, A x I). We construct the open G-covering (¥, 7"') of (X, A) as before
Lemma 4.5 above and let

h: (Co(97), CL(V7)) = (Cy 41 (4), Cy s (U'))

be the chain homotopy given by 4.5. Let h*u: C,_,(¥") > M be defined by
(h*u)(@) = u(h(p)) for peV,_(X,¥"). If &: G/K — G/t(¢) is a G-map, then

(h*u)(¢p o) = u(h(¢) o ) = m(e)((h*u)(¢)),
and it follows that h*ue Cg (", 7"’). Furthermore we have for ¢ € V,(X,7")
d(h*u)(@) = (h*u)(0¢) = u(hd¢)
= Wiy @ — s — Oh)
= (ifu)(@) — (iFu)(¢) — (du)(h¢)
= (itu)(¢) — (iIFu)(9),
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that is ifu — i§u = d(h*u)e C3x(¥",¥"') is a coboundary. Thus i*u = i*u in
H%(X,A) = lim H"(CY¥,v")).

5. Tautness.

Let X be a paracompact G-space and 4 < X a closed G-subspace. If N is
a G-neighborhood of 4, we have the restriction homomorphism H?%(N;m) —
T%(A; m). These homomorphisms for various N determine a morphism

lim  H%(N;m) —— HL(A;m).
N

PROPOSITION 5.1. This morphism is an isomorphism for all n.

The proof can be carried out in exactly the same way as that of [6, 6.6.2], with aid
of the following two lemmas:

LEMMA 5.2. Every open G-covering % of a paracompact G-space X has an open
star refinement, which is also a G-covering.

PrOOF. We can first find an open G-covering %', which is a locally finite
refinement of % (cf. [ 1, p. 133]). If we then construct a star refinement ¥ of %’ in
the usual way ([2,p. 167]), ¥ is clearly a G-covering.

LEMMA 5.3. Let X be a completely regular (e.g. paracompact) G-space and
A < X a G-subspace. Given an open G-covering ¥~ of X, there is an open
G-neighborhood N of A and an equivariant function f: N — A (not necessarily
continuous) satisfying
a) f(x) = x for xe A, and
b) if Ve v, then f(V A N) < V¥
here V* = | J{V'e¥ | V' nV# }is the star of VeV

Proor. If Ve ¥ and ae A n V, we can, by the Slice Theorem (see [2, 11.5.4]),
find an open neighborhood U, of a such that U, = Vand for all xe U, there is
a G-map Gx — Ga with x+> a. We define

V=) UcV, N=U{VIAnV£Z}, N=/)gN.
acAnV geG

Then N is an open G-neighborhood of 4.

We now construct f: N — A. Set f(x) = x for xe A. To define f | N\ 4, let S be
a set of representatives for the G-orbits of N\ A. Let y€ S and choose V € ¥" such
that ANV # ¢ and yeV’ (notation as in the preceding paragraph). Then
yeU, c V' for some ae A () V, and we may choose a G-map f,: Gy — Ga with
Sy) = a. We define f| Gy = f,.
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We must show that f: N — A satisfies a) and b). Condition a) is clear by
definition. To prove b), assume that We ¥ and xe W n N; we claim that
f(x)e W*. This obvious if xe 4. Let then xe N\ 4, x = gy with ye S, geG. Let
V, V', and U, be as above. Now x = gye(gV) n W, whence (gV) n W# &, and
because gV e ¥, we have gV e W*. On the other hand f(x) =g f(y) = g-aegV,
so f(x)e W*.

REMARK 5.4. The equivariant versions of [6, 6.6.3, 6.6.5, and 6.6.6] are obvi-
ously true, too.

6. A connection with sheaf cohomology.

Let X be a paracompact G-space. Then the orbit space X/G is also paracom-
pact, as can be seen directly from the definition. In this section we prove that
H%(X; m) equals the ordinary cohomology of X/G with coefficients in a suitable
sheaf, the main result is Theorem 6.4. Two simple applications follow: in Corol-
lary 6.6 we show that if X has finite covering dimension, then it has finite
cohomological dimension with respect to H%(-; m); in Corollary 6.8 we show that
if the coefficient system m is constant, then H%(X;m) is the ordinary Alexander
cohomology of X/G. In section 7 we use the sheaf theoretic interpretation to
compare H¥%(X;m) with equivariant singular cohomology.

Let m: X - X/G be the canonical projection. For each ne N we define
a presheaf M" on X/G by M"(U) = C%(n~'U;m), U < X/G open, with obvious
restriction maps. Further, let C% be the sheaf associated to the presheaf M". The
coboundary maps d: Ct(n~'U) —» C* ' (n~ ' U) define morphisms d: M" - M"*!
and d: Ct, - Ci+1.

The following three lemmas are needed for theorem 6.4

LEMMA 6.1. The sheaves C% are fine.
LEMMA 6.2. The sequence C& <5 CL % C2 — ... is exact.
LemMa 6.3. T(X/G,C%) = CL(X;m).

PROOF OF 6.1. This s entirely similar to [ 7, Proposition 3, p. 84]. Itisenough to
show that the presheaf M" is fine. Let {U,|a € I} be a locally finite open covering
of X/G. For each ye X/G choose a,el with yeU, . For ael define w,:
X/G - {0,1} by

1, a=a,
wu(y)-{o, 2 # o,
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If U = X/G is open, define I,: C(n~*U) - Ci(n~'U) by
(L()($) = wy(n(@o(eH)) c(¢), eV, (n"'U), H=t).
The I,’s determine morphisms of presheaves I,: M" - M" with the required

properties, that is supp (I,) = U, and Y I, = id.

ael

PRrOOF OF 6.2. We must show that for each ye X/G, the sequence of stalks
(€2, 5 (€, L (€, — ...
is exact, that is H"((C§),) = Ofor n > 0. But, by applying the tautness result 5.1 to

the closed G-subspace n~!(y) = X, we can reduce this to showing that
H%(n~'(y);m) = 0 for n > 0, which is true by the dimension axiom.

PROOF OF 6.3. We must prove that the canonical homomorphism M"(X/G) —
I'(X/G,C%)is an isomorphism. It follows easily from the definition of M" that the
presheaf M" has no locally zero global sections except 0. Therefore M"(X/G) —
I'(X/G, C%) is injective, and it remains to prove its surjectivity.

Let se I'(X/G,C%). By [7, Lemma 2 on p. 81], we find a locally finite open
covering {U,|ael} of X/G and sections s, e M"(U,) such that

s,—s|U.elU,,C%) foralael
and
S| UpnUp = 53| U, nUpe M"(U,nUp) forallo,fel.

Let s, be represented by c,eCy(n™'U,); then c, —cj is locally zero on
n~ (U, n Uj) with respect to an open G-covering ¥, of n* (U, () Up).
Choose an open covering {U,|ael} of X/G satisfying U, < U, for ael. Let

s, =s.|U,eM"(U,) and c,=c,|n 'U,eCyn 'U,).

Then s, —s| U, e I'(U,, C%). .

Letxe X, y = n(x)e X/G. We pick an open neighborhood W, of yin X /G such
that {xel|U, n W, # &} is finite, and W,n U, # & only if ye U,. For all
(o, p)el x I with ye U, n Uj choose a ¥, € ¥, such that xe V. Define

V=1 '(W)n () Vep,
(@, B)
an open neighborhood of x in X.
Let ¢ = (¢o,...,9,) eV, (X), t(p) = H, and denote x; = ¢yeH), i =0,1,...,n.
Assume that {x,...,x,} < V,. Let «, e and suppose that c, and c, are both
“defined on ¢”, that is

$eVn U N V(n~ ' Up).
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Then {x,,...,x,} = V,nn" (U, n Up). In particular W, U, " U, # &, and
the choice of W, implies that ye U, n Uy = U, N Uj. Therefore {x,,...,x,} =
Vg € Y5, Whence c,(@) = c4(9).

We denote ¥" = {gV,|g€G, ye X/G}, an open G-covering of X. The prece-
ding paragraph shows that the c,’s together determine a well-defined element
¢e Cg(¥";m). The class of € is an element

ceM"(X/G) = Ch(X;m) = lim CL(U;m),
4

and by construction g| U, = s, € M"(U,)for every a € I. It follows that M"(X/G) 5
o sel(X/G,Cn).

We define 4 = ker [d: C — CL], a sheaf on X/G.
THEOREM 6.4. H*(X/G; A) = H%(X;m) for all ne N.
PrROOF. By Lemmas 6.1 and 6.2, C¥% is a fine resolution of 4. Therefore
H"(X/G; A) ~ HYI'(X/G, C¥)).
By Lemma 6.3, this equals H%(X;m).

Next we give a more concrete description of the sheaf A. We call a 0-cochain
ce C%(X;m) locally constant, if there exists an open G-covering ¥~ of X with the
property that ¢(¢) = c(¢’) for G-maps ¢, ¢": G/H — X whenever ¢(eH), p’'(eH)e V
for some Ve 7.

PROPOSITION 6.5. a) If U < X/G is open, then
(U, A) = {ce Co(n~*U;m)|c is locally constant}.
b) If ye X/G, xen~'(y) and H = G, < G, then the stalk A, is isomorphic to
m(G/H).

PrOOF. Define A4’ = ker [d: M® — M'], a presheaf on X/G. Let U < X/G be
open. Then

A'(U) = ker [d: C&(n~'U) - Ci(n~'U)],

and a cochain ce C(n~*U) is in A'(U) if and only if d(c)e C&(rn~'U) is locally
zero which, due to the formula (d(c))(¢, ¢') = c(¢') — c(¢$), means that c is locally
constant. Thus A'(U) = {ce C3(n~'U)|c is locally constant}.

Because sheafification is an exact functor, A is the sheaf associated to the
presheaf A’. On the other hand, the above formula for A’(U) shows that 4’ is
already a sheaf, so A = A4".

b) If U < X/G is an open neighborhood of y, let ¢,: G/H - n~*U be the
G-map gH + gx; we can then define a homomorphism yy: I'(U, 4) = m(G/H) by
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yulc) = c(¢,). The y,’s together define a homomorphism
y: A, = lim I'(U, A) - m(G/H).

Usy

We claim that y is an isomorphism.

Let V be a tube around the orbit #~*(y) = Gx and r: V— Gx a G-retraction.
We may choose Vso small that V = L[g,,ec,,, gV, (disjoint union), where V, is an
open H-neighborhood of x. Then r(gV,) = {gx} for every g€ G.

To prove the surjectivity of y, let ae m(G/H). We define ce Co(V) by c(¢) =
m(r o ¢)(a) e m(G/K) for a G-map ¢: G/K — V. Then c is locally constant with
respect to the open G-covering {gV,|gH € G/H} of V, so ce I'(nV, A), and clearly
y.v: ¢ a. Thus y,_y is surjective, and consequently so is 7.

For injectivity, let ce I'(U, A), where U is an open neighborhood of y, and
assume that yy(c) = c(¢,) = 0. If x' = gxeGx, then G, =gG g ' =gHg™ !,
and the G-map ¢,.:G/gHg ™' - n~'U, u-(gHg™ ')~ ux’, has the factorization

$.:GlgHg™* —*— G/H %= Gx,

where «: u-(gHg ') ugH. Thus c(¢,.) = m(x)(c(¢,)) = 0.

By assumption, there is an open G-covering %~ of n ~* U such that c is locally
constant with respect to #°. We choose an open H-neighborhood W, = V, of x,
which is contained in some member of #°. Then 7W, is an open neighborhood of
y, and we shall show that c|nW, = 0e I'(zW,, A).

Let ¢: G/K - n~'nW,_be a G-map. Then ¢(eK) e gW, for some g € G. Because
rigW,) = {gx}, the composite

¢ =ro¢:G/K-sn aW,-»Gx s n 'nW,
satisfies
¢®'(uK) = ugx = ¢, (u'(gHg™")) forueG.

Therefore K < gHg ™! and ¢’ = ¢,, 0B, p: G/K - G/gHg ™" canonical surjec-
tion. We saw above that c(¢,,) = 0, and thus

(@) = m(B)(c(¢y)) = 0.
Finally ¢(eK), ¢'(eK) e gW, = Wfor some W e#’, whence c(¢) = c(¢') = 0.

We now present the two simple applications of Theorem 6.4 referred to in the
first paragraph of this section. Recall that X is a paracompact G-space.

COROLARY 6.6. Ifthe covering dimension of X /G is finite, then Hs(X; m) = 0 for
n > dim(X/G).
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ProOF. This follows from the well-known fact that the sheaf cohomology
H"(X/G; A) vanishes for n > dim (X/G), cf. [3,p. 236].

REMARK 6.7. The condition dim (X/G) < oo holds if dim X < co. Namely it is
easy to see that dim X < k implies dim (X/G) £ (k + 1)|G] — 1.

Let M be an abelian group, considered as the constant coefficient system
G/M — M, each G-map G/H — G/K inducing the identity M — M.

COROLLARY 6.8. There is a natural isomorphism H?%(X; M) =~ H(X/G; M),
where the right hand side is the ordinary Alexander-Spanier cohomology of X/G.

Proor. Both sides of the asserted isomorphism can be calculated as sheaf
cohomology groups of X/G, the left hand side with coefficients 4 as in Theorem
6.4, and the right hand side with constant coefficients M. We obtain a morphism
of sheaves w: M — A if we define for U = X/G open

ru, M = > I'(U, A)

I Il
{f: U > M| f locally constant} {ce Co(n~'U; M)| c locally constant}

by the formula (o(f))(¢) = f(nd(eH)), ¢: G/H - n~ U a G-map. The stalks of
both 4 and M equal M, and obviously w induces the identity on stalks. Thus w is
an isomorphism.

7. Comparison with equivariant singular cohomology.

Let X be a G-space. In this section we show that, under suitable local

conditions on X, the equivariant Alexander-Spanier cohomology groups
J"(X;m) are isomorphic to the equivariant singular cohomology groups
Hg(X; m).

Let S%(X; m) be the equivariant singular cochain complex of X with coefficients
m, as defined in [4]; then Hg(X; m) = H"(S&(X; m)). We call a cochain c € S§(X; m)
locally zero, if there is an open G-covering ¥ of X such that ¢(g) = O for any
equivariant singular simplex o: G/H x A" — X for which o({eH} x 4") is con-
tained in some Ve ¥". We denote by S¢ o(X; m) = S§(X; m) the cochain subcom-
plex of locally zero cochains. Let also $%(X; m) = S%(X; m)/S% & o(X;m).

LEMMA 7.1. The complex S§ o(X;m) is acyclic and hence the canonical surjec-
tion S%(X; m) — S%(X; m) induces an isomorphism in cohomology

HYX;m) — H*SEX;m)).
PrOOF. Given an open G-covering ¥~ of X, let SE(X;m;¥") be the cochain
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complex of cochains defined on singular simplices o: G/H x A" — X for which
o({eH} x A"} is contained in some Ve ¥ (compare with [4, p. 34]; [llman uses
only coverings by open G-subsets and requires that 6(G/H x 4") < V for some
Ve ¥7). The proof of Proposition 1.6.4 in [4] shows that the canonical morphism
SE(X; m) - SE(X; m; ") is a homotopy equivalence. Therefore

K3 = ker [S}(X;m) > S§(X;m; 7))
is acyclic. The assertion follows from this, for clearly S§ ((X;m) = lim K3.

v
We can define a natural cochain map A: CE(X; m) — S%(X; m) as follows: given
ceCg(X;m), Mc)eSE(X;m) is defined by (i(c))(o) = (0,,...,0,), where o:
G/H x A™ - X is an equivariant singular simplex,

0;=0|G/H x {v;}: GGH-> X

and v, .. .,v, are the vertices of the standard simplex 4". The morphism A indu-
ces: A: C*(X m) — §*(X; m). Passing to cohomology and using Lemma 7.1 we
obtain a natural transformation A: H%(X;m) - H%(X;m).

THEOREM 7.2. A: HX(X; m) — H%(X; m) is an isomorphism provided that X is
paracompact and every orbit Gx < X is taut with respect to H¥(-; m).

PrOOF. Let S% and S% be the sheaves on X/G associated to the presheaves
U S%n 'U;m) and U — S%(n~ ' U;m), respectively. In section 6 we proved
that the sequence C% — CL — C2 — ... is exact, the sheaves C% are fine and
H%(X; m) can be computed from the complex C%: H%(X;m) = H(I'(X/G, C¥)).

On the other hand, under the present additional hypothesis it is known that
§2 - SL - S2 ... is an exact sequence of fine sheaves and H¥(X, m) can be
computed from the complex $%: HY(X;m) = HY(I'(X/G, S§)), cf. [5, p. 441-442].

The above morphism 7 defines a morphism of sheaf complexes 1: C§ — S%; also
we have the canonical morphism S% — $%, which is in fact a quasi-isomorphism
by Lemma 7.1. But now is clear that

Cx 2 S sk
is a quasi-isomorphism. Namely, #"(C%) = #"(S§) =0 for n>0, and if
ye€ X/G, then
[#°(CE), = Ha(n™ " (y)im)
by Proposition 5.1 and
[#°(59)], = Hg(n ™ '(y)im)
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by the tautness assumption in Theorem 7.2, whence 2 induces an isomorphism
between the stalks [5#°(C¥)], and [5#°(SE)],. This proves the assertion.

REMARK 7.3. The tautness hypothesis in Theorem 7.2 is satisfied, if for exam-
ple X is G-locally contractible, i.e. every orbit Gx — X has arbitrarily small open
G-neighborhoods V'such that Gx is a G-deformation retract of V.

8. Remarks on cohomology with compact supports.

In this final section we indicate briefly, how the construction of ordinary
Alexander-Spanier cohomology with compact supports given in [6, p. 320], can
be generalized to the equivariant case.

Let us recall the following terminology: A subset Z of a topological space X is
bounded if Z is compact, and cobounded if X \ Z is bounded. A map f: X — Yis
proper if f "}(Z) = X is bounded whenever Z < Y is bounded.

Let now (X, A) be a G-pair. We define a cochain subcomplex C¥ (X, A;m) of
C¥(X, A;m) by

G.«(X,4;m) = {ce CE(X, A;m)| ¢ is locally zero on some cobounded
G-subset of X }.

Clearly C§ (X) c C§ (X, 4), and we denote
Ct. (X, A;m) = C¥ (X, A;m)/ CE o(X;m).

The equivariant Alexander-Spanier cohomology groups of (X, A) with compact
supports and coefficients m are

8.1 Hg (X, A;m) = H'(C¥ (X, 4;m))

A map of G-pairs f: (X, A) — (Y, B) such that f: X — Y is proper induces
homomorphisms

f*:Hy (Y,B)— HY, (X, A).

Thereis a long exact cohomology sequence for the G-pair (X, A) only if 4 is closed
in X. The other axioms for an equivariant cohomology theory are also satisfied
with obvious modifications. For instance, the homotopy axioms holds for proper
G-homotopies. A proof of this can be based on Lemma 4.5 in exactly the same
way as the proof of 4.3, after the trivial observation that if Z < X x I is
cobounded and p: X x I — X is the projection, then Z’' = X\ p[(X x )\ Z] is
coboundedin X and Z' x I < Z.
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The analog of [6, 6.6.11] evidently holds, too:

PROPOSITION 8.2. If A is a compact (and Hausdorff) G-space and B < A is
a closed G-subspace, then for allne N

1%, (A\ B;m) =~ H%(A, B; m).

There is the following connection between H% (X ; m) and sheaf cohomology of
X/G with compact supports:

ProposITION 8.3. If X is a locally compact G-space, then
HY(X/G; 4) = Hg (X;m)
for all ne N, where A is the sheaf on X/G described in Proposition 6.5.

PrOOF. Since X/G is locally compact, we can use the fine resolution C% to
compute HX(X/G; A).

HY(X/G; A) = H'(I' (X/G, C¥)).

In Lemma 6.3 we proved that I'(X/G, C%) = C%(X; m). Thus it only remains to
show that in this isomorphism I'(X/G, C) corresponds to C% (X; m).

Let ce Ci(X; m) represent se I'(X/G, C%). If se [ (X /G, C%), then X \ 7™ (supp(s))
is cobounded in X and c¢ is locally zero on X\n !(supp(s)). Therefore
ce Cg (X;m)in this case. Conversely, assume that c € Cg (X; m)is locally zero on
the cobounded G-set Z = X. Then supp(s) is contained in the compact set
n(X\Z) and thus se I'(X/G, C%).
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