EQUIVARIANT ALEXANDER-SPANIER COHOMOLOGY

HANNU HONKASALO

Introduction.

Let G be a finite group. In this paper we construct an equivariant cohomology theory defined on the category of all G-pairs. We call this theory "equivariant Alexander-Spanier cohomology", because our construction generalizes the construction of ordinary Alexander-Spanier cohomology (see [6, 6.4]) in approximately the same way as Illman's construction of equivariant singular cohomology (see [4]), valid for any topological group G, generalizes the construction of ordinary singular cohomology.

The contents of the paper are as follows: In section 1 we define the cohomology groups and in sections 2–4 we show that all the Eilenberg-Steenrod axioms for an equivariant cohomology theory, including the dimension axiom, are satisfied. In section 5 we prove a tautness property for this cohomology theory. The main result of section 6 is that for a paracompact G-space X the equivariant Alexander-Spanier cohomology groups can be interpreted as ordinary cohomology groups of the orbit space X/G with coefficients in a suitable sheaf. This fact is used in section 7 to show that equivariant Alexander-Spanier cohomology agrees with equivariant singular cohomology on G-locally contractible paracompact G-spaces. In the final section 8 we give some comments on equivariant Alexander-Spanier cohomology with compact supports.

I wish to thank Erkki Laitinen and Sören Illman for useful discussions.

1. The construction.

As stated in the Introduction, G will always be a finite group.

Let X be a G-space. If $n \in N$, we denote by $V_n(X)$ the set of all G-maps ϕ : $G/H \times \{0, 1, ..., n\} \to X$ for various subgroups $H \subseteq G$, where G acts trivially on $\{0, 1, ..., n\}$. We call H the type of the above $\phi \in V_n(X)$, denoted $H = t(\phi)$. We

often write $\phi = (\phi_0, \phi_1, \dots, \phi_n)$, where $\phi = \phi_i | G/H \times \{i\} : G/H \to X$, $0 \le i \le n$.

Let m be a contravariant coefficient system, i.e. a contravariant functor from the category of the G-spaces G/H ($H \le G$) and G-maps between them to the category of abelian groups (or R-modules, R a ring with unit).

Let $M = \bigoplus_{H \leq G} m(G/H)$. The n'th cochain group of X with coefficients m is

$$C^{n}(X;m) = \{c \colon V_{n}(X) \to M \mid c(\phi) \in m(G/t(\phi)) \ \forall \ \phi\}.$$

Equipped with the usual differential d: $C^n(X; m) \to C^{n+1}(X; m)$,

$$(d(c))(\phi_0,\ldots,\phi_{n+1}) = \sum_{i=0}^{n+1} (-1)^i c(\phi_0,\ldots,\hat{\phi}_i,\ldots,\phi_{n+1}),$$

 $C^*(X; m)$ is clearly a cochain complex. A cochain $c \in C^n(X; m)$ is equivariant, if $c(\phi \circ \alpha) = m(\alpha)(c(\phi))$ whenever $\phi \in V_n(X)$ and $\alpha: G/K \to G/t(\phi)$ is a G-map; here $\phi \circ \alpha = (\phi_0 \circ \alpha, \dots, \phi_n \circ \alpha)$. We denote

$$C_G^n(X; m) = \{c \in C^n(X; m) \mid c \text{ is equivariant}\}.$$

Clearly $C_G^*(X; m)$ is a cochain subcomplex of $C^*(X; m)$.

We call a covering \mathscr{U} of X a G-covering, if $gU \in \mathscr{U}$ for all $U \in \mathscr{U}$ and $g \in G$ (this is called an invariant covering in [1, Chapter III]). A cochain $c \in C^n(X)$ (we occasionally omit the coefficients m in the notation) is locally zero on X, if there is an open G-covering \mathscr{U} of X such that $c(\phi) = 0$ whenever $\{\phi_0(eH), \ldots, \phi_n(eH) \subset U \text{ for some } U \in \mathscr{U} \text{ } (H = t(\phi)).$

We set

$$C_0^n(X; m) = \{c \in C^n(X; m) \mid c \text{ is locally zero on } X\},$$

 $C_{G,0}^n(X; m) = C_G^n(X; m) \cap C_0^n(X; m).$

Evidently $dC_0^n(X) \subset C_0^{n+1}(X)$, and therefore the quotients

$$\bar{C}^n(X;m) = C^n(X;m)/C^n_0(X;m), \quad \bar{C}^n_G(X;m) = C^n_G(X;m)/C^n_{G,0}(X;m)$$

form cochain complexes $\bar{C}^*(X; m)$ and $\bar{C}^*_G(X; m)$.

An equivariant function $f: X \to Y$ between G-spaces (f need not be continuous) induces a cochain map $f^*: C^*(Y) \to C^*(X)$ by the formula

$$(f^*(c))(\phi_0,\ldots,\phi_n)=c(f\circ\phi_0,\ldots,f\circ\phi_n);\quad c\in C^n(Y),\ \phi\in V_n(X).$$

Obviously $f^*C^*_{\sigma}(Y) \subset C^*_{\sigma}(X)$. If f is a G-map (i.e. continuous), then $f^*C^n_0(Y) \subset C^n_0(X)$ (if $c \in C^n(Y)$ is locally zero with respect to the open G-covering $\mathscr V$ of Y, then $f^*(c) \in C^n(X)$ is locally zero with respect to the open G-covering $f^{-1}\mathscr V = \{f^{-1}(V) | V \in \mathscr V\}$ of X). Therefore the G-map $f: X \to Y$ induces cochain maps $f^*: \bar{C}^*(Y) \to \bar{C}^*(X)$ and $f^*: \bar{C}^*_{\sigma}(Y) \to \bar{C}^*_{\sigma}(X)$.

Let $A \subset X$ be a G-subspace and $i: A \to X$ the inclusion. The cochain map i^* : $\bar{C}_G^*(X) \to \bar{C}_G^*(A)$ is surjective: if $c \in C_G^n(A)$, then $c = i^*\tilde{c}$ where $\tilde{c} \in C_G^n(X)$ is defined by $\tilde{c}(\phi) = c(\phi)$ for $\phi \in V_n(A)$ and $\tilde{c}(\phi) = 0$ for $\phi \in V_n(X) \setminus V_n(A)$.

DEFINITION 1.1. $\bar{C}_G^*(X, A; m) = \ker [i^*: \bar{C}_G^*(X; m) \to \bar{C}_G^*(A; m)]$ is the equivariant Alexander-Spanier cochain complex of (X, A) with coefficients m. Its cohomology groups $\bar{H}_G^n(X, A; m) = H^n(\bar{C}_G^*(X, A; m))$ are the equivariant Alexander-Spanier cohomology groups of (X, A) with coefficients m.

Theorem 1.2. The functors \bar{H}_G^n satisfy all the Eilenberg-Steenrod axioms for an equivariant cohomology theory, including the dimension axiom.

Exactness is clear from the definition: the short exact sequence

$$0 \to \bar{C}_G^*(X, A) \to \bar{C}_G^*(X) \xrightarrow{i*} \bar{C}_G^*(A) \to 0$$

of cochain complexes induces the long exact cohomology sequence

$$0 \longrightarrow \bar{H}^0_G(X,A;m) \longrightarrow \bar{H}^0_G(X;m) \longrightarrow \bar{H}^0_G(A;m) \longrightarrow \bar{H}^1_G(X,A;m) \longrightarrow \dots$$

$$\dots \longrightarrow \bar{H}^n_G(X,A;m) \longrightarrow \bar{H}^n_G(X;m) \longrightarrow \bar{H}^n_G(A;m) \longrightarrow \bar{H}^{n+1}_G(X,A;m) \longrightarrow \dots$$

The remaining three axioms are proved in the next three sections.

2. The dimension axiom

PROPOSITION 2.1. Let $H \subseteq G$ be a subgroup. For $n \neq 0$, $\bar{H}_G^n(G/H;m) = 0$. For n = 0 there is an isomorphism $\bar{H}_G^0(G/H;m) \xrightarrow{\sim} m(G/H)$, natural with respect to G-maps $G/H \to G/H'$.

PROOF. Let $\pi_n = (\mathrm{id}_{G/H}, \ldots, \mathrm{id}_{G/H}) \in V_n(G/H)$ and define $D^n = \mathrm{Hom}_Z(Z\pi_n, m(G/H)), n \in \mathbb{N}$. The homomorphisms $d \colon D^n \to D^{n+1}$,

$$(d(c))(\pi_{n+1}) = \begin{cases} c(\pi_n), & n \text{ odd} \\ 0, & n \text{ even} \end{cases}; \qquad c \in D^n,$$

make D^* into a cochain complex. We can define a cochain map $u: C^*_G(G/H) \to D^*$ by $(u(c))(\pi_n) = c(\pi_n)$ for $c \in C^n_G(G/H)$. We show that u is surjective:

Given $c \in D^n$, define $\tilde{c} \in C^n(G/H)$ by $\tilde{c}(\phi_0, \dots, \phi_n) = m(\phi_0)(c(\pi_n))$. If α : $G/K \to G/t(\phi)$ is a G-map, then

$$\tilde{c}(\phi_0 \circ \alpha, \dots, \phi_n \circ \alpha) = m(\phi_0 \circ \alpha)(c(\pi_n)) = m(\alpha)(m(\phi_0)(c(\pi_n))) = m(\alpha)(\tilde{c}(\phi_0, \dots, \phi_n)),$$
so $\tilde{c} \in C^n_G(G/H)$. Clearly $u(\tilde{c}) = c$.

On the other hand, Lemma 2.2 below shows that ker $u = C_{G,0}^*(G/H)$. Therefore u induces an isomorphism $\bar{C}_G^*(G/H) \xrightarrow{\sim} D^*$ and

$$\bar{H}_G^n(G/H) \cong H^n(D^*) \cong \begin{cases} m(G/H), & n = 0 \\ 0, & n \neq 0. \end{cases}$$

LEMMA 2.2. Let $c \in C_G^n(G/H)$. Then $c \in C_{G,0}^n(G/H)$ if and only if $c(\pi_n) = 0$.

PROOF. The "only if"-part is clear. Conversely, assume that $c(\pi_n) = 0$. Then

$$c(\alpha,\ldots,\alpha)=c(\pi_n\circ\alpha)=m(\alpha)(c(\pi_n))=0$$

for any G-map α : $G/K \to G/H$. This implies that c is locally zero with respect to the open G-covering $\{\{gH\} \mid gH \in G/H\}$ by singletons of G/H. Namely, if $\phi = (\phi_0, \dots, \phi_n) \in V_n(G/H)$, $t(\phi) = K$ and $\phi_i(eK) \in \{gH\}$ $(i = 0, \dots, n)$ for some $gH \in G/H$, then $\phi_0(eK) = \phi_1(eK) = \dots = \phi_n(eK)$, so $\phi_0 = \phi_1 = \dots = \phi_n$, and finally $c(\phi) = c(\phi_0, \dots, \phi_0) = 0$.

REMARK 2.3. Contrary to the non-equivariant case, the passage from C_G^* to \bar{C}_G^* is essential even for the dimension axiom, because $H^n(C_G^*(G/H))$ can be nonzero for $n \neq 0$, too.

For example, in the case $H = \{e\}$ we see that $C_G^*(G; m) \cong \operatorname{Hom}_{ZG}(F_*, m(G))$, where $0 \leftarrow Z \leftarrow F_0 \leftarrow F_1 \leftarrow \ldots$ is the standard resolution of Z by right ZG-modules, that is F_n is free abelian with basis $\{(g_0, \ldots, g_n) \mid g_i \in G\}$ and G acts on F_n by $(g_0, \ldots, g_n) \cdot g = (g_0 g_1, \ldots, g_n g)$; this follows easily from the fact that every G-map $G \to G$ is of the form $F_g: X \to Xg$ for some $g \in G$.

 $H^n(C^*_G(G;m))\cong H^n(G;\mathsf{m}(G)).$

3. The excision axiom.

Therefore

Let X be a G-space, $A \subset X$ a G-subspace and i: $A \to X$ the inclusion. We first give a slightly more concrete description of the cochain complex $\bar{C}_G^*(X, A)$. Define

$$C_G^n(X, A; m) = \{c \in C_G^n(X; m) | i^*(c) \in C_0^n(A; m)\},\$$

the G-cochains of X which are locally zero on A. Clearly $C_{G,0}^*(X) \subset C_G^*(X,A)$ and the image of the homomorphism

$$C_G^*(X,A) \subset C_G^*(X) \to \bar{C}_G^*(\bar{X})$$

equals ker $[i^*: \bar{C}_G^*(X) \to \bar{C}_G^*(A)] = \bar{C}_G^*(X, A)$, so

$$\bar{C}_{G}^{*}(X, A; m) \cong C_{G}^{*}(X, A; m)/C_{G,0}^{*}(X; m).$$

The excision axiom is a consequence of the following result:

PROPOSITION 3.1. Let $B \subset A$ be a G-subset and W an open G-neighborhood of B in X such that $\overline{W} \subset \operatorname{int} A$. Then the inclusion $j: (X \setminus B, A \setminus B) \subset (X, A)$ induces an isomorphism

$$j^*: \bar{C}_G^*(X, A; m) \xrightarrow{\sim} \bar{C}_G^*(X \setminus B, A \setminus B; m).$$

PROOF. This is quite similar to the non-equivariant case (see [6, 6.4.4]). We prove surjectivity and leave injectivity to the reader.

Let $c \in C_G^n(X \setminus B, A \setminus B)$. Then c is locally zero on $A \setminus B$ with respect to an open G-covering \mathscr{U} of $A \setminus B$. Define $\tilde{c} \in C_G^n(X)$ by

$$\tilde{c}(\phi) = \begin{cases} c(\phi) & \text{if } \phi \in V_n(X \setminus W) \\ 0 & \text{otherwise.} \end{cases}$$

Evidently \tilde{c} locally zero on $A = (A \setminus B) \cup W$ with respect to the open G-covering $\{U \cup W \mid U \in \mathcal{U}\}\$ of A, and thus $\tilde{c} \in C_G^n(X, A)$. By construction $j^*(\tilde{c}) - c$ is zero on $X \setminus W$ and locally zero on $A \setminus B$. Because the interiors of $X \setminus W$ and $A \setminus B$ cover $X \setminus B$, $j^*(c) - c$ is locally zero on $X \setminus B$, that is $j^*(\tilde{c}) = c$ in $\bar{C}_G^*(X \setminus B, A \setminus B)$.

4. The homotopy axiom.

In this section we adapt Spanier's proof of the homotopy axiom for ordinary Alexander-Spanier cohomology, given in $[6, \S6.5]$, to the equivariant case. First, following [6, 6.5.2], we represent the equivariant cohomology groups as a direct limit.

Given an open G-covering \mathscr{U} of the G-space X, let $X(\mathscr{U})$ be the following simplicial complex: its set of vertices is $V_0(X)$ and the vertices $\phi_0, \phi_1, \ldots, \phi_n$ span a simplex, if $t(\phi_0) = t(\phi_1) = \ldots = t(\phi_n)$ and $\{\phi_0(eH), \ldots, \phi_n(eH)\} \subset U$ for some $U \in \mathscr{U}$, where $H = t(\phi_0)$. Further, let $C_*(\mathscr{U})$ be the ordered chain complex of $X(\mathscr{U})$, that is $C_n(\mathscr{U})$ is the free abelian group with basis

$$V_n(X,\mathscr{U}) = \{ \phi \in V_n(X) \mid \{ \phi_0(eH), \dots, \phi_n(eH) \} \subset U \text{ for some } U \in \mathscr{U}(H = t(\phi)) \}$$
 and $\partial: C_n(\mathscr{U}) \to C_{n-1}(\mathscr{U})$ is given by

$$\partial(\phi_0,\ldots,\phi_n)=\sum_{i=0}^n(-1)^i(\phi_0,\ldots,\hat{\phi}_i,\ldots,\phi_n).$$

Let $A \subset X$ be a G-subspace. If $\mathscr{U} \subset \mathscr{U}$ is a G-subset whose sets cover A, we call $(\mathscr{U}, \mathscr{U}')$ an open G-covering of the pair (X, A). Given such a $(\mathscr{U}, \mathscr{U}')$, let $A(\mathscr{U}')$ be the subcomplex of $X(\mathscr{U})$ consisting of those simplices $s = \{\phi_0, \ldots, \phi_n\}$ which satisfy $\{\phi_0(eH), \ldots, \phi_n(eH)\} \subset A \cap U'$ for some $U' \in \mathscr{U}'$. Also, let $C'_*(\mathscr{U}') \subset C_*(\mathscr{U})$ be the ordered chain complex of $A(\mathscr{U}')$.

We define a cochain complex $C_G^*(\mathcal{U}, \mathcal{U}'; m)$ as follows:

 $C_G^n(\mathcal{U}, \mathcal{U}'; m) = \{u: C_n(\mathcal{U}) \to M \mid u \text{ is a homomorphism};$

$$u(\phi) \in m(G/t(\phi)) \ \forall \ \phi \in V_n(X, \mathcal{U}); \ u \mid C'_n(\mathcal{U}') = 0;$$

if
$$\alpha$$
: $G/K \to G/t(\phi)$ is a G-map, then $u(\phi \circ \alpha) = m(\alpha)(u(\phi))$;

d: $C_G^n(\mathcal{U}, \mathcal{U}') \to C_G^{n+1}(\mathcal{U}, \mathcal{U}')$ is given by $(d(u))(\phi) = u(\partial \phi)$. If $(\mathcal{V}, \mathcal{V}')$ is a refinement of $(\mathcal{U}, \mathcal{U}')$, that is each $V \in \mathcal{V}$ is contained in some $U \in \mathcal{U}$ and each $V' \in \mathcal{V}'$ is contained in some $U' \in \mathcal{U}'$, then there is a canonical injection $(C_*(\mathcal{V}), C_*'(\mathcal{V}')) \hookrightarrow (C_*(\mathcal{U}), C_*'(\mathcal{U}'))$ and a canonical restriction homomorphism $C_G^*(\mathcal{U}, \mathcal{U}') \to C_G^*(\mathcal{V}, \mathcal{V}')$. We form $\underbrace{\lim_{(\mathcal{U}, \mathcal{U}')}}_{(\mathcal{U}, \mathcal{U}')}$ with respect to these restriction maps.

Let $c \in C_G^n(X, A)$. Then there is a G-set \mathscr{U}_0 of open subsets of X covering A such that c is locally zero on A with respect to \mathscr{U}_0 . If we denote $\mathscr{U}_0 = \mathscr{U}_0' \cup \{X\}$, c determines an element $\lambda(c) \in C_G^n(\mathscr{U}_0, \mathscr{U}_0')$ by $(\lambda(c))(\phi) = c(\phi)$, $\phi \in V_n(X, \mathscr{U}_0)$. In this way we obtain a cochain map

$$\lambda \colon C^*_G(X, A; m) \to \varinjlim C^*_G(\mathcal{U}, \mathcal{U}'; m).$$

The following fact is evident from the definitions:

LEMMA 4.1. λ is surjective and $\ker \lambda = C_{G,0}^*(X;m)$.

COROLLARY 4.2. λ induces an isomorphism

$$\bar{H}^n_G(X, A; m) \xrightarrow{\sim} \varinjlim_{(\mathscr{U}, \mathscr{U}')} H^n(C^*_G(\mathscr{U}, \mathscr{U}'; m)).$$

Let I = [0, 1] be the closed unit interval with trivial G-action. To verify the homotopy axiom, it is enough to consider the G-maps i_0, i_1 : $(X, A) \rightarrow (X \times I, A \times I), i_0(x) = (x, 0), i_1(x) = (x, 1), and prove the following$

result:

Proposition 4.3.
$$i_0^* = i_1^*$$
: $\bar{H}_G^*(X \times I, A \times I; m) \to \bar{H}_G^*(X, A; m)$.

Let $(\mathcal{U}, \mathcal{U}')$ be an open G-covering of $(X \times I, A \times I)$. Given $x \in X$, we can using the compactness of I, find an open neighborhood V_x of x in X such that the following condition holds:

there is an
$$n = n_x \in \mathbb{N}$$
 with the property that for each $k \in \{0, 1, \dots, 2^n - 1\}, \ V_x \times [k/2^n, (k+1)/2^n] \subset U_k \text{ for some } U_k \in \mathcal{U} \ (U_k \in \mathcal{U}' \text{ if } x \in A).$

We may assume that V_x is G_x -invariant (replace V_x with $\bigcap_{x \in G_x} g \cdot V_x$, if necessary). If y is in the orbit of x, y = gx with $g \in G$, we let $V_y = g \cdot V_x$; this is independent of the choice of g. Performing this construction for all G-orbits of X, we obtain an open G-covering $\mathscr{V} = \{V_x \mid x \in X\}$ of X, and each $V_x \in \mathscr{V}$ satisfies 4.4. Let also $\mathscr{V}' = \{V_x \mid x \in A\}$. Then $(\mathscr{V}, \mathscr{V}')$ is an open G-covering of (X, A), and the maps i_0 and i_1 induce chain maps

$$i_{0\star}, i_{1\star}: (C_{\star}(\mathscr{V}), C'_{\star}(\mathscr{V}')) \to (C_{\star}(\mathscr{U}), C'_{\star}(\mathscr{U}')).$$

The compatibility condition in the next lemma causes the only additional difficulties compared to the non-equivariant case (cf. [6, 6.5.5]).

LEMMA 4.5. There is a chain homotopy

$$h: (C_{\star}(\mathscr{V}), C'_{\star}(\mathscr{V}')) \to (C_{\star+1}(\mathscr{U}), C'_{\star+1}(\mathscr{U}'))$$

from i_{0*} to i_{1*} such that $h(\phi \circ \alpha) = h(\phi) \circ \alpha$ whenever $\phi \in V_n(X, \mathscr{V})$, $t(\phi) = H$ and $\alpha: G/K \to G/H$ is a G-map.

PROOF. Given a simplex s of $X(\mathscr{V})$, let n(s) be the smallest integer n such that for each $k \in \{0, 1, \ldots, 2^n - 1\}$ there is a $U_k \in \mathscr{U}$ containing $\{\phi(eH)\} \times [k/2^n, (k+1)/2^n]$ for all $\phi \in s$ $(H = t(\phi))$; if s is a simplex of $A(\mathscr{V}')$, we require that $U_k \in \mathscr{U}'$.

To construct the chain homotopy we use the method of acyclic models. Let $\mathscr C$ be the category whose objects are the subcomplexes of $X(\mathscr V)$; a morphism $\tau: K \to K'$ in $\mathscr C$ is a simplicial embedding satisfying $n(s) = n(\tau(s))$ for every simplex $s \in K$. If $K \in \text{Ob } \mathscr C$, let $F(K) = C_*(K)$ be the ordered chain complex of K. Also let

$$\hat{K} = \bigcup_{s \in K} (s \times I)(\mathcal{U}(s, n(s)))$$

be the subcomplex of $(X \times I)(\mathcal{U})$ defined on p. 314 in [6]; a simplex of $(s \times I)(\mathcal{U}(s, n))$ is a subset

$$\{(\phi_0,t_0),\ldots,(\phi_q,t_q)\}\subset s\times I$$

such that $\{t_0, \ldots, t_q\} \subset [j/2^n, (j+1)/2^n]$ for some $j \in \{0, 1, \ldots, 2^n - 1\}$. Further let $F'(K) = C_*(\hat{K})$ be the ordered chain complex of \hat{K} . Then F and F' are functors from \mathscr{C} to the category of augmented chain complexes over Z.

We define an equivalence relation \sim on the set of simplices of $X(\mathcal{V})$ by

$$s \sim t \iff$$
 there is a simplicial isomorphism $\tau: \bar{s} \to \bar{t}$
satisfying $n(s') = n(\tau(s'))$ for every $s \leqslant s$;

here \bar{s} is the simplicial complex whose simplices are the faces of s. Let S be a set consisting of one representative from each equivalence class, and define

 $\mathcal{M} = \{\bar{s} \mid s \in S\} \subset \text{Ob } \mathscr{C}.$ Then the functor F is free with models $\mathscr{M}.$ On the other hand, by [6, 6.5.3], $\tilde{C}_{*}(\hat{s})$ is acyclic for every $\bar{s} \in \mathscr{M}$ and so the functor F' is acyclic on the models $\mathscr{M}.$ The maps i_0 and i_1 induce natural chain maps $i_{0*}, i_{1*}: F \to F'$ preserving argumentation and hence, by the acyclic model theorem (see [6, 4.3.3]), there is a natural chain homotopy h from i_{0*} to i_{1*} .

We contend that the chain homotopy

$$h = h(X(\mathscr{V})) \colon C_{*}(\mathscr{V}) \to C_{*+1}((X(\mathscr{V}))^{\wedge}) \ \ \subset \to \ \ C_{*+1}(\mathscr{U})$$

satisfies the required conditions. It is clear by naturality that $h(C'_*(\mathscr{V}')) \subset C'_{*+1}(\mathscr{U}')$. To prove the compatibility condition, assume that $\phi = (\phi_0, \dots, \phi_n) \in V_n(X, \mathscr{V})$, $t(\phi) = H$ and α : $G/K \to G/H$ is a G-map. Then $s = \{\phi_0, \dots, \phi_n\}$ and $s \circ \alpha = \{\phi_0 \circ \alpha, \dots, \phi_n \circ \alpha\}$ are both q-simplices of $X(\mathscr{V})$, where $q = \operatorname{card}(s) - 1$, and we can define a simplicial isomorphism $\tilde{\alpha}$: $\bar{s} \to \overline{s \circ \alpha}$ by $\phi_i \mapsto \phi_i \circ \alpha$. If $\alpha(eK) = gH$, $g \in G$, then $(\phi_i \circ \alpha)(eK) = g \cdot \phi_i(eH)$ for $i \in \{0, \dots, n\}$; because \mathscr{U} is a G-covering, it follows that $n(s') = n(\tilde{\alpha}(s'))$ for every $s' \leq s$, that is $\tilde{\alpha} \in \operatorname{Mor} \mathscr{C}$. The formula $h(\phi \circ \alpha) = h(\phi) \circ \alpha$ now follows from the commutativity of the square

$$F(\vec{s}) \xrightarrow{h} F'(\vec{s})$$

$$\downarrow F(\tilde{\alpha}) \qquad \qquad \downarrow F'(\tilde{\alpha})$$

$$F(\overline{s \circ \alpha}) \xrightarrow{h} F'(\overline{s \circ \alpha})$$

Proof of 4.3. Consider an element of

$$\bar{H}^n_G(X,A) \cong \lim_{\longrightarrow} H^n(C^*_G(\mathcal{U},\mathcal{U}'))$$

represented by a cocycle $u \in C_G^n(\mathcal{U}, \mathcal{U}')$ where $(\mathcal{U}, \mathcal{U}')$ is an open G-covering of $(X \times I, A \times I)$. We construct the open G-covering $(\mathcal{V}', \mathcal{V}')$ of (X, A) as before Lemma 4.5 above and let

$$h: (C_{\star}(\mathscr{V}), C'_{\star}(\mathscr{V}')) \rightarrow (C_{\star+1}(\mathscr{U}), C'_{\star+1}(\mathscr{U}'))$$

be the chain homotopy given by 4.5. Let h^*u : $C_{n-1}(\mathscr{V}) \to M$ be defined by $(h^*u)(\phi) = u(h(\phi))$ for $\phi \in V_{n-1}(X, \mathscr{V})$. If α : $G/K \to G/t(\phi)$ is a G-map, then

$$(h^*u)(\phi \circ \alpha) = u(h(\phi) \circ \alpha) = m(\alpha)((h^*u)(\phi)),$$

and it follows that $h^*u \in C_G^{n-1}(\mathcal{V}, \mathcal{V}^{\prime})$. Furthermore we have for $\phi \in V_n(X, \mathcal{V})$

$$d(h^*u)(\phi) = (h^*u)(\partial \phi) = u(h\partial \phi)$$

$$= u(i_{1*}\phi - i_{0*}\phi - \partial h\phi)$$

$$= (i_1^*u)(\phi) - (i_0^*u)(\phi) - (du)(h\phi)$$

$$= (i_1^*u)(\phi) - (i_0^*u)(\phi),$$

that is $i_1^*u - i_0^*u = d(h^*u) \in C_G^n(\mathcal{V}, \mathcal{V}')$ is a coboundary. Thus $i_0^*u = i_1^*u$ in $\overline{H}_G^n(X, A) \cong \underline{\lim}_{\longrightarrow} H^n(C_G^*(\mathcal{V}, \mathcal{V}'))$.

5. Tautness.

Let X be a paracompact G-space and $A \subset X$ a closed G-subspace. If N is a G-neighborhood of A, we have the restriction homomorphism $\bar{H}_G^n(N;m) \to \bar{H}_G^n(A;m)$. These homomorphisms for various N determine a morphism

$$\xrightarrow{N} \overline{H}_{G}^{n}(N;m) \longrightarrow \overline{H}_{G}^{n}(A;m).$$

PROPOSITION 5.1. This morphism is an isomorphism for all n.

The proof can be carried out in exactly the same way as that of [6, 6.6.2], with aid of the following two lemmas:

LEMMA 5.2. Every open G-covering \mathcal{U} of a paracompact G-space X has an open star refinement, which is also a G-covering.

PROOF. We can first find an open G-covering \mathscr{U}' , which is a locally finite refinement of \mathscr{U} (cf. [1, p. 133]). If we then construct a star refinement \mathscr{V} of \mathscr{U}' in the usual way ([2, p. 167]), \mathscr{V} is clearly a G-covering.

LEMMA 5.3. Let X be a completely regular (e.g. paracompact) G-space and $A \subset X$ a G-subspace. Given an open G-covering $\mathscr V$ of X, there is an open G-neighborhood N of A and an equivariant function $f: N \to A$ (not necessarily continuous) satisfying

- a) f(x) = x for $x \in A$, and
- b) if $V \in \mathcal{V}$, then $f(V \cap N) \subset V^*$;

here $V^* = \bigcup \{V' \in \mathcal{V} \mid V' \cap V \neq \emptyset\}$ is the star of $V \in \mathcal{V}$.

PROOF. If $V \in \mathscr{V}$ and $a \in A \cap V$, we can, by the Slice Theorem (see [2, II.5.4]), find an open neighborhood U_a of a such that $U_a \subset V$ and for all $x \in U_a$ there is a G-map $Gx \to Ga$ with $x \mapsto a$. We define

$$V' = \bigcup_{a \in A \cap V} U_a \subset V, \quad N' = \bigcup \big\{ V' \, | \, A \cap V \neq \emptyset \big\}, \quad N = \bigcap_{g \in G} gN'.$$

Then N is an open G-neighborhood of A.

We now construct $f: N \to A$. Set f(x) = x for $x \in A$. To define $f \mid N \setminus A$, let S be a set of representatives for the G-orbits of $N \setminus A$. Let $y \in S$ and choose $V \in \mathscr{V}$ such that $A \cap V \neq \emptyset$ and $y \in V'$ (notation as in the preceding paragraph). Then $y \in U_a \subset V'$ for some $a \in A \cap V$, and we may choose a G-map $f_y: Gy \to Ga$ with $f_y(y) = a$. We define $f \mid Gy = f_y$.

We must show that $f: N \to A$ satisfies a) and b). Condition a) is clear by definition. To prove b), assume that $W \in \mathscr{V}$ and $x \in W \cap N$; we claim that $f(x) \in W^*$. This obvious if $x \in A$. Let then $x \in N \setminus A$, x = gy with $y \in S$, $g \in G$. Let V, V', and U_a be as above. Now $x = gy \in (gV) \cap W$, whence $(gV) \cap W \neq \emptyset$, and because $gV \in \mathscr{V}$, we have $gV \in W^*$. On the other hand $f(x) = g \cdot f(y) = g \cdot a \in gV$, so $f(x) \in W^*$.

REMARK 5.4. The equivariant versions of [6, 6.6.3, 6.6.5, and 6.6.6] are obviously true, too.

6. A connection with sheaf cohomology.

Let X be a paracompact G-space. Then the orbit space X/G is also paracompact, as can be seen directly from the definition. In this section we prove that $\bar{H}_G^*(X;m)$ equals the ordinary cohomology of X/G with coefficients in a suitable sheaf; the main result is Theorem 6.4. Two simple applications follow: in Corollary 6.6 we show that if X has finite covering dimension, then it has finite cohomological dimension with respect to $\bar{H}_G^*(\cdot;m)$; in Corollary 6.8 we show that if the coefficient system m is constant, then $\bar{H}_G^*(X;m)$ is the ordinary Alexander cohomology of X/G. In section 7 we use the sheaf theoretic interpretation to compare $\bar{H}_G^*(X;m)$ with equivariant singular cohomology.

Let $\pi: X \to X/G$ be the canonical projection. For each $n \in N$ we define a presheaf M^n on X/G by $M^n(U) = \bar{C}_G^n(\pi^{-1}U;m)$, $U \subset X/G$ open, with obvious restriction maps. Further, let \bar{C}_G^n be the sheaf associated to the presheaf M^n . The coboundary maps $d: \bar{C}_G^n(\pi^{-1}U) \to \bar{C}_G^{n+1}(\pi^{-1}U)$ define morphisms $d: M^n \to M^{n+1}$ and $d: \bar{C}_G^n \to \bar{C}_G^{n+1}$.

The following three lemmas are needed for theorem 6.4:

LEMMA 6.1. The sheaves \bar{C}_G^n are fine.

Lemma 6.2. The sequence $\bar{C}_G^0 \stackrel{d}{\longrightarrow} \bar{C}_G^1 \stackrel{d}{\longrightarrow} \bar{C}_G^2 \longrightarrow \dots$ is exact.

LEMMA 6.3. $\Gamma(X/G, \bar{C}_G^n) = \bar{C}_G^n(X; m)$.

PROOF OF 6.1. This is entirely similar to [7, Proposition 3, p. 84]. It is enough to show that the presheaf M^n is fine. Let $\{U_\alpha | \alpha \in I\}$ be a locally finite open covering of X/G. For each $y \in X/G$ choose $\alpha_y \in I$ with $y \in U_{\alpha_y}$. For $\alpha \in I$ define w_α : $X/G \to \{0,1\}$ by

$$w_{\alpha}(y) = \begin{cases} 1, & \alpha = \alpha_{y} \\ 0, & \alpha \neq \alpha_{y}. \end{cases}$$

If $U \subset X/G$ is open, define $l_{\alpha} : \bar{C}_{G}^{n}(\pi^{-1}U) \to \bar{C}_{G}^{n}(\pi^{-1}U)$ by

$$(l_{\alpha}(c))(\phi) = w_{\alpha}(\pi(\phi_0(eH))) \cdot c(\phi), \quad \phi \in V_n(\pi^{-1}U), \ H = t(\phi).$$

The l_{α} 's determine morphisms of presheaves $l_{\alpha} \colon M^n \to M^n$ with the required properties, that is supp $(l_{\alpha}) \subset \bar{U}_{\alpha}$ and $\sum_{\alpha \in I} l_{\alpha} = \mathrm{id}$.

PROOF of 6.2. We must show that for each $y \in X/G$, the sequence of stalks

$$(\bar{C}_G^0)_v \stackrel{d}{\longrightarrow} (\bar{C}_G^1)_v \stackrel{d}{\longrightarrow} (\bar{C}_G^2)_v \longrightarrow \dots$$

is exact, that is $H^n((C_G^*)_y) = 0$ for n > 0. But, by applying the tautness result 5.1 to the closed G-subspace $\pi^{-1}(y) \subset X$, we can reduce this to showing that $\bar{H}_G^n(\pi^{-1}(y); m) = 0$ for n > 0, which is true by the dimension axiom.

PROOF OF 6.3. We must prove that the canonical homomorphism $M^n(X/G) \to \Gamma(X/G, \bar{C}_G^n)$ is an isomorphism. It follows easily from the definition of M^n that the presheaf M^n has no locally zero global sections except 0. Therefore $M^n(X/G) \to \Gamma(X/G, \bar{C}_G^n)$ is injective, and it remains to prove its surjectivity.

Let $s \in \Gamma(X/G, \bar{C}_G^n)$. By [7, Lemma 2 on p. 81], we find a locally finite open covering $\{U'_{\alpha} | \alpha \in I\}$ of X/G and sections $s'_{\alpha} \in M^n(U'_{\alpha})$ such that

$$s'_{\alpha} \mapsto s \mid U'_{\alpha} \in \Gamma(U'_{\alpha}, \bar{C}_{G}^{n})$$
 for all $\alpha \in I$

and

$$s'_{\alpha}|U'_{\alpha}\cap U'_{\beta}=s'_{\beta}|U'_{\alpha}\cap U'_{\beta}\in M^{n}(U'_{\alpha}\cap U'_{\beta})$$
 for all $\alpha,\beta\in I$.

Let s'_{α} be represented by $c'_{\alpha} \in C_G^n(\pi^{-1}U'_{\alpha})$; then $c'_{\alpha} - c'_{\beta}$ is locally zero on $\pi^{-1}(U'_{\alpha} \cap U'_{\beta})$ with respect to an open G-covering $\mathscr{V}_{\alpha\beta}$ of $\pi^{+1}(U'_{\alpha} \cap U'_{\beta})$.

Choose an open covering $\{U_{\alpha} | \alpha \in I\}$ of X/G satisfying $\bar{U}_{\alpha} \subset U'_{\alpha}$ for $\alpha \in I$. Let

$$s_{\alpha} = s'_{\alpha} | U_{\alpha} \in M^n(U_{\alpha})$$
 and $c_{\alpha} = c'_{\alpha} | \pi^{-1} U_{\alpha} \in C^n_G(\pi^{-1} U_{\alpha})$.

Then $s_{\alpha} \mapsto s \mid U_{\alpha} \in \Gamma(U_{\alpha}, \bar{C}_{G}^{n})$.

Let $x \in X$, $y = \pi(x) \in X/G$. We pick an open neighborhood W_y of y in X/G such that $\{\alpha \in I \mid U'_{\alpha} \cap W_y \neq \emptyset\}$ is finite, and $W_y \cap \bar{U}_{\alpha} \neq \emptyset$ only if $y \in \bar{U}_{\alpha}$. For all $(\alpha, \beta) \in I \times I$ with $y \in U'_{\alpha} \cap U'_{\beta}$ choose a $V_{\alpha\beta} \in \mathscr{V}_{\alpha\beta}$ such that $x \in V_{\alpha\beta}$. Define

$$V_y = \pi^{-1}(W_y) \cap \bigcap_{(\alpha, \beta)} V_{\alpha\beta},$$

an open neighborhood of x in X.

Let $\phi = (\phi_0, \dots, \phi_n) \in V_n(X)$, $t(\phi) = H$, and denote $x_i = \phi_i(eH)$, $i = 0, 1, \dots, n$. Assume that $\{x_0, \dots, x_n\} \subset V_y$. Let $\alpha, \beta \in I$ and suppose that c_α and c_β are both "defined on ϕ ", that is

$$\phi \in V_{n}(\pi^{-1}U_{\alpha}) \cap V_{n}(\pi^{-1}U_{\beta}).$$

Then $\{x_0,\ldots,x_n\}\subset V_y\cap\pi^{-1}(U_\alpha\cap U_\beta)$. In particular $W_y\cap U_\alpha\cap U_\beta\neq\emptyset$, and the choice of W_y implies that $y\in \bar{U}_\alpha\cap \bar{U}_\beta\subset U'_\alpha\cap U'_\beta$. Therefore $\{x_0,\ldots,x_n\}\subset V_{\alpha\beta}\in\mathscr{V}_{\alpha\beta}$, whence $c_\alpha(\phi)=c_\beta(\phi)$.

We denote $\mathscr{V} = \{gV_y | g \in G, y \in X/G\}$, an open G-covering of X. The preceding paragraph shows that the c_{α} 's together determine a well-defined element $\tilde{c} \in C_G^n(\mathscr{V}; m)$. The class of \tilde{c} is an element

$$\sigma \in M^n(X/G) = \bar{C}^n_G(X;m) \cong \varinjlim_{\mathscr{U}} C^n_G(\mathscr{U};m),$$

and by construction $\sigma \mid U_{\alpha} = s_{\alpha} \in M^{n}(U_{\alpha})$ for every $\alpha \in I$. It follows that $M^{n}(X/G) \ni \sigma \mapsto s \in \Gamma(X/G, \bar{C}_{G}^{n})$.

We define $A = \ker [d: \bar{C}_G^0 \to \bar{C}_G^1]$, a sheaf on X/G.

THEOREM 6.4. $H^n(X/G; A) \cong \bar{H}^n_G(X; m)$ for all $n \in \mathbb{N}$.

PROOF. By Lemmas 6.1 and 6.2, \bar{C}_G^* is a fine resolution of A. Therefore

$$H^n(X/G; A) \cong H^n(\Gamma(X/G, \bar{C}_G^*)).$$

By Lemma 6.3, this equals $\bar{H}_{G}^{n}(X; m)$.

Next we give a more concrete description of the sheaf A. We call a 0-cochain $c \in C_G^0(X; m)$ locally constant, if there exists an open G-covering $\mathscr V$ of X with the property that $c(\phi) = c(\phi')$ for G-maps $\phi, \phi' : G/H \to X$ whenever $\phi(eH), \phi'(eH) \in V$ for some $V \in \mathscr V$.

PROPOSITION 6.5. a) If $U \subset X/G$ is open, then

$$\Gamma(U,A) = \{c \in C_G^0(\pi^{-1}U;m) | c \text{ is locally constant}\}.$$

b) If $y \in X/G$, $x \in \pi^{-1}(y)$ and $H = G_x \le G$, then the stalk A_y is isomorphic to m(G/H).

PROOF. Define $A' = \ker [d: M^0 \to M^1]$, a presheaf on X/G. Let $U \subset X/G$ be open. Then

$$A'(U) = \ker [d: C_G^0(\pi^{-1}U) \to \bar{C}_G^1(\pi^{-1}U)],$$

and a cochain $c \in C_G^0(\pi^{-1}U)$ is in A'(U) if and only if $d(c) \in C_G^1(\pi^{-1}U)$ is locally zero which, due to the formula $(d(c))(\phi, \phi') = c(\phi') - c(\phi)$, means that c is locally constant. Thus $A'(U) = \{c \in C_G^0(\pi^{-1}U) | c \text{ is locally constant}\}.$

Because sheafification is an exact functor, A is the sheaf associated to the presheaf A'. On the other hand, the above formula for A'(U) shows that A' is already a sheaf, so A = A'.

b) If $U \subset X/G$ is an open neighborhood of y, let ϕ_x : $G/H \to \pi^{-1}U$ be the G-map $gH \mapsto gx$; we can then define a homomorphism $\gamma_U \colon \Gamma(U,A) \to m(G/H)$ by

 $\gamma_U(c) = c(\phi_x)$. The γ_U 's together define a homomorphism

$$\gamma: A_y = \varinjlim_{U \ni y} \Gamma(U, A) \to m(G/H).$$

We claim that γ is an isomorphism.

Let V be a tube around the orbit $\pi^{-1}(y) = Gx$ and $r: V \to Gx$ a G-retraction. We may choose V so small that $V = \coprod_{gH \in G/H} gV_x$ (disjoint union), where V_x is an open H-neighborhood of x. Then $r(gV_x) = \{gx\}$ for every $g \in G$.

To prove the surjectivity of γ , let $a \in m(G/H)$. We define $c \in C_G^0(V)$ by $c(\phi) = m(r \circ \phi)(a) \in m(G/K)$ for a G-map $\phi : G/K \to V$. Then c is locally constant with respect to the open G-covering $\{gV_x | gH \in G/H\}$ of V, so $c \in \Gamma(\pi V, A)$, and clearly $\gamma_{\pi V} : c \mapsto a$. Thus $\gamma_{\pi V}$ is surjective, and consequently so is γ .

For injectivity, let $c \in \Gamma(U, A)$, where U is an open neighborhood of y, and assume that $\gamma_U(c) = c(\phi_x) = 0$. If $x' = gx \in Gx$, then $G_{x'} = gG_xg^{-1} = gHg^{-1}$, and the G-map $\phi_{x'} : G/gHg^{-1} \to \pi^{-1}U$, $u \cdot (gHg^{-1}) \mapsto ux'$, has the factorization

$$\phi_{x'}: G/gHg^{-1} \xrightarrow{\alpha} G/H \xrightarrow{\phi_x} Gx,$$

where α : $u \cdot (gHg^{-1}) \mapsto ugH$. Thus $c(\phi_{x'}) = m(\alpha)(c(\phi_x)) = 0$.

By assumption, there is an open G-covering \mathscr{W} of $\pi^{-1}U$ such that c is locally constant with respect to \mathscr{W} . We choose an open H-neighborhood $W_x \subset V_x$ of x, which is contained in some member of \mathscr{W} . Then πW_x is an open neighborhood of y, and we shall show that $c \mid \pi W_x = 0 \in \Gamma(\pi W_x, A)$.

Let $\phi: G/K \to \pi^{-1}\pi W_x$ be a G-map. Then $\phi(eK) \in gW_x$ for some $g \in G$. Because $r(gW_x) = \{gx\}$, the composite

$$\phi' = r \circ \phi \colon G/K \to \pi^{-1}\pi W_x \to Gx \ \, \subset \!\!\!\! \to \ \, \pi^{-1}\pi W_x$$

satisfies

$$\phi'(uK) = ugx = \phi_{ax}(u \cdot (gHg^{-1}))$$
 for $u \in G$.

Therefore $K \leq gHg^{-1}$ and $\phi' = \phi_{gx} \circ \beta$, β : $G/K \to G/gHg^{-1}$ canonical surjection. We saw above that $c(\phi_{gx}) = 0$, and thus

$$c(\phi') = m(\beta)(c(\phi_{gx})) = 0.$$

Finally $\phi(eK)$, $\phi'(eK) \in gW_x \subset W$ for some $W \in \mathcal{W}$, whence $c(\phi) = c(\phi') = 0$.

We now present the two simple applications of Theorem 6.4 referred to in the first paragraph of this section. Recall that X is a paracompact G-space.

COROLARY 6.6. If the covering dimension of X/G is finite, then $\bar{H}_G^n(X;m) = 0$ for $n > \dim(X/G)$.

PROOF. This follows from the well-known fact that the sheaf cohomology $H^n(X/G; A)$ vanishes for $n > \dim(X/G)$, cf. [3, p. 236].

REMARK 6.7. The condition $\dim(X/G) < \infty$ holds if $\dim X < \infty$. Namely it is easy to see that $\dim X \le k$ implies $\dim(X/G) \le (k+1)|G|-1$.

Let M be an abelian group, considered as the constant coefficient system $G/M \mapsto M$, each G-map $G/H \to G/K$ inducing the identity $M \to M$.

COROLLARY 6.8. There is a natural isomorphism $\bar{H}_G^n(X;M) \cong \bar{H}^n(X/G;M)$, where the right hand side is the ordinary Alexander-Spanier cohomology of X/G.

PROOF. Both sides of the asserted isomorphism can be calculated as sheaf cohomology groups of X/G, the left hand side with coefficients A as in Theorem 6.4, and the right hand side with constant coefficients M. We obtain a morphism of sheaves ω : $M \to A$ if we define for $U \subset X/G$ open

$$\Gamma(U,M) \xrightarrow{\omega} \Gamma(U,A)$$

$$\parallel$$

$$\{f: U \to M \mid f \text{ locally constant}\} \qquad \{c \in C_G^0(\pi^{-1}U;M) \mid c \text{ locally constant}\}$$

by the formula $(\omega(f))(\phi) = f(\pi\phi(eH))$, $\phi: G/H \to \pi^{-1}U$ a G-map. The stalks of both A and M equal M, and obviously ω induces the identity on stalks. Thus ω is an isomorphism.

7. Comparison with equivariant singular cohomology.

Let X be a G-space. In this section we show that, under suitable local conditions on X, the equivariant Alexander-Spanier cohomology groups $\bar{H}_G^n(X;m)$ are isomorphic to the equivariant singular cohomology groups $H_G^n(X;m)$.

Let $S_G^*(X;m)$ be the equivariant singular cochain complex of X with coefficients m, as defined in [4]; then $H_G^n(X;m) = H^n(S_G^*(X;m))$. We call a cochain $c \in S_G^n(X;m)$ locally zero, if there is an open G-covering $\mathscr V$ of X such that $c(\sigma) = 0$ for any equivariant singular simplex $\sigma: G/H \times \Delta^n \to X$ for which $\sigma(\{eH\} \times \Delta^n)$ is contained in some $V \in \mathscr V$. We denote by $S_{G,0}^*(X;m) \subset S_G^*(X;m)$ the cochain subcomplex of locally zero cochains. Let also $S_G^*(X;m) = S_G^*(X;m)/S_{G,0}^*(X;m)$.

LEMMA 7.1. The complex $S_{G,0}^*(X;m)$ is acyclic and hence the canonical surjection $S_G^*(X;m) \to \bar{S}_G^*(X;m)$ induces an isomorphism in cohomology

$$H_G^*(X;m) \xrightarrow{\sim} H^*(\bar{S}_G^*(X;m)).$$

PROOF. Given an open G-covering $\mathscr V$ of X, let $S_G^*(X;m;\mathscr V)$ be the cochain

complex of cochains defined on singular simplices $\sigma: G/H \times \Delta^n \to X$ for which $\sigma(\{eH\} \times \Delta^n\}$ is contained in some $V \in \mathscr{V}$ (compare with [4, p. 34]; Illman uses only coverings by open G-subsets and requires that $\sigma(G/H \times \Delta^n) \subset V$ for some $V \in \mathscr{V}$). The proof of Proposition I.6.4 in [4] shows that the canonical morphism $S_G^*(X;m) \to S_G^*(X;m;\mathscr{V})$ is a homotopy equivalence. Therefore

$$K_{\mathscr{V}}^* = \ker \left[S_G^*(X; m) \to S_G^*(X; m; \mathscr{V}) \right]$$

is acyclic. The assertion follows from this, for clearly $S_{G,0}^*(X;m) = \varinjlim_{x \in \mathcal{X}} K_{Y}^*$.

We can define a natural cochain map λ : $C_G^*(X;m) \to S_G^*(X;m)$ as follows: given $c \in C_G^n(X;m)$, $\lambda(c) \in S_G^n(X;m)$ is defined by $(\lambda(c))(\sigma) = (\sigma_0, \ldots, \sigma_n)$, where σ : $G/H \times \Delta^n \to X$ is an equivariant singular simplex,

$$\sigma_i = \sigma | G/H \times \{v_i\}: G/H \to X$$

and v_0, \ldots, v_n are the vertices of the standard simplex Δ^n . The morphism λ induces: λ : $\bar{C}_G^*(X;m) \to \bar{S}_G^*(X;m)$. Passing to cohomology and using Lemma 7.1 we obtain a natural transformation Λ : $\bar{H}_G^*(X;m) \to H_G^*(X;m)$.

THEOREM 7.2. A: $\bar{H}_G^*(X;m) \to H_G^*(X;m)$ is an isomorphism provided that X is paracompact and every orbit $Gx \subset X$ is taut with respect to $H_G^*(\cdot;m)$.

PROOF. Let S_G^n and \bar{S}_G^n be the sheaves on X/G associated to the presheaves $U \mapsto S_G^n(\pi^{-1}U; m)$ and $U \mapsto \bar{S}_G^n(\pi^{-1}U; m)$, respectively. In section 6 we proved that the sequence $\bar{C}_G^0 \to \bar{C}_G^1 \to \bar{C}_G^2 \to \dots$ is exact, the sheaves \bar{C}_G^n are fine and $\bar{H}_G^*(X; m)$ can be computed from the complex $\bar{C}_G^*: \bar{H}_G^n(X; m) = H^n(\Gamma(X/G, \bar{C}_G^*))$.

On the other hand, under the present additional hypothesis it is known that $S_G^0 \to S_G^1 \to S_G^2 \to \dots$ is an exact sequence of fine sheaves and $H_G^*(X, m)$ can be computed from the complex $S_G^*: H_G^n(X; m) = H^n(\Gamma(X/G, S_G^*))$, cf. [5, p. 441-442].

The above morphism $\bar{\lambda}$ defines a morphism of sheaf complexes $\bar{\lambda}$: $C_G^* \to \bar{S}_G^*$; also we have the canonical morphism $S_G^* \to \bar{S}_G^*$, which is in fact a quasi-isomorphism by Lemma 7.1. But now is clear that

$$\bar{C}_G^* \xrightarrow{\bar{\lambda}} \bar{S}_G^* \leftarrow S_G^*$$

is a quasi-isomorphism. Namely, $\mathcal{H}^n(\bar{C}_G^*) = \mathcal{H}^n(S_G^*) = 0$ for n > 0, and if $y \in X/G$, then

$$[\mathscr{H}^0(\bar{C}_G^*)]_{y} \cong \bar{H}^0_G(\pi^{-1}(y);m)$$

by Proposition 5.1 and

$$[\mathscr{H}^0(S_G^*)]_y \cong H_G^0(\pi^{-1}(y);m)$$

by the tautness assumption in Theorem 7.2, whence $\bar{\lambda}$ induces an isomorphism between the stalks $[\mathcal{H}^0(\bar{C}_G^*)]_y$ and $[\mathcal{H}^0(S_G^*)]_y$. This proves the assertion.

REMARK 7.3. The tautness hypothesis in Theorem 7.2 is satisfied, if for example X is G-locally contractible, i.e. every orbit $Gx \subset X$ has arbitrarily small open G-neighborhoods V such that Gx is a G-deformation retract of V.

8. Remarks on cohomology with compact supports.

In this final section we indicate briefly, how the construction of ordinary Alexander-Spanier cohomology with compact supports given in [6, p. 320], can be generalized to the equivariant case.

Let us recall the following terminology: A subset Z of a topological space X is bounded if \overline{Z} is compact, and cobounded if $X \setminus Z$ is bounded. A map $f: X \to Y$ is proper if $f^{-1}(Z) \subset X$ is bounded whenever $Z \subset Y$ is bounded.

Let now (X, A) be a G-pair. We define a cochain subcomplex $C^*_{G,c}(X, A; m)$ of $C^*_G(X, A; m)$ by

$$C_{G,c}^n(X,A;m) = \{c \in C_G^n(X,A;m) | c \text{ is locally zero on some cobounded } G\text{-subset of } X\}.$$

Clearly $C_{G,0}^*(X) \subset C_{G,c}^*(X,A)$, and we denote

$$\bar{C}_{G,c}^*(X,A;m) = C_{G,c}^*(X,A;m)/C_{G,0}^*(X;m).$$

The equivariant Alexander-Spanier cohomology groups of (X, A) with compact supports and coefficients m are

(8.1)
$$\bar{H}_{G,c}^{n}(X,A;m) = H^{n}(\bar{C}_{G,c}^{*}(X,A;m))$$

A map of G-pairs $f: (X, A) \rightarrow (Y, B)$ such that $f: X \rightarrow Y$ is proper induces homomorphisms

$$f^*: \bar{H}^n_{G,c}(Y,B) \to \bar{H}^n_{G,c}(X,A).$$

There is a long exact cohomology sequence for the G-pair (X, A) only if A is closed in X. The other axioms for an equivariant cohomology theory are also satisfied with obvious modifications. For instance, the homotopy axioms holds for proper G-homotopies. A proof of this can be based on Lemma 4.5 in exactly the same way as the proof of 4.3, after the trivial observation that if $Z \subset X \times I$ is cobounded and $p: X \times I \to X$ is the projection, then $Z' = X \setminus p[(X \times I) \setminus Z]$ is cobounded in X and $Z' \times I \subset Z$.

The analog of [6, 6.6.11] evidently holds, too:

PROPOSITION 8.2. If A is a compact (and Hausdorff) G-space and $B \subset A$ is a closed G-subspace, then for all $n \in \mathbb{N}$

$$\bar{H}_{G,c}^n(A \setminus B; m) \cong \bar{H}_G^n(A, B; m).$$

There is the following connection between $\bar{H}_{G,c}^*(X;m)$ and sheaf cohomology of X/G with compact supports:

PROPOSITION 8.3. If X is a locally compact G-space, then

$$H_c^n(X/G;A) \cong \bar{H}_{G,c}^n(X;m)$$

for all $n \in \mathbb{N}$, where A is the sheaf on X/G described in Proposition 6.5.

PROOF. Since X/G is locally compact, we can use the fine resolution \bar{C}_G^* to compute $H_c^n(X/G; A)$:

$$H_c^n(X/G; A) = H^n(\Gamma_c(X/G, \bar{C}_G^*)).$$

In Lemma 6.3 we proved that $\Gamma(X/G, \bar{C}_G^n) \cong \bar{C}_G^n(X; m)$. Thus it only remains to show that in this isomorphism $\Gamma_c(X/G, \bar{C}_G^n)$ corresponds to $\bar{C}_{G,c}^n(X; m)$.

Let $c \in C_G^n(X; m)$ represent $s \in \Gamma(X/G, \bar{C}_G^n)$. If $s \in \Gamma_c(X/G, \bar{C}_G^n)$, then $X \setminus \pi^{-1}(\operatorname{supp}(s))$ is cobounded in X and c is locally zero on $X \setminus \pi^{-1}(\operatorname{supp}(s))$. Therefore $c \in C_{G,c}^n(X; m)$ in this case. Conversely, assume that $c \in C_{G,c}^n(X; m)$ is locally zero on the cobounded G-set $Z \subset X$. Then $\operatorname{supp}(s)$ is contained in the compact set $\pi(\overline{X \setminus Z})$ and thus $s \in \Gamma_c(X/G, \bar{C}_G^n)$.

REFERENCES

- G. E. Bredon, Introduction to Compact Transformation Groups, (Pure Appl. Math. 46), Academic Press, New York, London, 1972.
- 2. J. Dugundji, Topology, Allyn and Bacon Inc., Boston, 1966.
- 3. R. Godement, Topologie Algébrique et Théorie des faisceaux, (Actualités Sci. Indust. 1252), Hermann, Paris, 1958.
- S. Illman, Equivariant singular homology and cohomology, I, Mem. Amer. Math. Soc. 1 (1975), No. 156.
- R. J. Piacenza, Cohomology of diagrams and equivariant singular theory, Pacific J. Math. 91 (1980), 435-443.
- 6. E. H. Spanier, Algebraic Topology, McGraw-Hill Book-Company, New York, 1966.
- 7. R. G. Swan, The Theory of Sheaves, The University of Chicago Press, Chicago, London, 1964.

UNIVERSITY OF HELSINKI DEPARTMENT OF MATHEMATICS HALLITUSKATU 15 SF-001 00 HELSINKI 10 FINLAND