ON π -REGULAR RINGS WITH NO INFINITE TRIVIAL SUBRING

YASUYUKI HIRANO

A ring R is called π -regular if for every x in R there exists a positive integer n (depending on x) and an element y of R such that $x^n = x^n y x^n$. A π -regular ring R for which the n in the above can be taken to be 1 for all x is called (von Neumann) regular. By a trivial subring of R we mean a subring S of R with $S^2 = 0$. Further a ring R is orthogonally finite if R has no infinite set of mutually orthogonal idempotents. In this paper, we shall generalize some results in [1] and [6]. We need the following lemma, which was proved in [2] for infinite alternative nil rings.

LEMMA 1. Let R be an infinite nil ring. Then R has an infinite subring S with $S^2 = 0$.

It is well known that the class of π -regular rings properly contains the class of strongly π -regular rings. Thus the following lemma slightly improves [1, Theorem 3].

LEMMA 2. A ring R is an orthogonally finite π -regular ring with no infinite trivial subring if and only if $R = F \oplus S$, where F is a finite ring and S is a finite product of division rings.

PROOF. It suffices to prove the only if part. Since R is π -regular, the Jacobson radical J of R is nil. Hence J is finite by Lemma 1. By [4, Theorem 2.1], R/J is Artinian semisimple. Using Lemma 1, we can easily see that $R/J = T \oplus D_1 \oplus \ldots \oplus D_n$ for some n, where T is a finite ring and D_i is an infinite division ring for each i. Let e_1, e_2, \ldots, e_n be mutually orthogonal idempotents of R such that $e_i + J$ is the identity of D_i for each i. Clearly e_1Re_1 is a local ring with $e_1Re_1/e_1Je_1 \cong D_1$. Suppose now that $e_1Je_1 \neq 0$. Since J is a finite nil ring there exists a positive integer m such $(e_1Je_1)^m \neq 0$ and $(e_1Je_1)^{m+1} = 0$. Then the trivial subring $(e_1Re_1)^m$ is a non-zero vector space over the infinite division ring D_1 , a contradiction. Hence e_1Re_1 is a division ring which is isomorphic to D_1 . Since the trivial subring

 $e_1R(1-e_1)=\{e_1x-e_1xe_1\,|\,x\in R\}$ is a left vector space over e_1Re_1 , we obtain that $e_1R(1-e_1)=0$. Similarly we have that $(1-e_1)Re_1=0$. These imply that e_1 is central. Similarly we can see that e_2,\ldots,e_n are central. If we set $F=R(1-e_1-\ldots-e_n)$ and $S=Re_1\oplus\ldots\oplus Re_n$, then we obtain the desired decomposition $R=F\oplus S$.

A ring R is said to be strongly regular if R is regular and each idempotent in R is central, or equivalently, if R is a regular ring with no non-zero nilpotent element.

LEMMA 3. Let I be an ideal of a ring R. If I and R/I are strongly regular, then R is strongly regular.

PROOF. By [5, Theorem 22, p. 112], R is regular. We can easily see that R has no non-zero nilpotent element. Hence R is strongly regular.

Using Lemma 3, we can easily see that any ring R has a unique largest strongly regular ideal M, and R/M has no non-zero strongly regular ideal.

We can now prove the main theorem in this paper.

THEOREM 1. If R is a π -regular ring with no infinite trivial subring, then R has a strongly regular ideal M such that R/M is a finite ring.

PROOF. Let M be the largest strongly regular ideal of R. We first show that every nilpotent element of $\overline{R} = R/M$ is a homomorphic image of a nilpotent element of R. Let $\overline{a} = a + M$ be an element of \overline{R} with $\overline{a}^n = 0$. Then $a^n \in M$, and so there exists an idempotent e in M such that $a^n e = a^n$. Then we can easily see that $(a - ae)^n = 0$. Clearly, \overline{a} is the homomorphic image of a - ae, which proves the claim.

Next we show that \overline{R} has no infinite trivial subring. Suppose, to the contrary, that \overline{R} has an infinite trivial subring S. Then, by the above, S is a homomorphic image of a subset T of R consisting of square-zero elements. Let a and b be two elements of T. Then $ab \in M$, and so $aba \in M$. Since $(aba)^2 = 0$, we see that aba = 0. Then $(ab)^2 = 0$, and hence ab = 0. Therefore T generates an infinite trivial subring of R, which is a contradiction.

Now we claim that \bar{R} is orthogonally finite. Suppose, to the contrary, that \bar{R} has infinitely many mutually orthogonal idempotents e_1, e_2, \ldots . Let N denote the set of all nilpotent elements of \bar{R} . Suppose that both the number of the i such that $e_i\bar{R} \cap N \neq 0$ and the number of the j such that $\bar{R}e_j \cap N \neq 0$ are finite. Then there exists k such that $\bar{R}e_k \cap N = 0 = e_k\bar{R} \cap N$, and so we obtain that $e_k\bar{R}(1-e_k)=0=(1-e_k)\bar{R}e_k$. Hence e_k is central and $\bar{R}e_k$ is a strongly regular ideal of \bar{R} . This contradicts the choice of M. Renumbering the e_i , we may therefore assume that $e_i\bar{R} \cap N \neq 0$ for all i. Since the trivial ring $e_1\bar{R}(1-e_1)$ is finite, the number of the i such that $e_1\bar{R}e_i \neq 0$ is finite. Similarly the number of the i such that $e_i\bar{R}e_1 \neq 0$ is finite. Hence there exists k_1 such that $e_1\bar{R}e_k = 0 = e_k\bar{R}e_1$

for all $k \ge k_1$. Applying the same reasoning to e_{k_1} , we get infinitely many idempotents $e_{k_0} = e_1$, e_{k_1} , e_{k_2} , ... such that $e_{k_i} \bar{R} e_{k_j} = 0$ if $i \ne j$. Since $e_{k_i} \bar{R} \cap N \ne 0$, each $e_{k_i} \bar{R}$ contains a non-zero element a_i with $a_i^2 = 0$. Now it is easy to see that a_0, a_1, \ldots generates an infinite trivial subring of \bar{R} , a contradiction. Therfore \bar{R} is orthogonally finite. By Lemmas 2 and 3, we conclude that $\bar{R} = R/M$ is a finite ring.

REMARK. In Theorem 1, if we assume furthermore that R is orthogonally finite, then M is a finite direct sum of division rings, and hence M is a direct summand of R. Thus we can immediately deduce [1, Theorems 2 and 3] as well as Lemma 2 from Theorem 1.

We conclude this paper with the following corollary, which is a generalization of [6, Theorem 1].

COROLLARY 1. If R is a periodic ring with no infinite trivial subring, then R has a commutative regular ideal M with R/M finite.

PROOF. By Theorem 1, R has a strongly regular ideal M such that R/M is finite. Since M is periodic and since M has no non-zero nilpotent element, for every $x \in M$ there exists an integer n(x) > 1 such that $x^{n(x)} = x$. By [3, Theorem X.1.1] M is commutative.

REFERENCES

- 1. E. P. Armendariz, On infinite periodic rings, Math. Scand. 59 (1986), 5-8.
- 2. H. E. Bell, Infinite subrings of infinite rings and near rings, Pacific J. Math. 59 (1975), 345-348.
- 3. N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Publ., 37 (1964).
- I. Kaplansky, Topological representation of algebras II., Trans. Amer. Math. Soc. 68 (1950), 62-75.
- 5. I. Kaplansky, Fields and Rings, Univ. of Chicago Press (2d ed.), 1972.
- 6. T. J. Laffey, Commutative subrings of periodic rings, Math. Scand. 39 (1976), 161-166.

DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY OKAYAMA 700 JAPAN