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ON z-REGULAR RINGS WITH NO INFINITE TRIVIAL
SUBRING

YASUYUKI HIRANO

A ring R is called n-regular if for every x in R there exists a positive integer
n (depending on x) and an element y of R such that x" = x"yx". A n-regular ring
R for which the nin the above can be taken to be 1 for all x is called (von Neumann)
regular. By a trivial subring of R we mean a subring S of R with S? = 0. Further
a ring R is orthogonally finite if R has no infinite set of mutually orthogonal
idempotents. In this paper, we shall generalize some results in [1] and [6]. We
need the following lemma, which was proved in [2] for infinite alternative nil
rings.

LEMMA 1. Let R be an infinite nil ring. Then R has an infinite subring S with
52 =0.

It is well known that the class of n-regular rings properly contains the class of
strongly m-regular rings. Thus the following lemma slightly improves [1,
Theorem 3].

LEMMA 2. A ring R is an orthogonally finite n-regular ring with no infinite trivial
subring if and only if R = F @ S, where F is a finite ring and S is a finite product of
division rings.

ProOOF. It suffices to prove the only if part. Since R is n-regular, the Jacobson
radical J of R is nil. Hence J is finite by Lemma 1. By [4, Theorem 2.1], R/J is
Artinian semisimple. Using Lemma 1, we can easilyseethat R/J = T@® D, @ ...
@ D, for some n, where T is a finite ring and D; is an infinite division ring for each
i. Let ey, e,,..., e, be mutually orthogonal idempotents of R such that ¢; + J is
the identity of D, for each i. Clearly e, Re, is a local ring with e, Re, /e, Je, = D,.
Suppose now that e, Je, + 0. Since J is a finite nil ring there exists a positive
integer msuch (e, Je,)™ + 0and (e, Je,)"*"! = 0. Then the trivial subring (e, Re )"
is a non-zero vector space over the infinite division ring D,, a contradiction.
Hence e, Re, is a division ring which is isomorphic to D,. Since the trivial subring
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e,R(1 — e,) = {e,x — e;xe, | xe R} is a left vector space over ¢, Re,, we obtain
that e, R(1 — e;) = 0. Similarly we have that (1 — e,)Re; = 0. These imply that
e, is central. Similarly we can see that e,,...,e, are central. If we set

F=R(l1 —e;—...—¢,)and S = Re; @ ... ® Re,, then we obtain the desired
decomposition R = F @ S.

Aring Ris said to be strongly regular if R is regular and each idempotent in R is
central, or equivalently, if R is a regular ring with no non-zero nilpotent element.

LEMMA 3. Let I be anideal of aring R. If I and R/I are strongly regular, then R is
strongly regular.

PRrROOF. By [5, Theorem 22, p. 112], R is regular. We can easily see that R has
no non-zero nilpotent element. Hence R is strongly regular.

Using Lemma 3, we can easily see that any ring R has a unique largest strongly
regular ideal M, and R/M has no non-zero strongly regular ideal.
We can now prove the main theorem in this paper.

THEOREM 1. If R is a m-regular ring with no infinite trivial subring, then R has
a strongly regular ideal M such that R/M is a finite ring.

PrOOF. Let M be the largest strongly regular ideal of R. We first show that
every nilpotent element of R = R/M is a homomorphic image of a nilpotent
element of R. Let @ = a + M be an element of R with @" = 0. Then a"e M, and so
there exists an idempotent e in M such that a"e = a". Then we can easily see that
(a — ae)” = 0. Clearly, a is the homomorphic image of a — ae, which proves the
claim.

Next we show that R has no infinite trivial subring. Suppose, to the contrary,
that R has an infinite trivial subring S. Then, by the above, S is a homomorphic
image of a subset T of R consisting of square-zero elements. Let a and b be two
elements of T. Then ab € M, and so aba e M. Since (aba)® = 0, we see that aba = 0.
Then (ab)? = 0, and hence ab = 0. Therefore T generates an infinite trivial
subring of R, which is a contradiction.

Now we claim that R is orthogonally finite. Suppose, to the contrary, that
R has infinitely many mutually orthogonal idempotents e, e,,. .. . Let N denote
the set of all nilpotent elements of R. Suppose that both the number of the i such
that ;R n N # 0 and the number of the j such that Re; » N # 0 are finite. Then
there exists k such that Re,nN =0=¢RNN, and so we obtain that
exR(1 — ¢,) = 0 = (1 — ¢,) Re,. Hence ¢, is central and Re, is a strongly regular
ideal of R. This contradicts the choice of M. Renumbering the e;, we may
therefore assume that e;R N N % 0 for all i. Since the trivial ring e, R(1 — e,) is
finite, the number of the i such that e, Re; # Ois finite. Similarly the number of the
i such that e;Re, # 0 is finite. Hence there exists k, such that e, Re, = 0 =¢,Re,
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for all k > k,. Applying the same reasoning to e, , we get infinitely many
idempotents e, = e, €, €, ... such that e, Re, =0 if i + j. Since ¢, Rn
N # 0,eache, R contains a non-zero element g; with a? = 0. Now it is easy to see
that ay, a,, ... generates an infinite trivial subring of R, a contradiction. Therfore
Ris orthogonally finite. By Lemmas 2 and 3, we conclude that R = R/M is a finite
ring.

REMARK. In Theorem 1, if we assume furthermore that R is orthogonally finite,
then M is a finite direct sum of division rings, and hence M is a direct summand of
R. Thus we can immediately deduce [ 1, Theorems 2 and 3] as well as Lemma
2 from Theorem 1.

We conclude this paper with the following corollary, which is a generalization of
[6, Theorem 1].

CoROLLARY 1. If R is a periodic ring with no infinite trivial subring, then R has
a commutative regular ideal M with R/M finite.

ProoF. By Theorem 1, R has a strongly regular ideal M such that R/M is
finite. Since M is periodic and since M has no non-zero nilpotent element, for
every x € M there exists an integer n(x) > 1 such that x"™ = x. By [3, Theorem
X.1.1] M is commutative.
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