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TOPOLOGICAL FROBENIUS PROPERTIES FOR
NILPOTENT GROUPS

MOHAMMED E. B. BEKKA AND EBERHARD KANIUTH

Introduction.

Let G be a locally compact group and H a closed subgroup of G, and suppose
that = and 7 are irreducible representations of G and H, respectively. If G is
compact, then according to the classical Frobenius reciprocity theorem, the
restriction n| H contains 7 if and only if n is contained in the induced representa-
tion ind§ .

Fell [6] first introduced and studied topological (or weak) Frobenius proper-
ties which a general locally compact group G may or may not possess and which
are defined by replacing containment by weak containment. Thus, G is said to
have property (FP) if for any closed subgroup H of G and irreducible representa-
tions 7 and t of G and H, respectively, n is weakly contained in ind$ t if and only if
n| H weakly contains 7. It is reasonable to treat separately the if and the only if
part of (FP) which will be called (FP1) and (FP2), respectively. For connected
groups it is also of interest to consider the versions (FPC1) and (FPC2) of (FP1)
and (FP2) that are obtained by restricting H to connected subgroups of G.

These topological Frobenius properties have been studied by several authors
[3], [51, (6], [8], (111, [17], [18], [19]. For instance, Felix, Henrichs and
Skudlarek [5], [8] proved that for an amenable group G with open connected
component, (FP2)implies that G is an [FC] ™ group, i.e. every conjugacy class in
G is relatively compact. On the other hand, [FC] ™ groups satisfy (FP)(see [11]).
Nielsen [18] has shown that if G is a connected and simply connected nilpotent
Lie group and H any nonnormal connected subgroup of G, then there exists an
irreducible representation = of G such that the trivial representation of H is not
weakly contained in n| H and yet = is weakly contained in the quasi-regular
representation of G on L*(G/H).

The purpose of this paper is to contribute to the investigation of the properties
(FP1)and (FPC1)for nilpotent groups. In the first two sections we are concerned
with connected, simply connected nilpotent Lie groups. Let G be such a group
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and g its Lie algebra. We first show that (FP1) holds for a fixed irreducible
representation 7 of G provided that the Kirillov orbit in g* corresponding to m is
a linear variety (Theorem 1.3). There is some evidence that the converse is also
true. We were only able to prove the following special result (Theorem 1.5): If
G satisfies (FP1) and is, in addition, a semi-direct product of R with some R", then
G is 2-step nilpotent. On the other hand, we verify (FPC1) for G when G is of the
form R o< R” or of dimension < 5 (Corollary 1.7).

Section 2 is devoted to the study of hereditary properties of (FP1) and (FPC1).
We first prove that the direct product G x G satisfies (FP1) (or (FPC1)) if and
only if all the Kirillov orbits are linear varieties (Theorem 2.1). Thus, in general,
(FPC1)is not inherited by direct products. However, (FP1) (respectively (FPC1))
holds for a direct product G, x G, if, say, G, has the corresponding property and
all the Kirillov orbits of G, are linear varieties (Proposition 2.3). Moreover, we
fgive an example showing that (FP1) (or (FPC1)) also fails to be inherited by
connected normal subgroups (Example 2.4).

The second author conjectured in [11] that every 2-step nilpotent locally
compact group has property (FP1). The main object of Section 3 is to prove this
conjecture for pro-Lie, in particular for compactly generated, 2-step nilpotent
groups (Theorem 3.4). Finally, extending a result of [17], we observe that
nilpotent pro-Lie groups satisfy (FP) as far as only normal subgroups are
considered (Proposition 3.5).

1. On (FP1) and (FPC1) for simply connected nilpotent Lie groups.

We first fix some notation. Let G be a locally compact group. We will use the
same letter to denote a unitary representation of G and the corresponding
x-representation of the group C*-algebra C* (G), and ker n always means the
kernel of w in C*(G). If S and T are sets of unitary representations of G, then S is
weakly contained in T (S < T)if

(\kero 2 () kert,

agesS teT
and S and T are said to be weakly equivalent (S ~ T)if S< Tand T < S. If His
a closed subgroup of G and t a representation of H, then indj; t denotes the
representation of G induced by 7. We will frequently use that n < ind§ n| H for
every representation 7 of G and every closed subgroup H of G if G is amenable
[71.

The dual space G of G is the set of equivalence classes of irreducible unitary

representations of G, and the primitive ideal space Prim C*(G) consists of all
kern, neG. Prim C* (G) carries the hull-kernel topology and G its inverse
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image with respect to the canonical mapping n — ker 7 from G onto Prim C*(G).
Finally, for any unitary representation n of G, the support of  is the closed subset
suppn = {peG; p <7} of G.

We will almost exclusively be concerned with the following Frobenius proper-
ties. G is said to satisfy (FP1) (respectively (FPC1)) if for all closed (respectively
closed and connected) subgroups Hof Gand allte Hand ne G, © < n| H implies
n < ind§ t.

The following simple lemma will play a fundamental role.

LEMMA 1.1. Let G be a connected and simply connected nilpotent Lie group, and
let H and N be closed subgroups of G. If N is connected and normal, then HN is
closed in G.

Proor. Recall that if g is the Lie algebra of G, then the exponential mapping
exp: g — G is a diffeomorphism whose inverse is denoted by log.

Now, H is contained in some connected subgroup L of G such that L/H is
compact and the connected component H, of H is normal in L. Consider the
simply connected nilpotent Lie group K = L/H, and the discrete cocompact
subgroup I' = H/H, of K. Denote by f the Lie algebra of K. By [15, Theorem 2]
there exists a discrete cocompact subgroup 4 of K with the following properties:
log 4 is a subgroup of f, 4 < I', and 4 has finite index in I'. It follows that if
M = |xeL; xHye A}, then log M is a closed subgroup of g.

It is well-known that if V' is a vector group, W a vector subgroup and S any
closed subgroup of V,then § + Wisclosed in V. Hence log M + log N is closed in
g. Now, using the Baker-Campbell-Hausdorff formula and the fact that log N is
an ideal in g, it is easily verified that

MN = exp(logM + log N).
Thus MN is closed, and since M has finite index in H, HN is closed in G.

LEMMA 1.2. Let G be an amenable group, Z the center of G and H a closed
subgroup of G. Suppose that HZ is closed in G and that either H or Z is a-compact.
Let me G be such that {ker 1t} is closed in Prim C* (G) and n ~ ind§ | Z. Then for
any te H, © < | H implies that n < ind§ 1.

PrROOF. Let ieZ be such that n|Z ~ 4. Then t1|HNZ ~ i|H N Z, since
t < 7| H. It follows from the assumptions made on H and Z that the continuous
homomorphism (x, z) — xzfrom H x Z onto HZ is open. Therefore, the formula

o(xz) = Mz)t(x), xeH, zeZ,

defines a unitary representation ¢ of HZ in the Hilbert space of 7. G being
amenable, we obtain

ind$, o < ind%,(ind¥% 6| Z) ~ ind§,(ind4% /) = ind§ /1 ~ 7.
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Thus 7 ~ ind§, o, since {ker n} is closed. As | H = 1, we have
ind§;, o < ind§,(ind5? 1) = ind§ 1.
This completes the proof.

Now, we are ready to prove the main result of this section. Before doing this, let
us briefly review Kirillov’s theory. Let G be a connected, simply connected
nilpotent Lie group with Lie algebra g. Denote by Ad* the coadjoint representa-
tion of G on g*, the dual of g. Kirillov [ 12] established a bijection between G and
the orbit space g*/Ad*. If g*/Ad* isendowed with the quotient topology, then the
Kirillov correspondence g*/Ad* — G is a homeomorphism (see [2]). Moreover,
since G is CCR (see [12, Theorem 7.3]), points in G are closed, and the mapping
G — Prim C*(G) is a bijection.

Recall also that an irreducible representation n of G is square integrable
modulo its kernel C in G (i.e. every coordinate function associated to = is square
integrable on G/C) if and only if the corresponding Kirillov orbit in g* is a linear
variety [1, Theorem 1.1].

THEOREM 1.3. Let G be a connected nilpotent group and n € G, and suppose that
7 is square integrable modulo its kernel. Then, for any closed subgroup H of G and
teH, 1 < n|H implies n <ind$t. In particular, this conclusion holds if G is
a connected, simply connected nilpotent lie group and the Kirillov orbit correspon-
ding to 7 is a linear variety.

PrOOF. Itis well-known that the connected group G is a projective limit of Lie

groups G,, 1€1, and that G = U G,. Thereby, it is straightforward to reduce to

1el

the Lie group case (compare the proof of [11,Lemma 1.3]). Next let G’ be
a simply connected covering group of G and p: G' —» G a covering homomor-
phism. Let H' = p~'(H), and consider nrope G’ and tope H'. Then top <
nop|H’, and once we have shown that

n op < ind§.(rop) = (indfj7)op,

it follows that n < ind§ . Thus we are reduced to the case that G is a simply
connected Lie group.

Let K denote the connected component of the kernel of n. Clearly,
t|lHNK =1since 1|HNnK <n|HnK. By Lemma 1.1, HK is c]osedjn G,
hence HK/K = H/H n K. Let G = G/K and H = HK/K, and define 7€ G and
teH by

#(xK) = n(x) and t(yK)=t(y), xeG, yeH.
Then ¢ < 7| H. Suppose that we already know 7t < indg 7. Denoting by p the
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canonical projection G — G, we have top|H = t, and hence
n=1op<ind$top < ind§(top) < ind§y(ind¥ 1) = ind§ .

Therefore, if suffices to show the assertion of the theorem under the additional
assumption that the kernel of 7 is discrete and hence contained in the center Z of
G. Thus 7 is square ingrable modulo Z. But then

n~ind§n|Z
([see [16, Theorem 1]), and an application of Lemma 1.2 finishes the proof.

COROLLARY 1.4. Let G be a connected, simply connected nilpotent Lie group
with Lie algebra g, and assume that all the Kirillov orbits in g* are linear varieties
(this is, for instance, the case if G is 2-step nilpotent, that is [g, [g,9]] = 0). Then
(FP1) holds for G.

We next prove the converse of the above result for a special class of nilpotent
Lie groups.

THEOREM 1.5. Let G be a nilpotent Lie group that is also a semi-direct product
R o< R". If (FP1) holds for G, then G is 2-step nilpotent.

PROOF. Assume that G is m-step nilpotent where m > 3. The Lie algebra g of
G has the form g = RX @ ¥, where V is an n-dimensional abelian ideal. Looking
at the Jordan canonical decomposition of the nilpotent endomorphism ad(X)| V
and using the fact that ad(X)? # 0, we see that V decomposes into a direct sum
V=V, @V, with the following properties: V; and V, are ideals in g, V; has
a basis X,...,X,, d=3, such that ad(X)X;,=X,_, for 2<i<d and
ad(X)X, =0.

Since it suffices to show that (FP1) fails to hold for G/V,, we can assume that
V = V,, thatis g has a basis X, X,,..., X, (n = 3) with nontrivial commutators
[X,X]=X;_1, 2Zi<n Let X* X¥%,...,X} be the dual basis of g*, and
consider for each seR the functional f, = sX¥ + X}. It is easily seen that for
t,seR,

tn—l tn—2
Ad*(exptX)f, = <s + = 1)!>X’f + mx; + .+t X+ X

Denote by =, the irreducible representation of G corresponding to f. Since n = 3,
it is obvious that Ad*(G) f, # Ad*(G)f, and hence =, # 7, for s # s". For geg*
denote by g, the character of V defined by

1) = €6, yeV.
It is clear that for each seR

| V ~ {x,;9€ Ad*(exp RX)f,}.
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Now, consider the lattice N = ZX, + ZX, +... + ZX, of V and, for fixed se R,
the sequence of real numbers

te=m— Dk —s/n—1)((n—-DHY"3%"2 keN
One checks that

lim Ad*(expt, X)f,| N = 0 (mod Z).

k=
It follows that 1y < n,|N for each seR. It is easily verified (writing down
explicitly the multiplication in G) that

I'=expn!ZX®N)=n'Ze<N

(is a discrete) subgroup of G. Moreover, it is clear that I' and V are regularly
related and hence by [6, Theorem 5.3]

n| T = (indﬁxfs)ll" ~{indy« 1, | V>N T; xeG} = {ind}n,| N}
for each seR. It follows that
1 <ind§ 1y <indyn |N ~ =, | T

for each se R. Since G/T is compact, ind¥ 1, is a CCR representation, and hence
has a discrete support. On the other hand, s — = is a continuous and injective
mapping of R into G. Thus, it is impossible that 7, < ind¢ 1, for all seR.
Consequently, (FP1) cannot hold for G.

In contrast to the above result, we are going to show now that (FPC1) always
holds for nilpotent semi-direct products R >< R". But first, we have to mention
one further fact. Let G be a connected simply connected nilpotent Lie group with
Lie algebra g. Let f e g* and Q = Ad*(G) /. To Q one can associate an ideal m(Q)
in the following way (cf. [21]). Define F to be the largest subspace of g* saturating
Qin the sense that Q@ + F = Q, and let m(Q) = F*. It turns out that m(Q) is the
ideal in g generated by the radical

o(f) = {Xeg; (£,[X,g]) = 0}

(see [21, proof of Theorem 1]). In what follows, for a subalgebra ) of g, we will
denote by p, the projection g* — h*, f— f|h.

LEMMA. 1.6. Let G be a connected simply connected nilpotent Lie group with Lie
algebra g. Let f eg*, Q = Ad*(G)f, and let m = m(L2) be the ideal associated to
Qin g. Suppose that dim p_(Q) < 1, and denote by m the irreducible representation
of G corresponding to f. Then, for any closed connected subgroup H of G and
teH, © < n|H implies n < ind§ t.
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PrOOF. By [3, 2.1 Lemmal, it suffices to show that, if ) is any subalgebra of g,
then p4(Q)is closed in h*. This is obvious if dim p_ () = 0, since then Qis a linear
variety. Thus, we can assume that dimp_(Q) = 1. Choose a basis {Y,,..., Y,
X,,...,X,,} of g such that

hbnm=(Y,....,Y)>, hb=(Y,,..., Y, X,,...,X,) and
m={Y,...,Y>

for some r £ nand s < m. Denote by {Y*,..., V*, X¥,..., X%} the correspond-
ing dual basis of g*. Since dimp,(Q) = 1 and Q = p_ '(p,.(Q)), we have

Q={t,X¥+ ...+, XX+ p,(OY* +... + p,(Y*1,,... .1, teR}
for certain real polynomials p,...,p,. Thus
P ={t, Xt +... +tX*+p,(OY* +... + p(OYX ty,...,t, teR}

is closed in bh*. Indeed, this is a consequence of the following fact. Let p be
anonconstant polynomial of a real variable, and suppose that, for some sequence
(tk> (P(ti)), converges. Then (t,), is bounded and, passing to a subsequence, we
can assume that lim ¢, = t. Hence, lim p(t,) = p(¢).

CoROLLARY 1.7. (i) Let G be a connected, simply connected nilpotent Lie group.
Let ne G, and denote by Q the Kirillov orbit corresponding to . Suppose that
dim Q = 2. Then, for any closed and connected subgroup H of G and teH,
© < n| H implies n < ind§ .

(ii) Let G be a nilpotent Lie group that is also a semi-direct product
R o< R". Then G satisfies (FPC1).

(iii) (FPC1)holds for all connected, simply connected nilpotent Lie groups G with
dim G £ 5 (for the classification, see [20]).

ProoF. (i) Take f € Q. Then codim g(f) = dim 2 = 2. Since gis nilpotent, there
is an ideal n of g with g(f) < nand codimn = 1. m(Q) being the ideal generated
by g(f), it follows that either m(2) = g(f) or m(2) = n. Thusdim p,,,,,(R2) = O or
dimp,,(Q) = L.

(ii) It is easily seen that, if G = R o< R", then dim Q = 0 or dim Q = 2 for any
Ad*(G)-orbit Q.

(iii) Let 2 be an Ad* (G)-orbit. If dim Q = 4, then dim G = 5 and therefore
dim g(f) = 1for any f € Q. Since the center of g is contained in g(f), it follow that
m(Q) = g(f).

ReMARK 1.8. Felix [3,(2.3)] has shown that (FPC1) does not hold for the
6-dimensional, 3-step nilpotent group of all upper triangular real 4 x 4 matrices
with ones on the diagonal.
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2. On hereditary properties of (FP1) and (FPC1).

Let G be a connected, simply connected nilpotent Lie group with Lie algebra g.
We consider the direct product G x G and raise the following question: When
does (FP1) (respectively (FPC1)) hold for G x G? Before stating the result, recall
that, if G, and G, are separable groups of type I, the mapping

Gx X Gz‘*(Gl X GZ)A, (m,p) > 7w X p,

where 1 x p denotes the outer tensor product of 7 and p, identifies G, x G, and
(G, x Gy) "

THEOREM 2.1. The following conditions are equivalent:
(i) (FP1) holds for G x G.
(i) (FPC1) holds for G x G.
(iii) All the Kirillov orbits in g* are linear varieties.

PRrROOF. (iii) = (i) follows from Corollary 1.4, and (i) = (ii) is trivial. The impli-
cation (ii) = (iii) will be proved by induction on the dimension of G. The case
dim G = 1 being obvious, let dim G > 1 and suppose that (FPC1) holds for
G x G. We first show that the Ad*(G)-orbits in general position (as defined in
[12, Proposition 2]) are linear varieties. Let Q be such an orbit, and let € G be
the corresponding representation. Suppose that Q is not a linear variety. Then,
by a result of Felix [4, Theorem], there exists pe G, p # =, such that the trivial
1-dimensional representation 1, is weakly contained in the (inner) tensor pro-
duct # ® p, where p is the conjugate of p. Thus, denoting by H the diagonal
subgroup {(x, x); xe G} of G x G, we have

ly<mnxplH,
and therefore
T x p<ind§*G1,.
Now, it is easily deduced from [3,2.1 Lemma] (compare also [ 14, Theorem 3.2]),
that
ind$*%1, ~ {6 x 6;0€G}.

Hence there exists a sequence (a,,), in G withlim g, = mand lim o, = p. It follows
from this that if Q denotes the Ad*(G)-orbit corresponding to p, then p(Q2) = p(£)
for every Ad*(G)-invariant polynomial p on g*. Since the orbit Q in general
position is the zero-set of certain invariant polynomials, we obtain Q = @', and
hence n = p. This contradiction shows that the orbits in general position in g*
are linear varieties.

Now, let Q be an arbitrary Ad*(G)-orbit in g*, n the corresponding represen-
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tation and N the connected component of the kernel of #. Then ne(G/N)” and
Q < n' = (g/n)*, where n is the ideal of g corresponding to N. Clearly, (FPC1) is
inherited by (G/N) x (G/N). Thus,if N # 0, then Qis a linear variety by induction
hypothesis.

Suppose now that N = 0. Then the center 3 of g has dimension one, and since
nlexp3 # I, 2|3 # 0. Let &' be an orbit in general position with €' |3 # 0. The
corresponding representation has a discrete kernel. Hence ' = f” + 3 for some
feg*, since Q' is a linear variety. Let f € Q. Then f'|3 = s(f|3) = sf | 3 for some
s€eR, s # 0. Thus, sf e Q. Therefore Ad*(G)sf = sAd*(G)f = sQ = ', that is
Q =51, and Qs a linear variety. This completes the proof of the theorem.

ReMark 2.2. It follows from Theorem 2.1 that, in general, (FPC1) is not
inherited by direct products. Indeed, let g, be the Lie algebra with basis
{X,,X,,X3,X,} and nontrivial commutators [X,, X;] = X;, [X,,X,] = X,.
The corresponding nilpotent Lie group G, satisfies (FPC1) (see Corollary 1.7),
but not all Ad*(G,)-orbits in g¥ are linear varieties. Thus, (FPC1) does not hold
for G4, x G,. We do not know, whether (FP1) is inherited by direct products.
Observe that, if this were the case, then Theorem 2.1 would give a characteriz-
ation of nilpotent Lie groups with property (FP1). However, (FP1) and (FPC1)
are inherited by direct products in a certain special situation:

PROPOSITION 2.3. Let G, and G, be connected, simply connected nilpotent Lie
groups, and assume that all the Kirillov orbits of G, are linear varieties. If G,
satisfies (FP1) (respectively (FPC1)), then so does G = G, x G,.

PRrROOF. We first prove the assertion in the case G, = R. To this end, let H be
a (connected) closed subgroup of G, teH, and n = p-aeG, x R such that
t<mn|H.Lete =a|H-t,theno <n|H-d|H = p| H. Suppose we have shown
that this implies p < ind§ ¢. Then

n=pa<(indfo) a=ind%(c-a|H) = ind§ 1.

Since p|R = 1, we are thus reduced to the case me G,. By Lemma 1.1, HR is
a closed (connected) subgroup of G, and HR/R = H/H n R. Moreover,
7|H N R = 1, so that te(HR/R)" can be defined as usual, and t < 7| H. Thus,
n < ind§; T (compare the proof of Theorem 1.3).

We now turn to the general case. H, 7 being as above, let 1 = 1, x 1,€G, x G,
such that © < n| H. We can assume that 7, has a discrete kernel (cf. the proof of
Theorem 1.3). Thus 7, ~ ind32 4, where Z denotes the 1-dimensional center of G,
and AeZ. Set N=G, xZ and M=HANN, then 1|M < (x|N)|M and
n|N ~ 7, x AeN. Since N = G, x R, (FP1) (respectively (FPC1)) holds for
N. H and N are regularly related since HN is closed (Lemma 1.1) and
HgN = HNg, geG. Therefore, by [6, Theorem 5.3]

(ind§7)| N ~ {ind¥. y@*| H* " N);xe G} > ind} t| M.
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Hence there exist p, e supp(ind§ 7) such that lim p,| N = n; x 4. Now, if
pn=p;xp:eélx62 and p:lz"'lnez,

then lim p, = n; and lim 4, = A. Let V be the set of all s G, that are square
integrable modulo Z. Then V is open (see [ 16, Theorem 2]) and =, € V. It follows
that p; € V, that s p), ~ ind$2 4,, for large n and hence lim p, = n, x ind$24 ~ =,
that is 7 < indfj .

We now present an example showing that neither (FP1) nor (FPC1) is inheri-
ted by normal subgroups.

ExXAMPLE 2.4. Let g be the Lie algebra of dimension 7 with basis X, X,,..., X,
and nontrivial commutators

[X7, X5] =X, [Xe6X,]=X,, [XeXs]= X3,
[XS,X4] == —X2 and [X4,X3] = Xl'

Let G be the associated nilpotent Lie group. Consider the ideal n in g generated
by X,, X,,...,Xs. It is readily verified that n is isomorphic to the Lie algebra
consisting of all strictly upper triangular real 4 x 4 matrices. Hence, by [3,(2.3)],
(FPC1) does not hold for the corresponding connected normal subgroup of G.
On the other hand, a straightforward computation shows that, if X¥,..., X%
denotes the dual basis of g*, then the Ad* (G)-orbit of f= Y [_, f,.X¥ is given by

Q= {fiXT + (te i +)X% + (tafy + L5)X% + (6311 + tsf5 + f2)XT +
+(t7fy +tafs +tefs + tetafi + f5)XE + (tstafi Htsfs + 1 f1 +
+ fe)XE + (tsf1 + [7)X7%5ta,...,t:€R).

It is easily seen that Q is a linear variety for every fe g*. Therefore, by Corollary
1.4, G satisfies (FP1).

3. (FP1) for 2-step nilpotent groups.

As already mentioned (Remark 1.8), a 3-step nilpotent simply connected group
need not satisfy (FPC1). On the other hand, (FP1) holds for 2-step nilpotent
connected groups (Theorem 1.3). It has been conjectured in [11] that every 2-step
nilpotent locally compact group has property (FP1). The main purpose of this
section is to prove this conjecture in the case of a pro-Lie group. Recall that, by
definition, a locally compact group G is a Lie group if the connected component
G, is open in G and real analytic.

We have to introduce some more notation. For subsets 4 and B of the group
G we denote by [A, B] the set of all commutators [a,b] = aba™'b~',ae 4, beB.
If G is locally compact and N a closed normal subgroup of G, then G acts in the
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usual way on the set of unitary representations of N, in particular on N. The
G-orbit of the representation o of N will be denoted by G(¢). We will frequently
use the fact that (ind$ o) | N ~ G(o).

LEMMA 3.1. Let G be a 2-step nilpotent locally compact group and Z a closed
central subgroup such that G/Z is abelian. For A€ Z, let

Z,=1{zeZ;Mz)=1} and L,={xeG;[x,G]l<c Z,},
that is L;/Z, is the center of G/Z ;.

() IfnreGandn|Z ~ AeZ,thenn ~ indf‘1 o for some (G-invariant) character a of
L".
(i) If N is an abelian closed subgroup of G containing Z and ¢ € N, then

G(¢) = ¢-(N/NAL,,)".

ProoF. The first part is a slight extension of [10, Lemma 2], and the proof
requires only minor modifications. In fact, analyzing the proof of [ 10, Lemma 2]
shows that if Z is a central subgroup of G such that G/Z is abelian and if n € G such
that | Z is faithful, then = is weakly equivalent to the representation induced by
some character of the center of G. From this (i) follows easily be reducing to G/Z ;.

To prove (ii), let 4 = ¢|Z and choose n€G such that n| N ~ G(¢). By (i)
T~ indfla for some G-invariant character « of L;, and a|Z = 4. Now

T~ indfln|Ll =1Q® inde 1, ~71®(G/L)"
i

and hence n|N ~ n|N ® (G/L,;)"| N. The subgroup (G/L,)"| N separates the
points of N/L; n N and is therefore dense in (N/L, n N)”. It follows that

n|N ~n|N®(N/L,nN)" ~ indY y(@| Ly N).
Clearly, | Nn L, = a| N n L,, so that
ind v Ly N)~ @-(N/LynN)".
This shows (ii).

LEMMA 3.2. Let G be a 2-step nilpotent group, and assume that (FP1) holds for all
pairs (A, B), where A is a quotient of G and B an abelian subgroup of A. Then
G satisfies (FP1).

PROOF. Let H be a closed subgroup of G, 7€ H and e G such that n|H > t.
Let Z be the center of G, and n|Z ~ Ac Z. By Lemma 3.1 there exist closed
normal subgroups K and L of H and o e(L/K)" with the following properties:

te(H/K)", L/K is the center of H/K, and 7 ~ ind¥ ¢.
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Now1|KNnZ =1 and
TI|KNnZ<n|KNnZ~AKnZ,

sothat \|KnZ = 1and ne(G/K n Z)". Moreover, L/K n Z is abelian. Now,
using the assumption that (FP1) holds for the pair (G/K n Z, L/K n Z), we obtain
as in the proof of Theorem 1.3

n < ind{ ¢ = ind§(ind¥ ) ~ ind§ 7.

LEMMA 3.3. Let G be an abelian Lie group, and suppose that A and B are closed
subgroups of G such that ABis densein G. Let a.€ A and f € B, and let (7,)ics be anet
in G suchthat y,| A —» candy,| B — B. If(x,),.; is a net in G converging to x € B, then

7i(%,) = P(x).

PROOF. G contains an open subgroup H of the form H = R? x T9, and
D = ABn Hisdensein H. Now, x, = y,x with y,e H for 1 = 15, y,(x) = B(x) and

yl(yl) = )’,(x:)m-
It therefore suffices to show that if x,e H and x, — e then y,(x,) — 1. Let
¢:R"=RP x RT>RP x T?

denote the canonical covering homomorphism, and set 4, = y,|Ho ¢ e(R"".
¢~ !(D)is a dense subgroup of R", hence contains a vector space basis {v,. . .,0,}
of R". If (v;) = a;b;, aje A, bjeB, 1 £j = r, then

4(v)) = (@(v) = y.(a;),(b;) > ala;)B(b)),

that is (4,),.; converges on a basis of R". It follows that 1, —Ae(R")" and
4 = do¢ for some de H. Thus y,| H - 8, and since the mapping

HxH-C, (y,0-10)
is continuous, we obtain y,(x,) — d(e) = 1.

We will use several times that if G is a projective limit of groups G, = G/K,,
1€ 1, and all G, satisfy (FP1) (or (FP1) with respect to normal subgroups), then so
does G. This can be seen by standard arguments (compare the proof of [11,
Proposition 1.3]), the crucial fact being that givenm e G, thereexists 1 € I such that
n(K,) = I, thatis e G,. The analogue holds for (FP2). In fact, this is proved very
similarly by applymg the following result of [8]. Let H be a closed subgroup of
G, 1€ H and ne G such that n < ind§ . If K is a compact normal subgroup of
G such that n(K) = I, thent(H n K) = l and if 7t and ¢ denote the corresponding
representations of G/K and HK/K = H/H n K, then 7t < ind{j{{ x .
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THEOREM 3.4. Every 2-step nilpotent pro-Lie group (in particular every com-
pactly generated 2-step nilpotent group) has the Frobenius property (FP1).

Proof. By [9, 9. Theorem] every compactly generated nilpotent group is
pro-Lie. Thus, by the above remark, we are reduced to the case of a Lie group G.
According to Lemma 3.2, it suffices to show that if H is an abelian closed
subgroup of G, t€ H and ne G such that t < 7| H, then n < ind§ 7. To this end
let Z denote the center of G and consider the abelian normal subgroup N = HZ
of G. Once we have proved n| N < G(ind} 1), it follows that

n < ind§y | N < {ind§(ind} 1)*; xe G} = {ind§ t}.

By Lemma 3.1 there exist a closed subgroup L of G with Z< L £ N and
a G-invariant character 4 on L such that 7| N ~ ind) 4. In fact,if 7| Z ~ peZ,
then L = {xe N; u|[x,G] = 1}. Let now

I ={yeN;y|H = t} = supp(ind} 7).
Forevery yel', y|JHNnL=t1|HnL=A|HnNL,and
F\L=y|L(N/H)"L~y|L(L/LAH)".
Therefore
r\L~i(L/LAH)".
Choose a net (y,),.; € I' such that y,| L » A. For ye N,
G(y) ~ 7 (N/N,)",

where

N, = {xeN;y|[x,G] = 1}

(Lemma 3.1). Let now X(N) denote the set of all closed subgroups of N endowed
with the compact-open topology (see [6, p. 427]). As X(N) is compact, we can
assume that N, — N, for some N, e X(N). Using the description of N, and Land
7.1 Z = 4| Z, it is easily verified that Ny € L. Indeed, if x,e N, and x, = xe N,,
then for every yeG,

1= 'y,([xv Y}) - l([x9 ,V]),

that is x € L. We claim that (N, ,y,|N, ) = (No, 4| No) in Fell’s subgroup represen-
tation topology [6]. We have to show thatif x,e N, and x, — x, then y,(x,) = A(x).
But this follows by applying Lemma 3.3 to N, the closed subgroups H and
Ny 2 Z, the characters te H and 4| Nye N, and the net (y,),.; < N. Inducing
being continuous [6], we obtain

ind}, (3| N,,) — ind} 2] No.
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Finally, recall that
n|N ~ ind} A <ind§ 4| N, and ind}, (7| N,) ~ 7(N/N,)" ~ G(y,).
Thus we have proved n| N < G(ind} 7).

It is worth mentioning that Theorem 3.4 could be shown for arbitrary 2-step
nilpotent groups provided that some substitute of Lemma 3.3 is available in the
non-Lie group case.

Moscovici [ 17, Theorem 2] proved that the Frobenius property (FP) holds for
pairs (G, N) where G is a simply connected nilpotent Lie group and N a closed
connected normal subgroup. We conclude the paper by showing that the results
and methods of [13] yield the following generalization.

PROPOSITION 3.5. Let G be a nilpotent pro-Lie group and N a closed normal
subgroup of G. Then (FP) holds for (G, N).

PROOF. By the remark preceding Theorem 3.4 we can assume that G is a Lie
group. Using the terminology of [13], it suffices to recognize that if ne G and
teN, then ker 7| N and ker G(r) are G-maximal ideals in C*(N). Indeed, for
tesupp | N, we then obtain n| N ~ G(r) and therefore

n<ind§n|N ~ ind§t.
Conversely, if © < ind§ 7, then
n|N < (ind$1)| N ~ G(2),

thatis t| N ~ G(7).

The connected component N, of N is normal in G. Choose a sequence N; of
closed normal subgroups of G, 1 £j <r, such that Nyc... € N, = N and
Nj/N;_, is central in G/N;_,. Now, for any closed normal subgroup M of
G contained in N, ker n| M and ker G(z | M) are G-prime ideals in C*(M) [13, 1.
Lemma]. On the other hand the first part of the proof of [ 13, Theorem] shows
that every G-prime ideal in C*(N,) is G-maximal. Finally, [13,6. Lemma] and
induction on the sequence N; give that every G-prime ideal in C*(N) is G-maximal.

REFERENCES

1. J. Brezin, Geometry and the method of Kirillov in Non-Commutative Harmonic Analysis (Coll.,
Marseilles-Luminy, 1974), eds. J. Carmona, J. Dixmier, M. Vergne, (Lecture Notes in Math.
466), pp. 13-26. Springer-Verlag, Berlin-Heidelberg-New York, 1975.

2. L D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. Ecole Norm. Sup. (4) 6 (1973),
407-411.

3. R. Felix, Uber Integralzerlegungen von Darstellungen nilpotenter Liegruppen, Manuscripta Math.
9 (1979), 279-290.



296

MOHAMMED E. B. BEKKA AND EBERHARD KANIUTH

4. R. Felix, When is a Kirillov orbit a linear variety?, Proc. Amer. Math. Soc. 86(1982), 151-152.

5. R. Felix, R. W. Henrichs, and H. L. Skudlarek, Topological Frobenius reciprocity for projective
limits of Lie groups, Math. Z. 165(1978), 19-28.

6. J. M. G. Fell, Weak containment and induced representations, 11, Trans. Amer. Math. Soc. 110
(1964), 424-447.

7. F. P. Greenleaf, Amenable actions of locally compacts groups, J. Funct. Anal. 4 (1969), 295-315.

8. R. W. Henrichs, Weak Frobenius reciprocity and compactness conditions in topological groups,
Pacific J. Math. 82 (1979), 387-406.

9. K. H. Hofmann, J. R. Liukkonen, and M. W. Mislove, Compact extensions of compactly
generated nilpotent groups are pro-Lie, Proc. Amer. Math. Soc. 84 (1982), 443-448.

10. E. Kaniuth, On primary ideals in group algebras, Monatsh. Math. 93 (1982), 293-302.

11. E. Kaniuth, On topological Frobenius reciprocity for locally compact groups, Arch. Math. (Basel)
48 (1987), 286-297.

12. A. A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Math. Surveys 17 (1962),
53-104.

13. J. Ludwig, Prime ideals in the C*-algebra of a nilpotent group, Monatsh. Math. 101 (1986),
159-165.

14. G. W. Mackey, Induced representations of locally compact groups. 11. The Frobenius reciprocity
theorem, Ann. of Math.(2) 58 (1953), 193-221.

15. C. C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent
groups, Ann. of Math.(2) 82 (1965), 146-182.

16. C. C. Moore and J. A. Wolf, Square integrable representations of nilpotent Lie groups, Trans.
Amer. Math. Soc. 185 (1973), 445-462.

17. H. Moscovici, Topological Frobenius properties for nilpotent Lie groups, Rev. Roumaine Math.
Pures Appl. 19 (1974), 421-425.

i8. O. A. Nielsen, The failure of the topological Frobenius property for nilpotent Lie groups, Math.
Scand. 45 (1979), 305-310.

19. O. A. Nielsen, The failure of the topological Frobenius property for nilpotent Lie groups. 11, Math.
Ann. 256 (1981), 561-568.

20. O. A. Nielsen, Unitary representations and co-adjoint orbits of low-dimensional nilpotent Lie
groups, (Queen’s Papers in Pure and Appl. Math. 63), Queen’s University, Kingston,
Ontario, 1983.

21. R. C. Penney, Canonical objects in the Kirillov theory of nilpotent Lie groups, Proc. Amer. Math.
Soc. 66 (1977), 175-178.

MATHEMATISCHES INSTITUT FACHBEREICH MATHEMATIK/INFORMATIK

TECHNISCHE UNIVERSITAT MUNCHEN UNIVERSITAT - GH PADERBORN

ARCISSTR. 21 WARBURGER STR. 100

D - 8000 MUNCHEN D 4790 PADERBORN

FEDERAL REPUBLIC OF GERMANY FEDERAL REPUBLIC OF GERMANY



