THE SIMPLICITY OF THE QUOTIENT ALGEBRA M(A)/AOF A SIMPLE C^* -ALGEBRA

HUAXIN LIN*

Abstract.

It is shown that the C^* -algebra M(A)/A, where A is a σ -unital stably semi-finite C^* -algebra and M(A) is the multiplier algebra of A, is simple if and only if either A has a continuous dimension scale or A is elementary.

Let A be a C^* -algebra, and denote by A^{**} the enveloping von Neumann algebra of A. The multiplier algebra M(A) is the idealiser of A in A^{**} . We denote by \mathscr{K} the C^* -algebra of all compact operators on an infinite dimensional separable Hilbert space, and by $\mathscr{B}(H)$ the C^* -algebra of all bounded operators on H. It is well known that $M(\mathscr{K}) = \mathscr{B}(H)$ and $M(\mathscr{K})/\mathscr{K}$ is simple. The ideal structure of the C^* -algebra M(A)/A for A a simple AF C^* -algebra has been studied in [5], [7] and [6], and for A a factorial simple C^* -algebra has been studied in [8]. In the present note we shall show that in the case of a σ -unital, stably semi-finite C^* -algebra, M(A)/A is simply if and only if either A has a continuous dimension scale or A is elementary. We shall also show that for every σ -unital purely infinite C^* -algebra A, M(A)/A is simple.

1. Preliminaries.

1.1. Let B be a dense hereditary*-subalgebra of a C*-algebra A, and a, b elements of B. Following Cuntz, we write $a \leq b$ if there are x, y in A such that a = xby. We write $a \leq b$ if there is a sequence $\{a_n\}$ in B such that $a_n \leq b$ and $a_n \to a$. This relation is transitive and reflexive. We write $a \approx b$ if $a \leq b$ and $b \leq a$. We say that a is orthogonal to b ($a \perp b$) if ab = ba = a*b = ba* = 0.

Let A be a simple C^* -algebra, K(A) its Pedersen ideal, \mathscr{F} the algebra of operators of finite rank on an infinite-dimensional separable Hilbert space H and \mathscr{K} the C^* -algebra of compact operators on H. We denote by $\mathscr{F} \otimes K(A)$ the algebraic tensor product of \mathscr{F} and K(A). We call an element x in $\mathscr{F} \otimes K(A)$ infinite if $y \lesssim x$ for every y in $\mathscr{F} \otimes K(A)$.

Received December 7, 1987, in revised form March 1, 1988.

^{*} This work was done when the author was visiting University of California, Santa Barbara.

There are three possibilities for a simple C^* -algebra A.

- (i) $\mathscr{F} \otimes K(A)$ contains only finite elements. In this case we shall call A stably semi-finite.
- (ii) $\mathcal{F} \otimes K(A)$ contains non-zero finite and infinite elements.
- (iii) All non-zero elements in $\mathcal{F} \otimes K(A)$ are infinite.

It is not known if case (ii) can appear. If A has a lower semi-continuous semi-finite trace, then A is stably semi-finite.

We call a function $d: \mathscr{F} \otimes K(A) \to \mathbb{R}_+$ a dimension function (on K(A)) if

- (a) d(x) = 0 if and only if x = 0
- (b) $x \leq y$ implies $d(x) \leq d(y)$
- (c) d(x + y) = d(x) + d(y) for all orthogonal x, y in $\mathscr{F} \otimes K(A)$. A dimension function also satisfies.
- (d) $d(x + y) \le d(x) + d(y)$ for all $x, y \in \mathcal{F} \otimes K(A)$.

Given $x \in \mathscr{F} \otimes K(A)$, we denote by $\langle x \rangle$ the \approx -equivalence class of x in $\mathscr{F} \otimes K(A)$. Let F be the free abelian group generated by $\{\langle x \rangle \mid x \in \mathscr{F} \otimes K(A)\}$ and let R be the subgroup of F generated by all elements of the form $\langle x \rangle + \langle y \rangle - \langle x_1 + y_1 \rangle$ ($x_1 \in \langle x \rangle$, $y_1 \in \langle y \rangle$, $x_1 \perp y_1$). We denote by $\Delta(A)$ the quotient F/R. $\Delta(A)$ is an ordered group with the order induced by " \lesssim ". We shall use " \leq " for the order. $\Delta(A) \neq \{0\}$ if and only if A is stably semi-finite. Moreover, there is a bijective correspondence between non-zero positive homomorphisms $h: \Delta(A) \to R$ and dimension functions A on A0 given by A0, and if A1 and A2 admits a dimension function. For the details of the relations A3 and "A3 and "A4 admits a dimension function. For the details of the relations A4 and "A5 and "A8 and [7].

1.2. Given $\varepsilon > 0$, let f_{ε} be the continuous function on R defined by

$$f_{\varepsilon^{(t)}} = \begin{cases} 0 & \text{if } t \in (-\infty, \varepsilon/2] \\ \text{linear} & \text{if } t \in [\varepsilon/2, \varepsilon]. \\ 1 & \text{if } t \in [\varepsilon, \infty) \end{cases}$$

If $a \in A$, set

$$A_a = A_{|a|} = \bigcup_{\varepsilon > 0} f_{\varepsilon}(|a|) A f_{\varepsilon}(|a|).$$

1.3. We now identify $p \otimes K(A)$ with K(A) and $p \otimes A$ with A for a fixed one dimensional projection p in \mathscr{F} . Suppose that a and b are in K(A), and $\langle a \rangle \leq \langle b \rangle$. So $a \lesssim b$ in $\mathscr{F} \otimes K(A)$ and $a^*a \lesssim b^*b$. Since $a \approx a^*a$, $b^*b \approx b$ both in K(A) and $\mathscr{F} \otimes K(A)$, we may assume that $0 \leq a$ and $0 \leq b$. There are $x_n \in \mathscr{F} \otimes K(A)$ such that $x_n \lesssim b$, $x_n \to a$. We can find a sequence $\{\varepsilon_n\}$ with $\varepsilon_n \to 0$ such that

$$f_{\varepsilon_n}(a)x_n f_{\varepsilon_n}(a) \to a$$

since $f_{\varepsilon_n}(a)x_nf_{\varepsilon_n}(a) \lesssim b$, $a \lesssim b$ in K(A).

1.4. If A is a stably semi-finite simple C^* -algebra and u is a non-zero positive element in K(A), then $\langle u \rangle$ is an order unit (see [2, 4.2]). A positive homomorphism $h: \Delta(A) \to \mathbb{R}$ is called a state (with respect to $\langle u \rangle$) if $h(\langle u \rangle) = 1$. The collection $S = S_u(\Delta(A))$ of all states on $\Delta(A)$ is a convex compact subset of the locally convex space $\mathbb{R}^{\Delta(A)}$ of all functions $f: \Delta(A) \to \mathbb{R}$ with the product topology. S is the set of all the dimension functions d on K(A) such that d(u) = 1. We define a positive homomorphism $\theta: D(A) \to \mathbb{A}$ of S by setting S, S, where S is the set of all continuous real affine functions on S.

Let us say that $g \in \Delta(A)$ is infinitesimal if $-\varepsilon u \le g \le \varepsilon u$ for every positive rational number ε . (If $\varepsilon = p/q$, $p, q \in \mathbb{N}$, then $g \le \varepsilon u$ means that $qg \le pu$).

The notation " $\hat{g} \gg 0$ " for $g \in \Delta(A)$ means $\hat{g}(d) > 0$ for all $d \in S$.

1.5. PROPOSITION (Corollary of [4, 4.2]). The homomorphism θ : $\Delta(A) \to \text{Aff } S$ determines the order on $\Delta(A)$ in the sense that $\Delta(A)^+ = \{g \in \Delta(A) | \hat{g} \gg 0\} \cup \{0\}$. Hence we have $g \in \ker \theta$ if and only if g is infinitesemal.

PROOF. To apply 4.2 of [4] one need note only that the ordered group $\Delta(A)$ is unperforated.

- 1.6. When a is a positive element in a C^* -algebra A, we shall denote by [a] the range projection of a in the enveloping von Neumann algebra A^{**} . Suppose that A is σ -unital (and non-unital), and let e be a strictly positive element of A. By choosing a proper sequence of continuous functions h_n , we can construct an approximate identity $\{e_n = h_n(e)\}$ for A satisfying
- (i) $g_n = e_n e_{n-1} \neq 0$ (e₀ = 0), and $g_m g_n = 0$ if $|m n| \ge 2$,
- (ii) There are $a_n \in A_+$, $a_n \neq 0$ such that $0 \leq a_n \leq [a_n] \leq g_n$, $a_n g_n = g_n a_n = a_n$ and $a_n g_m = g_m a_n = 0$, if $n \neq m$.

Any subsequence $\{e_{n_k}\}$ of $\{e_n\}$ is also an approximate identity satisfying (i) and (ii).

2. The results.

2.1. DEFINITION. Let A be a simple C^* -algebra. Call A purely inifite if every two non-zero elements are \approx -equivalent. (This definition is weaker than [8, 2.3]).

It is clear that every simple C^* -algebra in the case (1.1) (iii) is purely infinite.

2.2. LEMMA. Let f be a continuous function on [-1, 1]. For every $\varepsilon > 0$ there is a constant M > 0 such that for any two self-adjoint elements a and b in the unit ball of a C^* -algebra A,

$$||f(a) - f(b)|| \le M ||a - b|| + \varepsilon$$

PROOF. For each integer k,

$$||a^{k+1} - b^{k+1}||$$

$$= ||a(a^k - b^k) + (a - b)b^k||$$

$$\le ||a^k - b^k|| + ||a - b||.$$

Thus we have

$$||a^k - b^k|| \le k ||a - b||$$

for all k. Therefore for every polynomial p(t),

$$||p(a) - p(b)|| \le M(p) ||a - b||$$

where M(p) is a constant depending only on p. By the Weierstrass approximation theorem, there is a polynomial p such that

$$\sup\{|f(t) - p(t)| | t \in [-1, 1]\} < \varepsilon/2.$$

Thus

$$|| f(a) - f(b) ||$$

$$\leq || f(a) - p(a) || + || p(a) - p(b) || + || p(b) - f(b) ||$$

$$< \varepsilon/2 + M(p) || a - b || + \varepsilon/2$$

$$= M(p) || a - b || + \varepsilon.$$

2.3. THEOREM. Let A be a σ -unital simple C*-algebra. If A is purely infinite then M(A)/A is simple.

PROOF. Suppose that J is an ideal of M(A) properly containing A. Choose a positive element x in $J \setminus A$. Let $\{e_n\}$ and $\{g_n\}$ be as in 1.6. Passing to a subsequence if necessary, we may assume that

$$||(1 - e_{n+1})xe_n|| < 1/2^n$$
 and $||e_nx(1 - e_{n+1})|| < 1/2^n$

for all n. Then the elements

$$\sum_{n=1}^{\infty} (1 - e_{n-1}) x g_n, \sum_{n=1}^{\infty} g_n x (1 - e_{n+1}), \sum_{n=3}^{\infty} g_{n-2} x g_n \text{ and } \sum_{n=3}^{\infty} e_{n-2} x g_n$$

are in A. Therefore the element

$$y = x - \sum_{n=1}^{\infty} (1 - e_{n+1}) x g_n$$

is in $J \setminus A$. Since

$$y - \sum_{n=3}^{\infty} e_{n-2} x g_n = e_2 x g_1 + e_3 x g_2$$

+
$$\sum_{n=3}^{\infty} g_{n+1} x g_n + \sum_{n=3}^{\infty} g_n x g_n + \sum_{n=3}^{\infty} g_{n-1} x g_n,$$

one of the last three elements must be in $J \setminus A$. Suppose that $\sum_{n=3}^{\infty} g_{n+1} x g_n$ is in $J \setminus A$. Since

$$\left[\sum_{n=3}^{\infty} g_{n+1} x g_n\right]^* \left[\sum_{n=3}^{\infty} g_{n+1} x g_n\right]
= \sum_{n=3}^{\infty} g_n x g_{n+1}^2 x g_n + \sum_{n=3}^{\infty} g_n x g_{n+1} g_{n+2} x g_{n+1}
+ \sum_{n=4}^{\infty} g_n x g_{n+1} g_n x g_{n-1},$$

and

$$\begin{aligned} \|g_n x g_{n+1} g_{n+2} x g_n\| &= \|g_n x g_{n+2} g_{n+1} x g_{n+1}\| \le 1/2^n, \\ \|g_n x g_{n+1} g_n x g_{n-1}\| &= \|g_n x g_n x g_{n+1} x g_{n-1}\| \le 1/2^{n-1}, \\ \sum_{n=3}^{\infty} g_n x g_{n+1} g_{n+2} x g_{n+1} + \sum_{n=4}^{\infty} g_n x g_{n+1} g_n x g_{n-1} \text{ is in } A. \end{aligned}$$

Thus $\sum_{n=3}^{\infty} g_n x g_{n+1}^2 x g_n$ is in $J \setminus A$. Similarly, if $\sum_{n=3}^{\infty} g_{n-1} x g_n$ is in $J \setminus A$, $\sum_{n=3}^{\infty} g_n x g_{n-1}^2 x g_n$ is in $J \setminus A$. In either case, it follows that $\sum_{n=1}^{\infty} g_n x^2 g_n$ is in $J \setminus A$. By changing notation, we may therefore assume that $\sum_{n=1}^{\infty} g_n x g_n$ is in $J \setminus A$.

So $\sum_{k=1}^{\infty} g_{2k} x g_{2k}$ and $\sum_{k=1}^{\infty} g_{2k+1} x g_{2k+1}$ are in J and one of them is in $J \setminus A$. We may assume that $y = \sum_{k=1}^{\infty} g_{2k} x g_{2k}$ is in $J \setminus A$. Hence for a sufficiently small $\delta > 0$, $f_{\delta}(y) \in J \setminus A$. Since $g_{2k} x g_{2k} \perp g_{2j} x g_{2j}$ if $k \neq j$,

$$f_{\delta}(y) = \sum_{k=1}^{\infty} f_{\delta}(g_{2k} x g_{2k}).$$

Without loss of generality, we may assume that

$$f_{\delta}(g_{2k}xg_{2k}) \neq 0$$
 for each k.

Then $f_{\delta}(g_{2k}xg_{2k}) \approx g_k$ for each k. Let M_k be the constant in Lemma 2.2 such that

$$||a^{1/2} - b^{1/2}|| \le M_k ||a - b|| + 1/2^k$$

for all $a,b \in A_s$, $||a|| \le 1$, $||b|| \le 1$, k = 1,2,... For every $\varepsilon > 0$ and k, there is $x_k \in K(A)$ such that

$$x_k \lesssim f_{\delta}(g_{2k}xg_{2k})$$
 and

$$\|x_k - g_k\| < \frac{\varepsilon}{2^k (M_k + 1)}.$$

We may assume that $0 \le x_k \le 1$ for each k. By [1, 1.7] there is $z_k \in A$ such that $z_k z_k^* = x_k$ and $z_k^* z_k \le \left[f_{\delta}(g_{2k} \times g_{2k}) \right] \le f_{\delta/2}(g_{2k} \times g_{2k})$. Hence $z_k z_j^* = 0$, if $k \neq j$. So $\left[\sum_{k=1}^n z_k \right] \left[\sum_{k=1}^n z_k \right]^* = \sum_{k=1}^n z_k z_k^*$ and $\left\| \sum_{k=1}^n z_k z_k^* \right\|$ is bounded. Thus $\left\{ \sum_{k=1}^n z_k \right\}$ is

bounded. It is then easy to see that $\sum_{k=1}^{n} z_k$ converges in the right strict topology to

an element $z = \sum_{k=1}^{\infty} z_k$ in the right multipliers RM(A). To show that $\sum_{k=1}^{n} z_k$

converges strictly to z, it is enough to show that for each n, $g_n \sum_{k=N}^{\infty} z_k$ converges (in norm) to zero as $N \to \infty$. Write $z_k = (z_k z_k^*)^{1/2} u_k$. Then

$$\left\| \sum_{k=N}^{\infty} z_k - \sum_{k=N}^{\infty} g_k u_k \right\| \le \sum_{k=N}^{\infty} \| (z_k z_k^*)^{1/2} - g_k \| < \sum_{k=N}^{\infty} \varepsilon / 2^k + \sum_{k=N}^{\infty} 1/2^k \to 0,$$

as $N \to \infty$. Since $g_n \sum_{k=N}^{\infty} g_k u_k = 0$, for N > n+1, we conclude that $\left\| g_n \sum_{k=N}^{\infty} z_k \right\| \to 0$ as $N \to \infty$. So $z \in M(A)$. From

$$zf_{\delta/2}(y) = \left[\sum_{k=1}^{\infty} z_k\right] \left[\sum_{k=1}^{\infty} f_{\delta/2}[g_{2k} x g_{2k}]\right] = \sum_{k=1}^{\infty} z_k,$$

we conclude that $z \in J$. On the other hand,

$$||zz^* - 1|| = \left| \sum_{k=1}^{\infty} z_k z_k^* - \sum_{k=1}^{\infty} g_k \right| < \varepsilon,$$

so $1 \in J$.

2.4. DEFINITION. Let A be a σ -unital, stably semi-finite, simple C^* -algebra. If A is not unital, fix a strictly positive element e and choose $\{e_n\}$ as in 1.6. We define

$$\hat{1}(d) = \lim_{n \to \infty} d(e_n)$$
 for every $d \in S_u(\Delta(A))$

for some fixed $u \in K(A)^+ \setminus \{0\}$. We shall say that A has a continuous dimension

scale if $\hat{1}$ is a continuous function on $S = S_u(\Delta(A))$ for some strictly positive element e. For convenience, we shall also say that every unital simple C^* -algebra has a continuous dimension scale. It is clear that the definition does not depend

on the choice of u. Later we shall see that $\lim_{n\to\infty} d(e_n)$ is continuous for every approximate identity $\{e_n\}$ as described in 1.6 if it is continuous for one of them.

We now fix $u \in K(A)^+ \setminus \{0\}$, and a strictly positive element e and an approximate identity $\{e_n\}$ as in 1.6.

2.5. For every $a \in M(A)_+$, we define

$$\tilde{d}(a) = \sup \{d(b) \mid b \le a, b \in A_e\},\$$

 $d \in S$. Then $\hat{1}(d) = \tilde{d}(1)$ for every $d \in S$. If $a \in AA_eA$, then $\langle a^*a \rangle = \langle a \rangle$ and a^*a has the form b^*x^*xb with $b \in A$ and $x \in A_e$. So there is $c \in (A_e)^+$ such that $\langle c \rangle = \langle a \rangle$. Hence, if $a \in AA_eA$,

$$\tilde{d}(a) = d(a)$$
 for each $d \in S$.

2.6. Set

$$I_0 = \{ a \in M(A) \mid \exists a_n \in AA_e A \text{ such that}$$
$$\tilde{d}((a - a_n)^*(a - a_n)) \to 0 \text{ uniformly on } S \}.$$

Clearly I_0 is a *-invariant subset of M(A). Suppose that $a, b \in I_0$, and $\widetilde{d}((a-a_n)^*(a-a_n)) \to 0$, $\widetilde{d}((b-b_n)^*(b-b_n)) \to 0$ uniformly on S, where $a_n, b_n \in AA_eA$. Since for each k,

$$e_k(a + b - a_n - b_n)^*(a + b - a_n - b_n)e_k$$

$$= e_k(a - a_n)^*(a - a_n)e_k + e_k(b - b_n)^*(b - b_n)e_k$$

$$+ e_k(b - b_n)^*(a - a_n)e_k + e_k(a - a_n)^*(b - b^n)e_k$$

and

$$d[e_k(b-b_n)^*(a-a_n)e_k]$$

$$\leq d[e_k(b-b_n)^*(b-b_n)e_k],$$

we conclude that

$$\widetilde{d}((a+b-a_n-b_n)^*(a+b-a_n-b_n))
\leq 2\Gamma(\widetilde{d}((a-a_n)^*(a-a_n)) + \widetilde{d}((b-b_n)^*(b-b_n))] \to 0$$

uniformly on S. Therefore I_0 is a *-invariant linear space. Suppose that $b \in M(A)$, $a \in I_0$ and $a_n \in AA_eA$ are such that

$$\tilde{d}((a-a_n)^*(a-a_n)) \to 0$$
 uniformly on S.

Then $ba_n \in AA_nA$ and

$$\widetilde{d}((ba - ba_n)^*(ba - ba_n))$$

$$= \widetilde{d}((a - a_n)^*b^*b(a - a_n)) \le \widetilde{d}((a - a_n)^*(a - a_n)) \to 0$$

uniformly on S.

So I_0 is an ideal of M(A). We denote by I the closure of I_0 . Clearly, I is a closed ideal of M(A) containing A.

2.7. LEMMA. Let A be a non-elementary, σ -unital, non-unital, stably semi-finite simple C*-algebra, and let I be as defined in 2.6. Then I contains A properly.

PROOF. Clearly, I contains A. Let $\{a_n\}$ be as in 1.6, and fix n. For each k > 0, as shown in [8, 2.7] there are $\varepsilon > 0$ and $h_1, \ldots, h_k \in K(A)_+$ such that $h_i \perp h_j$ for $i \neq j$,

$$h_1 \gtrsim h_2 \gtrsim \ldots \gtrsim h_k$$
 and $f_{\frac{1}{2}\epsilon}(a_n) \geq [f_{\epsilon}(a_n)] \geq \sum_{i=1}^k h_i$.

Thus

$$\langle f_{\downarrow s}(a_n) \rangle \ge \langle h_1 \rangle + \ldots + \langle h_k \rangle \ge k \langle h_k \rangle,$$

whence $\tilde{d}(h_k) = d(h_k) \le k^{-1} d[f_{\frac{1}{2}\epsilon}(a_n)] = k^{-1} \tilde{d}[f_{\frac{1}{2}\epsilon}(a_n)]$ for $d \in S$. We conclude that for each n, there is $x_n \in (A_e)^+$ such that $\|x_n\| = 1, x_n \le g_n$ and $\tilde{d}(x_n) = d(x_n) \le 1/2^n$ for all $d \in S$. It is clear that $x = \sum_{n=1}^{\infty} x_n \in I \setminus A$.

2.8. THEOREM. Let A be a σ -unital stably semi-finite simple C*-algebra. Then M(A)/A is simple if and only if either A has a continuous dimension scale or A is elementary.

PROOF. Suppose that M(A)/A is simple and A is neither unital nor elementary. By 2.7, $1 \in I$. Thus there is $a \in I^+$ such that

$$||1-a|| < 1/4.$$

This implies $\tilde{d}(1) = \tilde{d}(a)$ so $\hat{1}(d) = \tilde{d}(1)$ is continuous on S and A has a continuous dimension scale.

If A is elementary, it is well known that M(A)/A is simple. Now suppose that $\hat{1}(d)$ is continuous on S. By Dini's theorem,

$$\tilde{d}(1-e_n) \to 0$$

uniformly on S. Passing to a subsequence if necessary, we may assume that

$$\tilde{d}(1-e_n)<\frac{1}{2^n}$$

uniformly on S. Therefore both $\sum_{n=1}^{\infty} d(g_{2n})$ and $\sum_{n=1}^{\infty} d(g_{2n+1})$ converge uniformly on S.

Suppose that J is a closed ideal properly containing A. Choose $w \in J^+ \setminus A$. As in 2.3, we may assume that $y = \sum_{k=1}^{\infty} g_{2k} w g_{2k} \in J^+ \setminus A$. Therefore for a sufficiently small $\delta > 0$, $f_{\delta}(y) \in J^+ \setminus A$. Since $f_{\delta}(y) = \sum_{k=1}^{\infty} f_{\delta}(g_{2k} w g_{2k})$, we may assume that $f_{\delta}(g_{2k} w g_{2k}) = \pm 0$ for each k. Since S is compact, then $\inf\{d(f_{\sigma}(g_{2k} w g_{2k})) \mid d \in S\} > 0$ for each k. Choose an integer n_0 such that

$$\sum_{k > n_0} d(g_{2k+1}) < \inf \{ d(f_{\delta}(g_2 w g_2)) \mid d \in S \}$$

for all $d \in S$. Since $\inf \{ d(f_{\delta}(g_{2k}wg_{2k})) \mid d \in S \} > 0$ for each k, we can find a partition of the set $\{n_0 + 1, n_0 + 2, \ldots\}$ into finite subsets N_1, N_2, \ldots (of consecutive integers) such that for each $n = 1, 2, \ldots$,

$$\sum_{k \in N_{-}} d(g_{2k+1}) < d(f_{\varepsilon}(g_{2n} w g_{2n}))$$

for all $d \in S$. Then by 1.5 and 1.3,

$$\sum_{k \in \mathbb{N}_{-}} g_{2k+1} \leq f_{\delta}(g_{2n} w g_{2n}) \text{ in } K(A).$$

For any $\varepsilon > 0$, there are $x_n \in K(A)$ such that

$$x_n \lesssim f_{\delta}(g_{2n}wg_{2n})$$
 and

$$\left\|x_n - \sum_{n \in N_n} g_{2k+1}\right\| < \varepsilon/2^n.$$

We may assume that $0 \le x_n \le 1$. It follows from [1, 1.7] that there are $z_n \in A$ such that

$$z_n z_n^* = x_n \text{ and}$$

$$z_n^* z_n \le [f_\delta(g_{2n} w g_{2n})] \le f_{\frac{1}{2}\delta}(g_{2n} w g_{2n}).$$

As in 2.3, this implies that $z = \sum_{n=1}^{\infty} z_n$ is in J and

$$zz^* = \sum_{n=1}^{\infty} z_n z_n^*.$$

Hence

$$\left\|zz^* - \sum_{k > n_0} g_{2k+1}\right\| < \varepsilon.$$

Therefore $\sum_{k>n_0} g_{2k+1}$ is in J, and hence so is $\sum_{k=0}^{\infty} g_{2k+1}$. Similarly $\sum_{k=1}^{\infty} g_{2k}$ is in J. Hence $1 \in J$.

2.9. From 2.8, together with its proof, we see that if A has a continuous dimension scale then for any e and $\{e_n\}$ in 1.6, $\hat{1}(d) = \lim_{n \to \infty} d(e_n)$ is continuous.

Choose a separable, algebraically simple AF C^* -algebra A such that M(A)/A is not simple, or equivalently A has no continuous scale (see [7]). By 2.8, $\hat{1}(d)$ is not continuous. Since $e \in K(A)$, d(e) is continuous on S. So

$$\sup \{d(a) \mid a \in A_e\} \neq d(e) \text{ for some } d \in S.$$

If d is lower semi-continuous, then it is easy to check that $\sup \{d(a) \mid a \in A_a\} = d(e)$

Thus we conclude the following:

2.10. COROLLARY. If A is a separable algebraically simple AF C^* -algebra without continuous scale then there is at least one dimension function d on A which is not lower semi-continuous. Consequently, d is not determined by a trace.

The author would like to thank the referee for his suggestions.

REFERENCES

- J. Cuntz, The structure of multiplication and addition in simple C*-algebras, Math. Scand. 40 (1977), 215-233.
- 2. J. Cuntz, Dimension functions on simple C*-algebras, Math. Ann. 233 (1978), 145-153.
- J. Cuntz, The internal structure of simple C*-algebras, in Operator Algebras and Applications (ed. R. V. Kadison), Proc. Sympos. Pure Math. 38, Amer. Math. Soc., Providence, 1981, Part 1, 85-115.
- E. Effros, Dimensions and C*-algebras, CBMS Regional Conf. Ser. in Math. No. 46, Amer. Math. Soc., Providence, 1981.
- 5. G. A. Elliott, Derivations of matroid C*-algebras, II, Ann. of Math. 100 (1974), 407-422.
- G. A. Elliott, The ideal structure of the multiplier algebra of an AF algebra, C.R. Math. Rep. Acad. Sci. Canada 9 (1987), 225–230.
- 7. H. Lin, On ideals of multiplier algebras of simple AF C*-algebras, Proc. Amer. Math. Soc. 104 (1988), 239-244.
- 8. H. Lin, The multipliers and quasi-multipliers of simple C*-algebras, preprint.

DEPARTMENT OF MATHEMATICS EAST CHINA NORMAL UNIVERSITY SHANGHAI 200062 CHINA