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PROPER HOLOMORPHIC MAPPINGS FROM STRONGLY
PSEUDOCONVEX DOMAINS IN C?> TO THE UNIT
POLYDISC IN C*

BERIT STENSONES*

Introduction.

It has been known for a long time that if M is an n dimensional Stein manifold,
then there exists a proper holomorphic mapping from M to C"**[4]. In this
paper we shall be studying proper holomorphic maps between bounded do-
mains. In particular people have been interested in finding out whether there
exist proper holomorphic maps from the unit ball B",n = 2, in C" to the unit
polydisc 4™ in C™ for some m.

It has been known for a while that if n > m then this is not possible (see [9]) and
it is also known that it is not possible to find a proper holomorphic map from 4™
into B" for any m = 2 and any n (see [9]).

For a while one thought that finding a proper holomorphic map from B" to
A™™ for some large m(n) would be a step in the direction of solving the inner
function problem.

Then Hakim and Sibony [5] developed a method so that for every strictly
positive continuous function ¢ on the boundary 0B” of the unit ball B”in C" and
for every ¢ > 0 you can find a function f such that:

f is holomorphic in B".
|f(p) < max {¢(z):z€dB"} for all p in B".

r—1

1.
2.
3. lim|f(rz)| = ¢(2) for all ze B" — A where A has surface measure < e&.
4. f(0) = 0, hence f is not constant in B".

By repeateadly using this method and making sure that what was obtained was
converging absolutely on all compact subsets of B”, E. Lew [8] was able to
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produce a series F:=)_ f; such that F(0) = 0 and the radial limits of norm F is
one almost everywhere on the boundary of B". In other words F is an inner
function.

With some more modifications of the Hakim, Sibony method. Lew [7] was
able to produce functions f}, f,. .., fuw: B" — C" such that
a. f1, f2+-+» fmm are holomorphic in B".
b. |fi(p) £ 1forall peB"i=1,2,...,m(n).
c. Ify(p):=Y {log(1 — £ i=1,2,...,m(n)}, then

lim y(p;) = —oo whenever {p;} is a sequence in B" converging to some
j=
boundary point p, of B".

In other words F:= (fi, f;,..., fuw) is @ proper holomorphis map from B" to
A,

Also A. B. Aleksandrov [1] has given a proof of the existence of a proper
holomorphic map from B" to 4™™ for some m(n).

In both of these papers m(n) was much larger than n + 1, so the remanining
question was whether there exists a proper holomorphic mapping from B” to
An +1 .

In this paper we shall prove that such a mapping does indeed exist when n = 2.
Since the proof is only based on the fact that B2 is strongly pseudoconvex we get
the following theorem:

THEOREM. Let D be a strongly pseudoconvex domain in C? with a C*-boundary.
Then there exists a proper holomorphic mapping fom D to A3.

The proof of this theorem is based on ideas which can be found in Lew’s paper
[71.
1.

For a general n we are looking for a mapping F = (f,..., f,+) and numbers
{d;}; and {;}; such that é;,d; - 0 when j — oo and each f; is holomorphic and
nonconstant on D and:

(i) |fip) <1 whenpeDforeachi=1,....,n+1
(i) max{|fip)l i=1,...,n+ 1} > 1 — J;when peD and dist(p,0D) < d;.

Instead of looking for property (ii) we shall look for (ii’) saying:

(i) 3 {log(1 — i) i=1,...,n+ 1} <(n+ 1)logd; when peD
and dist (p,0D) < d;.

In this is the case, then of course there is at least one i such that
log(1 — | fi(p)l) < log d;, hence | fi(p)| > 1 — J; and (ii) follows.
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Now to the case n = 2. The construction is done by hand and it is very
technical.

First we shall find W,,..., Wy = 0B?such that W, U W, u...uU Wy, = dB% and
such that whenever (f}, f,, f3) are holomorphic in D and continous on D then the
following inductive procedure is possible:

Choose {¢;}, i = 1,2,...,such that )’ ¢} diverges but } &} converges and

1. fUisanysubsetof W,,j = 1,...,N,wecanfind r, > Oand h}, h}, h} such that,
h},h}, h} are smooth on D and holomorphic in D:
a. |hi(P)l, |h3(p)l, 1h3(P)| < €} when pe D and dist (p, U) < 6r3.
b. |fy + hil,|f; + h3l,|fs + k3] < 1on D.
c. log(l —|£i(q) + hi(q)) + log(1 — | f2(q) + h3(q)l)
+log(1 —|f3(@) + h3(g)l) < log(l — |£1(9)) + log(1 — | f2(q)) +
log(1 — | f3(q)) — Ry(q)
where —¢&} < R,(q) for all ge D and R,(q) > (1/20)&? when
dist(q, U) < ry and max {1 — |f;(p)| j=1,2,3} =&}

Of course r; will depend on f}, f, and f; and it will depend on W,.

Let f':= f, + hi, f}:= f, + h} and f] = f; + h}, then each of these func-
tions is holomorphic in D and contmuous on D.

In the inductive step the functions f; ™!, fi=!, fi~! are defined such that they
are all holomorphic in D, continuous on D and all of them have norm less than
1 on D.

1. Wecan find0 < r; < r,_, and functions h%, h, and h%, which are holomorphic
in D and smooth on D and:

a. ki) In5(p)l, IK5(p)| < & when pe D and dist (p, U) > 672

bo IfiH + BiLIGT + BT + 5| < Lon D.

c. log(1—|fi"'(q) + Wi(@)) + log(1 — |37 '(q) + hy(q))) +
+log(1 — |57 (q) + Ky(@)) < log(1 — |fi " (q)) + log(1 — I3~} (q)l) +
log(1 — | fi~1(q)l) — Ri(q) where R(q) >~¢} for all ge D and Ry(q) > (1/20)&?
when dist(q, U) < r;and max {1 — |f(p)| j=1,2,3} Z&"

Let fi:= fi=' + hi, fi:= fi=' + h and fi = fi~' + hi, then each of these
functions are holomorphic in D and continuous on D.

It will be clear from the constructions of the functions ki, h5, hj that the r;’s do
depend on the the functions f;, f, f; and the neighborhoed W,. Furthermore the
ri’s will have to go to 0 rather rapidly when the ¢;’s goes to zero.

Now we let U, = W,, f, = f, = f5 = 3/4 and we add the hi’s to the initial
fi,hy’s to f, and hi’s to f, and obtain:



132 BERIT STENS@NES

d. 1fi(@) — fi@L12(0) — LI — i) <& + ... + &
when dist (p, W,) > 6r} and peD.

e. log(l —|f{(p)) + log(1 — |f;(P)) + log(1 — | f3())) <
log(1 — | f,(p)l) + log(1 — | f>(p)]) + log(1 — | f5(p))) +
el +...+ ¢ forall peD.

f. log(1 —fi(P)) + log(1 — |f3(p)) + log (1 — | f3(p))) < log(l — |f;(P)) +
+log(1 — |£2(P)) + log(1 — | f3(p))) — (1/20)(e} + ... + &) when peD and
dist(p, W,) < r;and max {1 — |fj(p)| j=1,2,3} 2.

Since Y &} is converging and we can of course choose ¢, as small as we want, d.
and e. implies that the original functions are not changed much away from W,.
But ) &7 is diverging, hence if i is large enough, say i 2 i, then as long as
dist(p, W)) <r;

* log(1 = 1£i(p)) + log(1 — (1 — | (P)) + log(1 — | f5(p))) < 410g (3,).

Notice that since we have only added a finite number of smooth terms to f,, f5
and fj, then ffo, f;° and fi° are continuous on D and holomorphic in D.

Next we let U, be W,\ {peD| dist(p, W,) <r,} and now we let f, = f°,
fa = ficand f; = fi°ofrom above. We should have had some indices on these new
initial functions, but in this way we would eventually drown in indices. So we just
have to keep in mind that f,, f5, f are not the same functions as we started out to
adjust near W,, but in fact are the adjusted ones.

We start over again and find a new i; and new f,°, f3°, f3°,r, and r; . By taking
aminimum we may assume that the new r; is equal to the previous one, such that:

d. 11(0) = f°@1200) — L0150 — 20 <
€} +...¢3 when dist(p, U,) >6%.
e. log(l = |f°()) + log(1 — | f°(P)) + log (1 — | f3°(p))) <
log (1 = |f,(p)) + log(1 — | 2(p))) + log (1 — | f5(p)]) +
e} +...¢2 forall peD.
f. log(1 — |f{°(@) + log(1 — |f3°(p)) + log(1 — | f5°(p))) <
log(1 — | f,(p)l) + log(1 — | f2(p)] + log(1 — | f3(p)]) — )
(1/20)(e? + e3+ ... +€2) is large enough and when peD and
dist(p,U,) <r,,.
Notice that statement e. and f. together with the previous statement(*),
gives:
f. log(1 = |f{°@)) + log(1 — | £3°()) + log(1 — | f°(p))) <
4log(6,) + & + ... + &), when dist(p, U, U W)) < ;.

Again that we have only added a finite number of smooth terms to the new f;,
f2and fy so the new fio fio and fic are continuous on D and holomorphic in D.
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Now we let U= W,\(U,uW),U, = W‘;\(U3 vlU,uW),..., Uy=
W\ (Un_1V...0U,uW,) and fjo, f, = flo, fi= io from the previous ad-
justment. Eventually we end up with functions f}°, fi°, 3i° continuous on D and
holomorphic in D and positive numbers ry > r; where:

g 13/4) — fe@),13/4) = 2P 1(3/4) — £ <
N(e} + ... + €} ) when dist (p, 8D) > 6r}.

h. log(1 — [f{°()) + log(1 — | f{*(p))) + log (1 — | f{*(p)]) + log (1 — |f{°(P)) <
3log(1/4) + N(e} + ... + &) for all pe D.

i. Since Uyu...u U, u W, = oD we get log(l — |f(p)]) + log(1 — | fo(p)]) +
log (1 — | f3°(p)l) < 3log(1/4) — (1/20)(e? + ... + €2) + N(e} + ... + €2)
when pe D and dist (p, dD) < r;, is the smallest number needed in the above
construction.

Now ) e?isdiverging while ) ¢} is converging. Hence if i is large enough, then
(1/20)(e} + ... + €}) — N(ej + ... + &) is larger than —(9/2)log(d,). Let
dl = r,-o.

Next we do the above procedure over again, except this time we shall start by
adding hic*!, hip* 1 Wp*!, to fio, 2i° and fi°. We also need to make sure that
3r,+1 <r;,. We obtain functions S, fir, fir such that:

i @) = @120 — @10 — 30 <eh+r +... +&,  when
dist (p, D) > 6(r;, +,)*.
k. log(1 = |f{*(@)) + log(1 — 1f3'(P)) + log(1 — 1f5'(P)) <
log (1 — | f{°(p))) + log (1 — |f3°(p)]) + log (1 — | f3°(P))) +
€41 +... +¢ forall peD.
L log(1 —|f{*@)) + log(1 — |f3'(P))) + log(1 — 13 <
log(1 — |f"(P)| +log(1 — | f3'(p))) + log(1 — |£3' () —
(1/20)(e? 4+, + ... + €) when pe D and
dist(p,0D) <r;,.
Again since ) &7 is diverging it is clear that if i, is large enough, then:

log(1 — | f{'(p))) + log(1 — |f3'(P)) + log(1 — |f3'(P)) <
(9/2)1og(6,) when pe D and dist(p,0D) < r; .
Letd, =r;,.
Now when we keep going we end up with functions f;, f, and f; where:

L. f.,f, and f; are holomorphic and nonconstant in D.
IL | fil.1f2,1fs| £ 1in D. N
III. There exist sequences {d,} and {d,} d;,d; = 0, of positive real numbers such

that log(1 — | f,(p)l) + log(1 — |£2(p)l) + log(1 — |f3(p))) < 3log(3;) when
peD and (p,0D) < d;.
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The point II. and III. follows from the above constructions and the fact that ) &}
is converging, hence we can assume that (9/2)log(d;) + N } &} < 3log (9;) for
all j.

As for I. we only have to observe that if K is a compact in D when
dist (K, 0D) > 6r} when i is large enough. Hence the sum of the n’s which are
added is absolutely convergent on every compact in D.

2,

Let f,, f, and f; be continuous on D and holomorphic in D such that | f;},|f;|
and | f3| are all less than 1, then choose ¢ > 0so that (1 — | fi(p)|) > 7¢*forallpe D
andforalli=1,2,3...

If D a smoothly bounded strongly pseudoconvex domain in C? then there exist
local coordinates (x,y,z) on dD (Darboux coordinates) such that d/0x and
0/0y + x 0/0z is generating the complex tangent plane of dD [2]. We can use these
coordinates to construct functions u, , , where a and b are real numbers and I is
an interval in R and:

i u,,,is C®-smooth on D and holomorphic in D.
ii. Reu,, (p) >0 whenpeD\N,,, where N,, :=

{ql x(g)el, ¥(q) = a,z(q) = b and w(g) = 0} and u, , , is zero on N, ,.
iii. u,p1(p) = Y(x(p)) + i2[(z(p) — b) — x(pPX¥(p) — a)]

+ 2z(p) — b — x(P)(¥(p) — a))* + (p) — b)* — W(p)

+ 0(()(p) — a)*, (z(p) — DY) — @)%, (2(p) — b)*(W(p) — a), w?(p))

where w| 0D = 0, w < 0 in D and w(p) ~ dist(p, D) in D.

We can choose ¥ to be a nonnegative real valued funtion on Rsuchthaty |1 =0
and y(x) = exp { — 1/dist (x, )} when x is not contained in l. A proof of this can be
found in [3].

Choose r > 0 and ¢ > O such that r < e and let ¢, , ,(p) = exp {log &/r)u,  /(p).
Then we have the following lemma.

LEMMA 1. Let V(,a,b;t) = {peD| (y(p) — a)* + 2z(p) —
b — x(p)¥(p) — a))* — w(p) + exp { —1/dist (x(p), D} < t}.

If x,y and z are chosen right, then:

i Qs £ 1 forallpinD.

ii. |@ap.i(P) > (1/2)e when peV(l,a,b;r).

iii. |@g,(p)| < e** 172 when pe D\ V(l, a,b; kr) and |y(p) — al, |z(p) — b| and w(p)|
are less than some fixed constant, say ¢ and k = 2.

Note that c does not depend on r or e.

PRrOOF. If pe V(l,a,b,f), then 0 < Reu, ; (p) < r + r, hence |, .(p)l
= exp {(log¢/r) Re u, , ,(p)} > exp {loge/r)(r + r)ife < 1.
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But this implies that |(p)| > exp {loge + r*loge} = cexp {rtloge} > (1/2)¢
since r < ¢. This gives point i. in the lemma.

For point ii. we can observe that Re u(p) > kr — |O((kr)** )|, « > 0 is indepen-
dant of ¢ k and r, when peD\ V(l,a,b,kr) so if kr is not to large then
kr —|0((kr)! *®)| > ((k + 1)r)/(2). Hence

le(p)l < exp {(loge/r)((k + )r/2)} = 172,

Before we proceed we should make sure that we have chosen r > 0 so small
that|fi(p) — fi(q)| < &* wheneveri = 1,20r3and p,ge V(l, a, b; 1 2r*)for some a, b
and [ where length I is less than or equal to —4(1/log r). Here we can see how r will
depend on ¢ and f, f, and f;.

Now each W,,..., Wy = 0D should be chosen to be contained in some coordi-
nate neighborhood as above we should in fact choose each Wto be the inverse
image under the mapping (x, y, z) of [xo — c/4,x¢ + ¢/4] x [yo — ¢/4, yo + c/4]
x [zo — ¢/4,2o + c/4] for some (x,, yo, zo) € R. Here c is the constant mentioned
in lemma [. For simlicity let us assume that x, = y, = z, = 0. It is clear from the
Darboux theorem that we can choose W,,..., Wy this way and still make zure
that Wy u...u Wy = 0D.

Next we make the following inductive choice of points in R:

1. x; =(Q2+4j,)(+1/logr) and I; =[x; —2(+1/logr),x; +2(+1/logt)}
Ji1=12,...,J, where J, is chosen so that the union of all the I; covers all
of [—c/4,c/4].

2. a;, = j,(1.1)r* where j, is an integer and 0 < |j,| < c/(4.4rt):= J,.

3. Choose v such that 1 < v(1.2)/(1.1) and such that u(1.1)r*loge/r is some
integer time 27n. Then we let b jau(l.l)r* where j; is an integer and
0 < |js] £ c/(@.d)r?):= Js.

Now we let u; ; ; =u,,, where a=a;,b=>; and I =1; and then we let
@j1sipiy = €Xp {(loge/ryu;, ;, ;. }. Finally let p; ;, ;. in 0D be the point such that

x(pjxvjz-fs) = Xjy» y(pinfz»fg) = aj, and z(p.ix-fz‘fa) = bfs'

Now we want to define B,, §,, B3 in the following way:

Bi(@) = (1/4)(1 — | f1(@))e'**V 1@, B,(g) = (1/4)(1 — | 2(@))e’**/>@ and
B3(@) = (1/4)(1 — | f3(g))e™*8*@. Note that | fi(q) + 4Bi(a)l = | filq)l +
I —|f(q)) =1foralli=1,2,3and all gs.

Make sure that r > 0 is chosen so small that |1 — (8:(q)/B:(p)| < ¢* whenever
p and q are contained in V(I; ,a;,,b;,).

Now we are ready to define the h’s. They will need to be adjusted later on so for
now we will call them A, i, and f;.

L b= {810, 1,005,550 sl =1L..oJplial = 1,..., 03,
sl = 1,..., 3}
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IL EZ:=Z{_'ﬁz(pjl,jz,j3)¢j,.jz,j3(p)l il =1,...J5, 12l = 2,4,6,...
lisl = 1,...J3}

Note that |j,| is only running through the even integers between 1 and J,.

L hy:= Z{“ﬂs(Pj,,jz,j,)‘Pj,,jz.j3(P)| il = 1,...J0, 12l = 1,3,5,...
|j3| = 1,...,‘]3}

Note that |j,| is only running through the odd integers between 1 and J,.

Now let us show that h,, h, and h;, at least locally does have the properties
needed.

The ﬁrst thing we should notice is that V(I;,a;,b;;r):=V; ; ; then
v {V,’l idsl Uil =L, Julial = 1,...,J,and |j;| = 1 o d3} doescover the set
{peD| dist(p, W) < (1/2)r}.

Next we want to prove:

LEMMA 2.
a. |fip)—h(@q) <1 forallqgandi=1,23.
b. 1A, (P, 1A2(p)l, 1A3(P))) < &3 when dist (p, W) > 61,
c. log(1 = 1£,(p) + Ay (P)) + log (1 — | 2(p) + A>(p)))
+log(l — | f3(p) + A3(p)) < log(1 — |fi(P)) + log(1 — | f2(P)))
+ log(1 — | f3(p)) — (1/20)e* when peV;, ;. ;. for any j,,j, and js.
d. log(1 — 1£1(p) + Ay (D)) + log (1 — | f>(p) + ﬁ}(p ) +
log(1 —|f3(p) + ﬁa(p)l) <log(l —|fi()) + log(1 — |f2(P)) +
log(1 — |f5(p)l) + € for all peD.

ProOF. The first thing we should notice is that |fi(p) + h(p)l < |fi(p) +
Y {I1B:p)l | 71705 (P)l- Now the norms of the ¢’s are decreasing when the distance
to W is increasing, in other words the last term will attain it maximum near W.
Hence if | fi(p) + hi(p)l > 1 for some p, then this happens near W. In fact it will
suffice to study the norm when pe V] ; ; for some j,,js,js.

Next we observe that if we freeze j,,j, and j,, say we call them 9,79 and j3,
then there are no more than k* of the Vj ; ;’s in the set V(lj,a;0,bjo;

(k + 11\ Vljo,aj0,bj0; kr). Also for such a choice of j,,j,,j; we know that
19),.5.5,P) < €% V2. In addition we see that there are no more than 6° of the
Vi iy $ in the set V(Ij?,a,g,bjg,6r).
Let us take a close look at the situation:
i |‘le,12.j3(P) < &if (jy,jz,Ja) if ljy —j31 > 1or|j, —j31 > 1
or |j3 —j3l>1.
11 l‘Pj,.j,,j,(P)l < e®0tif j, #ji.
iii. |1Bdp;,.5,.;,) — (/DA = @D < e* if

‘/jx,h.]; N V(Ij?’ ajtz), bjg)
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From all of this we get that |fi(p) — h(p)|
S 1@+ (= 156 + 246201 + 3/4) + T (k202 k=6,7,...)
+ 6%* < |£ip) + (1 — | £f(p)))(5/6) + &% if & > 0 is small enough.

But (1 — max |f,(p)]) > 73, hence |fi(p) + hi(p)l < 1 — (1/6)7¢> + €* < 1.Soa.
follows.

Now let us do b. if dist (p, W) > 6r* then p can not bein V(I »a;,b iy 6r) for any
choice of j,,j, and j;, hence |g; ; ; (p)| < &3. In fact if we use the above argument
we get:

@) <Y {k2e** V2 k =6,7,...} <& foreachi=1,2,3.
Note that this estimate holds whenever pis not contained insome V(1; ,a; , b i) 6r).
The final and crucial part of this proof is c¢. and d. We shall prove these
simultaneously.
The statement in d. follows from a. and b. if dist (p, W) = 6r*. So we have to
look at the situation where this inequality does not hold.
If dist (p, W) < 6r%, then pe V(Ijl,ajzbj3;6r*) for some j,,j,,js-
The proceed we need a little lemma:

LeMMA 3. If0 < x < 1 thenlog(l — x) < —x — (1/4)x2.

ProoF. When we expand log(l — x) in Taylor series we obtain that
log(1 — x) = —x — (1/2(1 + ¢?)x? where 0 < ¢ £ x < 1. Hence log(l — x) <
—x — (1/4)x2.

If pe V(ch‘;,ajg,bjg;6r*) for some j},j9,3, then either |Bi(p;, ;, ;.) — Bip)l < &*

org; ; ;. belongs to the group of no more than k? functions where |¢@ ininis (PN <
e**1/2 and k > 6. Hence
log(1 — | £1(p) + hy(@))) + log(1 — | /2(p) + h2()) + log (1 — | /() + A3(p))
<log(1 = |/i(®) + L {B1(0)@;,.;,.;, ) sl = 1,2, ljal = 1,2, ljal = 1,2,..}))
+10g(1 = 1£20) + X AB20)0j, @) lisl = 1,20 lial = 1,20, lial = 1,2,...}])
+log(l = 1f3(p) + L A{B:s(P)@;, 1,5, lisl = L2, ljal = 1,2,..,ljal = 1,2,..}))
+ (1/2)¢?
=log(1 = [1A@) + (/41 = 1D Y A@),. 1@ lish Lol lisl = 1,2,...3D)
+log(1 = [12() + (/A1 = 100 Y {9;,.5,.,@)  lishlisl = L,2,...,1j2l = 2,4,..}))
+log(1 — |1 £52) + (1401 — 15ED 4@, 5@ Uishlial = 120,12l = 1,3,...}1)
+ &3:= P(p) + &,
Note that for simplicity we will call the main expression @. Before we go on we
need to observe that if a and b are real numbers, |a|,|b|] < 1 and a > 0 then
la + ib| = a + (1/4)b%. Now |f;], |ii| < 1 and |Re k| < |f;|. Hence:
?(p) < log(1 — 1/,(@)] — (1/4)(1 — ;@) {Re @j, 1,1, lishslizh lial = 1,2,...}
~ (/4 — ;@D (Im ;@) Lishlioh lisl = 1,2,...1)?)
: log(1 — lfi(p)l — (141 ~ 1 LED Y {Re g, j, 1@ Lishlial = 1,2,.... and
jal = 2,4,...
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=/ = 1N {Ime;, 5, 1, sl lisl = 1,2,... and |j5| = 2,4,...})%)
+log(1 - lf?(P)l = (/41 = 10D L {Re@;, ;,;,@) ik ljal = 1,2,... and
lj2l = 1,3,...
—(13/4)3(1 =16 {Ime;, 4,50 lihlisl = 12... and |j| = 1,3,...}))
+ €.

If we apply lemma 3 we get:
P(p) < log(1 — | £1(p))) + log(1 — | £(p)) + log (1 — |£3°(p)))
“(1/4)Z{R3(Pj,,jz.j3(l’)| Uihlizhlisl = 1,2,..} — (1/47*(1 — |f1(P))(Zlm(Pj,sjz.j3(P)|
il lizh sl = 1,2,..1)% — [(1/4)ZRC @joini O isls Uals sl = L,2,...} +
/A~ 1fiENE M @;,,5, 5@ sl izl lisl = 1,2,..1)%12

+(1/4) 3 {Re @;,,;, ;0 sl lisl = 1,2,... and |j,] = 2,4,.. .}
~(1/8°0 = 1LENE {Im @5, ;@) sl lisl = 1,2,... and |j| = 2,4,...})°
~[/A Y {Rew;,;. ;) sl lisl = 1,2,... and |j,| = 2,4,.. .}
+(1/8°A = 1LEN X {Im @5, 1, sl ljsl = 1,2,... and |js| = 2,4,...}1?

+(1/8) Y {Re @, 5,01 sl lisl = 1,2,... and |jo] = 1,3,...}

—(1/4°0 — 1N Im@;,,;, 1, lish lisl = 1,2,... and |j,| = 1,3,...})?
[/ X ARe @5, 5,0 sl lisl = 1,2,... and |jo = 1,3,...}

+(1/ = 1PN M @5, @) il lsl = 1,2,... and |j,] = 1,3,...})*]* + ¢°

Observe that the real parts are cancelling each other. Again we should do
arather trivial observation. Namelyifz = x + iyisacomplex numberand |z| = ¢
and d,e,f >0 are constants, then dx? + (ex + fy)> >gt* where
g = (1/4)min(d, e, f).

From this we get:

o(p) < log(l — |f1(p))) + log(1 — | f2(p)]) + log (1 — | f3(P)))

~(/A* = i @NE APy @) sl izl lisl = 1,2, }1)?

~(1/41 = 1 LENE @5, @) lishlisl = 1,2, and [j3] = 2,4,.. }|)?

~ (/441 — L@NE Py @ sl lisl = 1,2, and [l = 1,3,.. })? + €
From this d. follows. Now it remains to prove that this last expression is less

that or equal to log(1 — [£,(p)l) + log(1 — [/2(p))) + log(1 — f5(P)) — (1/20)e
whenever pe D,max {1 — | f(p)|:i = 1,2,3} 2 ¢!} and also pe Vj,a;0, b0 for

some j9,j3,79.
We may assume that a jo < yp)<a jo+ 1 and that j? is odd which means that

72 + 1is even. From the work done to prove a. we know that
2 Pirinis O Vi gsy O Vo, aj0, bjos tr) = B} < €.
Now let us take a close look at ¢, ; ;.
@),z (P) = exp {log e/n)[Y; (x(p)) + Np) — a;,)* + (2(p) — b;,)* — W(p)
+i2(z(p) — by, — x(P)(NP) — a;,)) + O(Mp) — a.,)°, W' (P)]} =
exp {(log ¢/r)x(p)} exp {6(p)} exp {O((p) — a,,(p))*, w*(P))}
where a; ;. (p):= ¥; (x(p)) + (Np) — ajz)z + (z(p) — bj3)2 — w(p),
0},.5,.5,(P) : = i(z(p) — b;, — x(p)¥P) — a;,)).
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Notice that the b;’s are chosen that if j, is fixed, then
0),.1,.5(P) — 0j ,ajo,b; (p) = m2m where m is an integer. Hence Y A¥s,.5,.5.0)

Jjisja=1,2,...} = (cos(8jo,a;0,bjo(p)) + isinbjo,aj0,b;0(p))
Y Aloj.a0,b;, @I il lisl = 1,2,..}.

We know that Iajg — a,'g“l = (1.1)r* so we may assume that 0 < y(p) —
aj < (0.6)r*. Hence there is some j; and j, such that |g;,a;,b; (p)| 2 7.
Now j3 is odd so this implies that [} {¢; ,a; ,b; (®) ljsl,ljsl = 1,2,... and

lj2l = 1,3,..., i.e j, is running through the odd integers between 1 and J,} =
607 — 6311 — &3] > %8,

From this we obtain that &(p) <log(l — |fi(p) + log(1 — |f2(p)) +
log(1 — 1£f3(p)) — (1/4)*(1 — | f5(P(E*®) + & > log (1 — | f1(P)) +

log(1 = |£2(p)) + log(1 — | f3(p))) — &? when (1 — | f3(P)}) > &
This completes the proof of part d.

Finally we need to remember that the estimates we have for A, , h,, i, are only
local estimates. To obtain functions whith the same properties as these in a global
sense we use a cut off function y such that y is zero whenever these estimates can
not be obtained and y = 1 whenever || > &*, i = 1,2,3. Simultanously we
should make sure that the first order derivatives of y are no larger than 1/(e?).
Finally we let h,(p): = yhi(p) — g.(p), where 0g,(p) = d(xh;)(p) and |g;) < Ce?. This
is possible since |0xh,(p)| < €%, hence by [5] such g;’s exist. It is easy to see that
hy, h,, hy also satifies a., b., c., and d. in lemma 2.
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