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HAUSDORFF DIMENSION AND QUASISYMMETRIC
MAPPINGS

PEKKA TUKIA

A. Ttis well known that quasisymmetric mappings, although sharing some of the
properties of higher dimensional quasiconformal mappings, can be very singular
in the measure theoretic sense. This behaviour is in stark contrast to that of
quasiconformal mappings which, for instance, preserve null-sets. It is known
from the time of Beurling-Ahlfors [BA] that this is not true for quasisymmetric
mappings.

The purpose of this note is to show that the behaviour of quasisymmetric
mappings can be worse than just not being absolutely continuous with respect to
the linear measure. We will construct a quasisymmetric map of the unit interval
Iand asubset Y < I'such that the Hausdorff dimensions of both f Yand I'\ Y are
less than 1. Thus we can give an affirmative answer to the question of the
existence of quasisymmetric mappings not preserving sets of Hausdorff dimen-
sion 1 which has been posed by Hayman and Hinkkanen in [HH, p. 64].

On the other hand, Holder-continuity of quasisymmetric maps implies that
there is a positive lower bound on the dimension of the image of a set of
Hausdorff dimension d > 0 which depends only on d and the quasisymmetry
constant of the map. This has been proved for quasisymmetric maps of general
metric spaces in [TV, 3.18] and [HH, Theorem 11] gives some explicit estimates
for the present situation.

We remark that n-dimensional quasiconformal maps, n > 1, preserve sets of
Hausdorff dimension n, as was shown by Gehring and Viisild [GV]. We may
note, that by Holder-continuity, quasisymmetric and quasiconformal maps
preserve sets of Hausdorff dimension 0.

B. We work in the following setting. Let I be the interval [0, 1]. We consider
increasing self-maps of I and such a map f is quasisymmetric if there is k = 1 such
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that
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for all distinct x,x + t,x — tel. If (1) is true we say that f is k-quasisymmetric
and the smallest number k > 1 such that (1) is true is the quasisymmetry constant
of f.

The Hausdorff dimension of a set X is denoted by dimy, X. We can now
formulate our result more precisely as

THEOREM. There are a quasisymmetric self-map f of I and aset Y < I such that
the Hausdorff dimensions of both I\ 'Y and f'Y are less than 1. Furthermore, given
k> 1landd >0, f and Y can be so chosen that either

(a) f is k-quasisymmetric, or

(b) dimy fY <dand dimyI\Y <d.

It is slightly more convenient to consider maps of the interval I rather than of
the real line. This is an inessential restriction since, if f: I — I is k-quasisymmet-
ric, then we can extend f as in [LV, I1.7.2] to a k’-quasisymmetric homeomor-
phism of R by

f(x) = —f(—x) if xe -1, and
f(x+2n)= f(x) +2n if xelu(—1I), nelZ,
where k' = k'(k) and k' — 1 as k — 1 (see C below).

Thus our theorem is also valid for quasisymmetric maps of R although for
definitiveness we have formulated it for maps of I.

@

C. We make here use of the fact that an increasing homeomorphism f of I is
quasisymmetric as soon as the numbers
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n>0,0 <j < 2" are bounded away from 0 and co. Moreover, if

&) g= sup ki,

n>0,0<j<2n
then f is k-quasisymmetric for some k = k(q) such that k — 1 as g — 1, as follows
from [T1, Proposition 4] (on p. 135 of [T1] one has the explicit bound
q(1 + g + q* + q¢° + q*)for k). Actually,in [T1] one considers maps of R but one
sees that if f: I — I is extended to a homeomorphism of R by (2), then (3) is not
increased if the supremum is taken over all n,jeZ.
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D. sALEM’S FUNCTION. The starting point of our construction is the singular
function considered by Salem [S]. We describe it here. This function is not
quasisymmetric but a slight change in the construction will give us a function
with this property. I am indebted to Matti Lehtinen for bringing Salem’s function
to my attention.

Let t e(—14, 1) and define inductively intervals I, ;,n = 0and 0 < j < 2", by the
rule that Iy, = I and that the invervals I, . ,,; (j varies) are obtained from I}; by
dividing each interval I,; into two intervals I} , ; ,; and I, ,;.,; the indexation
is such that I;; are consequtively on I as j varies from 0 to 2" — 1 (so that I, is the
“lowest” and I ,._, is the “highest” interval) and that

I ; I i
@ | n+‘1.2)| =3 +1 and s 1,25+ =11
L1 |15l

where |J| is the length of an interval J. If t = 0, we denote I} also by I,; and
Li=I% =[2G+ 12"

Salem’s singular function h is the homeomorphisms h of I such that h(l,;) = I;.
One easily sees that

hd+3™M—-hd) _G-nd+o"
hd)—hi -4 G+9G -9

If t £ 0, this tends to 0 or to co as n — oo and hence h is not quasisymmetric.

We can obtain the quasisymmetry condition if we change the construction as
follows. Otherwise the construction is valid as above but (4) is valid only for even
j;if j is odd, then we interchange 3 + ¢t and 4 — t in (4). After this small change we
define a map f;" by the formula

©) frd,) = I, (n fixed, 0 < j < 27)

and by the requirement that each f"| I,;is linear and increasing. These maps have
a limit f; such that

(6) Sl =1,

for all n,j. This map f, is quasisymmetric: it is easy to see that the numbers k,,; from
C (for f = f,) satisfy

2+t
}—
and hence (see C) f; is quasisymmetric and its quasisymmetry constant tends to
1 as t — 0. Note that f, is the identity map of I. '

Thus f, is the limit of maps f" which are affine on intervals and the next
function f"*! in the sequence is obtained by dividing each interval into two

1
kit =

n>00<j<2"
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pieces such that f"*! changes the ratio of the pieces (but does not change the
endpoints). This was the underlying idea of [T1], and Carleson [C] has also used
a similar construction to find singular quasisymmetric maps.

E. We will show that the map f = f,f-,! satisfies the conditions of our
theorem for suitable ¢t > 0. Except for the quasisymmetric part, the result is valid
also if f, and f_, are defined as for Salem’s function, or in fact if they are limits of
maps as in (5) where the intervals I;; satisfy (4) up to a permutation of the numbers
4 + tand 4 — ¢ (thatis, the order of 4 — rand 4 — ¢t may vary in (4) depending on
n and j but the same order is used for f, and f_,).

Even if we do not require that the intervals I;; are consecutively on I, but
require only that I, | »;, 1,4, 2j+, is a subdivision of I into two intervals which
satisfies (4) (now no permutation of 4 + t and 3 — t and the order of I, , ,; and
I, .y, 2j+1 on I may depend on t), (5) still defines a map f;" except for endpoint of
the intervals I,;. These maps have a limit f, (possible non-homeomorphic) which
is well-defined for points x # j27". Again, apart from quasisymmetry, our results
are valid for these maps.

However, we fix the situation and let f; be as defined in Section D in which case
the maps are quasisymmetric.

F. If I, ; < I;, then there is a well-defined sequence
Li=Lj, 2Ly, 2 2 himjn = himi

of intervals. The length of each interval is either } + ¢ or 4 — ¢ times the length of
the preceding one and hence there is r such that

™ Dtm,il =G+ 00 (G — "7 1Ll

The number of such subintervals I} ., ; (i varies) of I,; which satisfy (7) is given by
the binomial coefficient (7).

We denote by A,(n,j,m,r) = A(I,;,m,r) the family of subintervals I, ; of
I; for which (7) i true and define

Afn,j,m) = A(I;,m) = |) A(n,j,mr), and
(8) rsmj2
B,(n,j,m) = Bt(l:uj’m) = U Afn,j,m,r).
r>m/2
(If t = 0, then these families are no more well-defined by (7), but an equivalent
definition is easily given combinatorially or by a limit process.) Thus if K = I}

njo

then 4(K,m) L B(K,m) is the family of intervals J = I} 4 i Such that J < K.
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By (6), we have for every K = I.); and m > 0

) J(4o(K, m)) = A(f(K),m)

and similarly for the B,-families.
Our theorem is based on some measure properties of these families. Define the
number d, by

(10) 1= (/T-)%

then0 < d,=d_, £ 1andd, = 1 onlyift = 0. We need also a number d, which is
between d, and 1. It is not very important how it is defined but it is convenient to
fix it by

(11) d = /d,

The first lemma we need is

LEMMA 1. Let K = I;;. Then for allm > 0
(12) Y M<K
JeA(K,m)
itt=20,andif t £0,
(13) Y U< |K[*
JeB (K, m)
ProoF. We prove (12). Exactly the same calculation proves (13). We have
Y W= Y O +06 -9 IK1x
JeA(K,m) r<m/2

Since
G+oG-om =g -tyg - = (Sr-o)m
and (. /3 — tz)"‘ = 4, we obtain

X W= ¥ M27mIK* < K|

JeA.(K,m) rsm/2

We do not need so much (13) than the following consequence of it. If t < 0, and
K = I;;, then for every ¢’ > 0 there is m = m(c’, t, K) such that

(14 Y W<
JeB(K,m)

This follows from (13) since d, < d, and, if Je B(K,m), |J| < (3 + |t))" — 0 as
m— oo.
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REMARK. Actually, in (13) we could replace |K|* by 4|K|* and similarly in (12)
we could have the majorant c,,|K|* where c,, < % and c,, = $ when m — co. But
this will suffice to us.

G. We can now construct a Cantor set X such that dimy f(X) < 1 (t > 0)
although f_,(X) is fairly big, for instance of positive linear measure.

LEMMA 2. Lett > Qand c > 0. Let K be an (open, half-open or closed) subinter-
val of I. Then there is a Cantor set X < K such that dimy f,(X) < d, and that if J,,
k > 0, are the intervals of K\ X, then

(15) PINVAOA 4
k>0

Proor. We can assume that K is open. We can represent K as a locally finite
union of intervals K; such that each K ; is of the form I, and that two intervals K,
and K, have at most an endpoint in common. It is clear that it suffices to prove
the lemma for each Kj=int K; with individually chosen ¢ = c; such that
Zjc; <c. When we have found for each j the Cantor set X; < Kj, we set
X = u; X where either X; = X;or X; = .

Thus we can assume that K = int I, for some n,k. We define inductively
families F; of intervals J < K of the form I,, with the following properties. For
every J € F; there is a number m; such that

(16) Fiy = U Ao(J,my)

JEFJ

where A, is as in (8). Furthermore, if E; is the family components of K\ (U F)),
then

(17 Y lfedDE <27 +272+ ... +27) <
JeE;
We define F, = {K} (it clearly satisfies (17)) and having defined F;,...,F;,
define F;, , as follows. By (14) (and (9)), there is for every J € F; a number m, such
that

(18) Yo NSO

J'eBo(J,my)
We fix for every J € F; such a number m, and can now define F;, ; by (16). Every
interval J'e E; , , is a union of intervals J” such that either J” € E;or J” € Bo(J, m;)
for some J € F;. Since d; < 1, (17) and (18) imply that
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Y OS2 427+ 2T Y ()]
J'eEj+1 JeF

Sc@7'+...+2707Yy

(For the last inequality, we have used the fact that Z If—{( < 1)
JeF
We can now define the Cantor set X. Let !

which is clearly a Cantor set. Let J be a component of K\ X. Then, beginning
from some j, there is a unique J;€E; such that J o J;. Then |f_,(J;)| is an
increasing sequence such that | f_ (J))] = | f_(J)| as j = co. It follows by (17) that
(15) is true.

To estimate the Hausdorff dimension of f,(X), we observe that { f,(J): J e F,} is
a cover of f(X) by intervals. Applying (12) (and (9)) to the the definition (16) of
F;,,, we obtain

X =3 Y AU

J'eFjsy JeFjJ'eAo(J,my)

<Y I+ <...<|K* <1
JeF;
Since the maximum length of the intervals of F; tends to 0 as j — 0o, it follows that
dimy f(X) £d, < 1.

H. CONCLUSION OF THE PROOF. We have that t > 0 and hence d; < 1. Conse-
quently the linear measure | f_,(X)| of the Cantor set X of Lemma 2is =1 —c.
Here ¢ > 0is an arbitrary constant and it would be an easy matter to construct
a set Y of full linear measure such that dimy, f,f~,*(Y) < 1. However, in order to
obtain that dimy I\ Y < 1, one more step is necessary.

We construct inductively Cantor sets Y; = Y, ... such that

(19) dimy f(Y)) < d,
for all j and such that if J;, k > 0, are the components of I\ f_(Y)), then
(20) Y Wl <270

k>0

For Y; we can take the Cantor set X given by Lemma 2 with K = Iand ¢ = }.
Suppose then that Y;,.. ., Y;have been constructed and satisfy (19 and (20). Let J;,
k > 0, be the components of I\ Y;. For each J, fix a Cantor set X = Z,  Jyasin
Lemma 2 with K = Jy and ¢ = 2777 | f_(J)|. Let Y,y = Y;U(Uys0Zy). Itis
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clearly a Cantor set which satisfies (19). It satisfies also (20) since Z, | f_,(J)] = 1.
Let

Y=UJYI'

Since dimy f,(Y;) < d, for all j, also dimy f(Y) < d,.
We claim that dimy I\ f_/(Y) < d;. Asabove, let J;,k > 0, be the components
of I\ f_(Y;). Then

INf_(Y)= (U dp).

Thus for each j, {J: k > 0},isacover of I\ f_,(Y) by intervals. We can now use
(20) to conclude that dimyg I\ f_(Y) < d;.
Let
f = f:f :rl'

We have shown that f maps the set f_/(Y) onto the set f,(Y) such that
dimy f(Y) <d, < 1and dimy I\ f_,(Y) < d; < 1. By (10) and (11), d, and d; can
be chosen to be arbitrarily small. Thus to conclude the proof of the theorem we
must only show that f is quasisymmetric and, moreover, that the quasisymmetry
constant of f tends to zero as t — 0.

It seems that the proofis non-trivial if one uses only the definition of quasisym-
metry, but we can note that every f, can be extended by (2) (see C) to
a k,-quasisymmetric map of R where k, — 1 as r — 0. Hence f;, and f_,, and
consequently also f, have a Beurling-Ahlfors extensions to the upper half-plane
whose dilatation tends to 0 as t — 0. By the estimate in [BA, p. 131], f is
q,-quasisymmetric where ¢, — 0 as t — 0. The proof is complete.

I. FucHsIAN GrouUPS. There is an area where singular quasisymmetric maps
frequently turn up. Let G be a Fuchsian group with finite-volume quotient such
that R = R U {0} is the invariant circle. Let ¢: G — H be an isomorphism onto
another Fuchsian group and suppose that there is homeomorphism f of R such
thatfgf ! = ¢(g) on R. If f fixes oo and is increasing then f | R is quasisymmetric
but f is completely singular in the measure theoretic sense unless f is a Mobius
transformation. (It seems Kuusalo [K] was the first to observe this).

Itis natural to conjecture that in this situation, unless f is a Mobius transform-
ation, f is as singular as the map of our theorem. One can mention some facts to
support this conjecture. If G is torsionless and the quotient is non-compact, then
there is a G-invariant triangulation of the upper half-plane U with ideal hyper-
bolic triangles whose vertices are on R. We can imagine that f is obtained by
gliding two triangles with a common side along the common side (and doing this
simultaneously for all sides). It would seem that topologicaly the situation
resembles very much the construction of our singular map f. (Cf. [T2, Sections
2 and 3 and Remark 2 p. 370]).
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