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LIMIT SETS OF PLURISUBHARMONIC FUNCTIONS

LARS HORMANDER and RAGNAR SIGURDSSON!

0. Introduction.

In this paper we give a complete description of limit sets of plurisubharmonic
functions in C" of finite order and finite type. The limit sets, L_(p), were first
introduced by Azarin [1] as a growth characteristic of subharmonic functions
pin R¥. They are defined for p e SH(R"), of order g and finite type, as the set of all
g€ SH(R") that are limits in 2'(R") of sequences of the form {t; ©p(t;")}, where
t; — co. Azarin investigated the basic properties of the limit sets, and gave
a partial solution of the problem of characterizing those subsets of SH(R") that
are limit sets of some function. He proved, that if ¢ denotes the type of p, then
L (p) is a compact subset of {geSH(R™);¢(0) = 0,g(x) < a|x|?}, given the dis-
tribution topology, and that L _(p) is invariant under the action of the one
parameter group

1
(0.1) T;: Lioo(RY) = Lio(RY),  (Tig)(x) = q(tx), >0,

of continuous linear operators. Conversely, given ¢ > 0 not an integer, and
acompact Tinvariant subset M of SH(R"), then there exists a function pe SH(R")
of order ¢ and finite type, such that M is contained in L_(p), which in turn is
contained in the union of all line segments with end points in M.

Later, Azarin and Giner [2] characterized limit sets that are the closure of one
orbit, M = {T,q;t > 0} for some qe SH(R"), and gave examples of compact,
connected, T invariant subsets of SH(R") that are not limit sets. In his thesis,
Sigurdsson [6, section 1.2] improved Azarin’s results to hold for every ¢ > 0,and
generalized them to plurisubharmonic functions in C". He also proved, that if
M < SH(RY)is compact, connected and its elements are homogeneous of degree
0, then M is a limit set.

In this paper we only deal with plurisubharmonic functions in C". Our proofs
are immediately modified to hold for subharmonic functions. We let PSH(C")
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denote the set of all plurisubharmonic functions in C". The topologies of 2'(C")
and L} (C") coincide on PSH(C") and PSH(C") is closed in this topology, hence
a complete metrizable space. For a proof see Theorems 4.1.8 and 4.1.9 in
Hormander [5]. We let T= {T;},. , denote the one parameter group defined by
(0.1), where R" is replaced by C".

Many of our results even hold for a flow @ on a general metric space (X, d), that
is, for a continuous mapping #: X x R, — X satisfying &(P(p, s), t) = &(p, st)
and ¢(p,1) = pforallsand tin R, and all pin X. We always write ®,p instead of
&(p,t) and view & = {®,},. , as a one parameter group of continuous mappings
on X. For any q in X we define the limit set of q at infinity L_(q) as the set of all
limits of sequences of the form {tb,jq}, where t; = co. We define the limit set of g at
the origin Ly(q) similarly with t; - 0. The continuity of @, implies that the sets
L (q) and Ly(g) are @ invariant, thatis, ®,L_(q) = L_(q) and &,L,(q)for all t > 0.
If pand g are in X, ¢ > 0 and w > 1, then an (¢, w)-chain from p to q is a finite
sequence po = p,p; ...,Py = ¢, satisfying d(tb,jpj, pj+1) < eforsomet; 2 w.

DEFINITION 0.1. Let @ be a flow on a metric space (X, d), and let M be a ® invariant
subset of X. We say that & is chain recurrent on M, if for every q in M, ¢ > 0 and
> 1, there exists an (g, w)-chain in M from q to q.

In Theorem 1.1 we shall give a number of properties equivalent to chain
recurrence which are really more illuminating in connection with the main result
of this paper:

THEOREM 0.2. Let g be a positive real number and let M be a compact, connected
and Tinvariant subset of PSH(C"). Then M = L (p) for some p € PSH(C"), of order
¢ and finite type, if and only if Tis chain recurrent on M.

By Sigurdsson [6, Theorem 1.3.1] the function p in the theorem can be chosen
of the form p = log|f|, where f is an entire analytic function.

In section 1 we begin by studying the topological properties of forward orbits
and limit sets of functions in PSH(C") of order g. Then we study chain recurrent
flows and prove the necessity in Theorem 0.2. We end the section by proving that
the theorem contains the results of Azarin [1] and Azarin and Giner [2]. In
section 2 we study regularizations of plurisubharmonic functions in C”, and
finally, in section 3 we complete the proof of the theorem.

1. Chain recurrent flows.

Let us begin by reviewing the definitions of order and type. A function
pe PSH(C") is said to be of finite order if there exist positive real numbers 7, s and
o such that

(1.1) pz) St +o0jzl% zeC™
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The order g, of p is then defined as the infimum over g such that (1.1) holds for
some 7 and . The function p is said to be of finite type if it is of finite order and
(1.1) holds for some t and ¢ with ¢ = g,. The type o, is then defined as the
infimum over o.

Let pe PSH(C") be of order ¢ and finite type. Then the mean value property
implies

1
(1.2) J. Tp(z)di(z) 2 piz)dAz), t=1.
lzlse " )iz se
Now Theorem 4.1.9 in Hormander [ 5] gives that the forward orbit { T;p;t = 1} is
relatively compact in PSH(C"). Thus

@

(1.3) Ly = () {Tp;t 2 N}

N=1

is compact and connected. If the backward orbit {T;p;0 < t < 1} is relatively
compact, then Ly(p) is also compact and connected, for

(1.4) Lo(p) = () {T;;0 <t < I/N}.

N=1
If M is acompact T invariant subset of PSH(C"), then the semi-continuity and the
invariance imply that g(0) = O for all g in M. The mean value property gives

q(z) S (M 1,19)(2) = 121° (A (Tq) (z/)z)), qeM,

where t = |z| and (.#,q)(z) denotes the mean value of q over the ball with center
z and radius r. Now the compactness implies that there exists ¢ > 0 such that
M = {qe PSH(C");4(0) = 0,4(z) < o2/}

For the proof of Theorem 0.2 we need equivalent descriptions of chain
recurrence:

THEOREM 1.1. Let @ be a flow on a metric space (X, d) and let M be a compact
and @ invariant subset of X. Then the following conditions are equivalent:
(i) M is connected and ® is chain recurrent on M.
(ii) For every open proper subset U of M satisfying

(1.5) dUCU, 0<t<l,

the boundary dU of U in M contains a non-empty ® invariant subset of M.
(iii) For every closed proper subset K of M satisfying

(1.6) dKcK, t21,

the boundary 0K of K in M contains a non-empty ® invariant subset of M.
(iv) There does not exist any open proper subset V of M satisfying ®.V < V for
some t > 1.
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(v) Foreverye > 0,w > 1 and every pair of points p and q in M, there exists an
(&, w)-chain in M from p to q.

PROOF. (ii) <> (iii) is obvious since (1.5) is equivalent to (1.6) if K = M\U.

(i) = (iii). Let K be a closed proper subset of M satisfying (1.6) and assume that
0K does not contain any non-empty & invariant set. Since M is connected 0K is
non-empty. Let Wdenote the interior of K in M. The continuity of &, and (1.6)
imply that W< W for all t > 1, and if <I>tppe W for some pedK, and 1, > 0,
then &,ge W for all ge 9K in some neighborhood of p and all t > 7,. By our
assumption such a 7, exists for all pe 0K, so the Borel-Lesbesgue lemma implies
that thereexists w > 1,suchthat K <« ¢, K = Wforallt = w. Wechoosee > 0
as the distance between 0K and @, K. Then there does not exist any (¢, w)-chain
from a point p in 0K to itself.

(iii) = (iv). Assume that there exists an open proper subset Vof M satisfying
®.Vc Viorsomer > 1.Set W= | ), <,<. P,V and K = W. Then Wand K satisfy
(1.6), W is open, and the compactness of the interval [1,7] gives that
K = <,<. P, V. Hence ® K = W.If we can show that K is a proper subset of
M, then this implies that 0K does not contain any non-empty @ invariant set,
contradicting (iii).

Since V is a neighborhood of the compact set &, V'we can find « > 1 such that

¢PVcV if 1<t
Hence
¢‘1-I7C ¢‘—1V if 1 é t é o.

When jissolarge thato’ > titfollows that K = &, -V, hence K is not equal to M.

(iv)=(v). Lete > 0,w > 1andlet pe M. Let V denote the set of all g € M, such
that there exists an (¢, w)-chain from p to g. Then Vis open, # pe Vand &,V < V.
By (iv) V= M.

(v) = (i). Assume that M is not connected. Then it can be written as the union
of two non-empty disjoint sets 4 and B that are both open and closed. Since M is
compact, the distance ¢ between A and B is positive. Then every (¢, w)-chain
starting at a point in 4 remains in A4, contradicting (v). Hence M is connected.
The last statement of (i) is contained in (v), so the theorem is proved.

REMARK. (i) The equivalence of (i) and (iv) in Theorem 1.1 was first proved by
Franke and Selgrade [4]. See also Bowen [ 3] for similar results on discrete flows.

(i) If K is a subset of M satisfying (1.6), then K always contains an invariant
subset F, for we can choose F as L (q) for any g € K. The point in condition (iii) is
thus that the invariant set is contained in the boundary of K.

The following proposition implies the necessity of chain recurrence in The-
orem 0.2:



312 LARS HORMANDER AND RAGNAR SIGURDSSON

PROPOSITION 1.2. Let @ be a flow on a metric space X and let M = L (p), for
some p in X with relatively compact forward orbit. Then M is compact and & is
chain recurrent on M.

Proor. Let U be an open proper subset of M satisfying (1.5) and let F be
a @ invariant subset of K = M\U. If F intersects 0U at r, then Lo(r) = F n 06U, so
dU contains an invariant set in this case. Now assume that F does not intersect
oU. Let U, be an open subset of X such that Uyn M = Uand Uyn M = U. We
can for example choose U, as

Uo = U {reX;d(q,) < d(g,K)/2}.
qeU
Thus U, does not intersect F. and we can take a sequence of open neighborhoods
U,,U,,...of F in X, such that TJ—; are all disjoint with U, and U; decrease to F.
Since M = L(p) we can find intervals a; < t < b; with a; — oo, such that

®,peiU;, ®,pedl,, ®p¢U,uU, a;<t<b,

Since the forward orbit of p is relatively compact, we may pass to a subsequence
and assume that ®,p—reF, which implies that ®,, p > DreF, uniformly for
bounded t. This shows that b;/a; — 0. By passing again to a subsequence we may
assume that &, p—>geMn 0U, = dU. Since Py p— Pq and @y, pé U when
a;/b; <t <1, we obtain &,g¢ U when t < 1. Hence the whole backward orbit
{®,q;0 < t < 1} liesin dU, which must therefore contain the @ invariant set Ly(q).
This completes the proof.

The following proposition shows that Theorem 0.2 is a generalization of the
results of Azarin and Giner [2]:

PROPOSITION 1.3 Let @ be a flow on a metric space X, and assume that
M = {@,g;t > 0} = Lo(q) U {®,g;t > 0} U L (q) is compact. Then ® is chain re-
current on M if and only if

(1.7) Lo(@) N Leo(q) + 9.

PROOF. Assume that (1.7) holds and let U be an open proper subset of
M satisfying (1.5). Set K = M\U.
i) If Lo(q) » L (q) contains a point of U, then @,qe U for all t > 0 since U is
open and (1.5) holds. Hence U =M, so K < dU and U contains
a non-empty @ invariant subset.
ii) If Lo(q) n L (q) contains no point of U, then this is a ¢ invariant subset of
U, for Ly(q) = U by (1.5).
Assume now that LggnL,(q9) =9, then & q+d,q if 7$o0, and
P.q9¢ Lo(q) v L,(g) for © > 0. In fact, if &9 = &,q, then A— D, ,q is periodic
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with period log(z/0), and Ly(q) = L(q) = {®,g;t > 0}. Moreover, M is a disjoint
union of Ly(q), {®,g;t > 0}, and L (q). In fact, if &.g € L,(q), say, then ®,q e Ly(q)
for t > 0, so L (q) = L(q), which is a contradiction. Hence

U=Lyqu{Pgt <1}

is an open proper subset of M satisfying (1.5). But U = {q}, which is not
invariant. By Theorem 1.1, @ is not chain recurrent on M, and the proof is
complete.

Next we shall prove that Theorem 0.2 also contains the results of Azarin [1].

PROPOSITION 1.4. Let X be a compact T invariant subset of PSH(C"), and let
M denote the union of all line segments with endpoints in X. Then M is connected
and Tis chain recurrent on M.

PRrOOF. Let U be an open proper subset of M satisfying (1.5). We choose pe U
and q in a T invariant subset of K = M\U. Since M is the union of all line
segments with endpoints in X, we can choose ¢, and g, in X, such that the line
segments with endpoints {p,q,} and {q,,q} are contained in M. Set g, = p and
q3 = q and define a continuous path [0,3]3 0+ gs€ M, consisting of the three
line segments

q0=(l+1—0)q1+(0—.])q)+1’ 06[’5.]+1]’ ]=0’l92~

Now M is T invariant, so for each ¢ the continuous path [0, 3] 3 0+ T,gglies in M.
If t€(0, 1), then its initial point T;p is in U and its endpoint T,q is in K. For each
te(0,1) we set

6(t) = min{0€[0,3]; T,gp€ K}.

Then 6(t) > 0, T,geq€0U, and (1.5) implies that (0, 1)t 6(¢) is a decreasing
function. Hence the limit 6(0) = lim, _,  6(¢) exists and is positive. Set r = gy,

We claim that Ly(rr) < éU. If 6(0)e(j,j + 1], where j=0,1 or 2, then
0(t)e(j,j + 1] if ¢ is sufficiently small, and

Tir = T + (6(t) — 0(0)Tig; + (6(0) — (1)) Tig; ;-

The first term in the right hand side lies in oU. The set X is compact and
T invariant so the other terms tend to 0, in the sense of distributions, as t tends to
0. Hence Ly(r) = dU. The proof is complete.

REMARK. With a similar proof it follows, that if M is a compact T invariant
subset of PSH(C"), and each pair of its points can be joined by a polygonal path,
then T'is chain recurrent on M.

We conclude this section by preparing for the proof of sufficiency in Theorem
0.2



314 LARS HORMANDER AND RAGNAR SIGURDSSON

LEMMA 1.5. Let @ be a flow on a metric space (X,d). Let M be a compact,
connected and @ invariant subset of X and assume that ® is chain recurrent on M.
Let {q;} be a sequence in M. Then there exist sequences {a,} and {w,} of positive
real numbers and a sequence {p,} in M having {q;} as a subsequence, such that

(1.8) «,<1, a,-0, w,>2, w, -0
and
(1.9) d®, Py P,,, Py+1) >0 as v—co.

Proor. In addition to {,}, {w,} and {p,} we define, by induction, a sequence
{e,} of positive real numbers, tending to zero, and an increasing sequence {v;} of
positive integers, such that p,, = g;and d(®@,p,P,,, Pv+1) S&,v=12,....We
begin by setting a, = ¢, = v, = 1, w, = 5 and p, = q,. Assume now that a,, ¢,,
w, and p, have been chosen for v =1,2,...,v;. Set a = avj/Z, €= av/Z and
=, . By Theorem 1.1 there exists a sequence 7o = D,q;,71,. .., T = PoGj41
such that d(®, ry,rc+() <é for k=0,...,m — 1, where t, 2 . Now we set
Visr=V;+m+ 1. Forv=v;+k+1, k=0,....m—1, we set a, = 1/\/t‘,‘,
£, =¢&0, = \/t:,pv = @ 41, and finally, for v=v;,, we set a, =0, ¢, =¢,
w, = 2w, p, = q;+. With this definition, (1.8) and (1.9) follow. The proof is
complete.

2. Regularization of plurisubharmonic functions.

In our construction of plurisubharmonic functions with prescribed limit sets
we need to be able to approximate general plurisubharmonic functions by
smooth ones. In this section we introduce a certain regularization operator for
that purpose and study its properties. The results are improvements of those of
Sigurdsson [6, Section 1.2].

Let GL(n, C) be the group of invertible n x n matrices with complex entries.
We regard GL(n, C) as a subset of the space C"*" of all n x n matrices and shall
use the Lebesgue measure d4 in C"*" when we integrate over GL(n, C) although
the Haar measure might be more natural. By dA we shall also denote the
Lebesgue measure in C".

LemMa 2.1. Let f € L1 (C™\{0}) and let y € CZ(GL(n, C)). Define R, f by

(2.1) R, f(2) = J f(Az)y(A)di(A), zeC"\{0}.

GL(n,C)
i) If y = 0and [Ydi = 1, then
2.2) R,f—f-0 in L (C"\{0}) as suppy —{I},
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where I denotes the identity matrix. The convergence is uniform for f in
a compact subset of L;,(C™\{0}).

ii) R, f€C®(C"\{0}). If K and U are compact subsets of C"\{0} and GL(n, C)
respectively, with suppy < U, and k is a positive integer, then

(23) Y. supl|Ryf| £ Coxw Y, suploy| J | f ()l dA(z).
lal=k K lal =k UK

iii) If feL,,(C" then R,feLj, (C"), and (2.2) holds in C" if y 20 and

fwdi = 1; if f e PSH(C") then R, f € PSH(C").

ProoF. If ze C"\{0} then the map GL(n,C) A+ Aze C"\{0} has surjective
differential, so the pullback A+ f(Az) is in L (GL(n,C)), which makes the
integral (2.1) well defined. For any compact set K = C" we have

L IR, f(2)|dA(z) = J . j |f(Az)Y(A)| dA(A) dA(z)

= Ildet A7l (A) dX(A) LK |f(2)| dA(z).

If 0¢ K then 0¢ UK. Now i) is obvious with uniform convergence in C" if
f € CP(C™\{0}). Since this is a dense set in L},.(C"\{0}) and in L} (C"), we obtain
i) and the analogue for C" stated in iii).

Next we shall prove that for given zoe C"\{0} the estimate (2.3) is valid for
some neighborhood K of z, when the compact set U < GL(n, C) is given, with
suppy < U, and f e CZ(C"\{0}). Since the map A Az, is surjective, we can
choose an (affine) right inverse B from a neighborhood K of z, to a neighborhood
of the identity in GL(n, C). Thus z = B(z)z, if ze K, so

R, fl2) = jf (AB(2)zo)Y(A) dA(A)

= j f(AzoW(AB(2)™ )| det B(z)| ~*" dA(A).

Here we have used that the map 4+ AT = {Z;a;;t;} in C"*" has determinant
(detT)" since it acts as the transpose of Ton each row of 4. For ze K we can now
estimate the left-hand side of (2.3) by

Cex 2, suplo*yl J | f(Azo)| dA(A).
lal Sk UB(K)

The integral can be estimated by the L' norm of f in UB(K)z,, since the linear map

C"*" A Az, is surjective. This proves (2.3) when K is sufficiently small. By the

Borel-Lebesgue lemma we conclude that (2.3) holds for any compact set
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K < C"\{0}, which completes the proof of the lemma apart from obvious state-
ments.

In what follows we shall denote by ¥ a fixed function in C3(C"*") satisfying
Y = 0 and jl// d2 = 1.If |A|| £ 1/2 in supp ¥ then the support of

24 Vo(d) = 6~"Y((4 — D/3), N =2n’,

is contained in a fixed compact subset of GL(n,C) when 0 < § < 1, and

2.5) Y sup|oY, < Cd M H 0<ds1

lal <k

(2.6) Z sup|0%(ys, — ¥s,)l < Coz V16, —0y), 0<d,26, 51

lal Sk

(2.5)is obvious, and (2.6) follows if we note that the derivative of Y, with respect to
8 is 6~ 1(— Ny, — ;) where § is the radial derivative of .
We are now ready to prove the main lerhma of this section:

LEMMA 2.2. Let qe PSH(C") and define R(é)q by (2.1) with y replaced by y;,
0< 6 £ 1. Then .
i) R(6)qe PSH(C") n C®(C™\{0});if qis of order < g and finite type, then R(8)q
is also of order < g and finite type. We have

R(®)q—q—0 in L (C") as 6—-0.

loc

The convergence is uniform for q in a compact subset of PSH(C").
ii) Let {p,} and {p,} be bounded sequences in PSH(C") such that p\, — p, — 0 in
Li,(C™\{0}). Then there exists a sequence {5,} in (0, 1] such that 6, — 0 and
R@,)p, — R(S,+,)py =0 in C®(C"\{0}) as v—o0.

PRrOOF. The first statement is contained in Lemma 2.1. To prove the second we
choose an increasing sequence K, of compact subsets of C"\{0} containing any
such set for large v, and a sequence ¢, | 0 such that the L' norm of p, — p) over K,
is < ¢,. Writing

R(8,)p, — R(3,+1)p} = RO.Xp, — p)) + (R(3,) — R(S,+ )P,

we conclude from (2.3), (2.5) and (2.6) that ii) holds if §, | 0 and for every integer
k=0

7 67 Neg, -0 asv-— oo,

(2.8) S, kN1, —6,,1)=0 asv— .
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To satisfy these conditions we first introduce another sequence & by

1/}, = min (v — u + 1/e,).

1Susv

Then

e, < Ve, 1/ < Vehyy S 1+ 1/,

and &, — 0 as v — oo. If we choose 6, ! = log(2¢}/¢!) then
1/6,+1 = 1/3, = log(ei/ey +,) < log(l + &) < &,
$0(2.7),(2.8) follow at once even with ¢, replaced by &;. This completes the proof.
The final result of this section is:

LEMMA 2.3. Let ¢ be a positive real number and y be a positive continuous
function on R,, such that yr)—-0 as r—oo. Then one can find
@ e PSH(C") n C*(C"\{0}), such that

2

re ]
L5 @wibe 2 W2l 2wl weClz 2 1,
jk ©jCk

and T,®(z) decreases to zero ast — oo for all ze C".

For a proof see Sigurdsson [6, Lemma 1.2.3].

3. Plurisubharmonic functions with prescribed limit sets.

In this section we complete the proof of Theorem 0.2 by constructing a func-
tion p in PSH(C"), of order g and finite type, with L _(p) equal to a given subset
M of PSH(C"). It will be of the form

@3.1) p=3 SUTyr)+ o,
v=0

where {¢,} is a partition of unity in C" {r,} is a regularization of a certain
sequence {p,} in M, {t,} is a sequence of positive real numbers, and @ is a strictly
plurisubharmonic function, which does not affect the asymptotic behavior of the
sum, but ensures the plurisubharmonicity.

We begin by defining the partition of unity {¢,}. Let {a,} and {w,} be
sequences of positive real numbers satisfying (1.8). We then define the sequences
{t,} and {o,} by

(32) To = 1, o, =Wy, Ty41 = av/av-f-l‘
Choose y € C*(R) satisfying
3.3 0sx<s1, xx)=1if x=1, yx)=0if x=22,
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and define y, e C*(R) by

3.4 0x) = x(x/a,), xeR.

We then define {¢,} by

(3.5) ®o(2) = xo(l2l),  &4(2) = xu(12]) — 2v-1(12)), v=1,2,3,...
By (3.3) and (3.4) we have

(3.6) $,€CP(C", 0<¢, <1, },=1, |D’§,|=Cplz| ™",

where C, is a positive constant and f is any multi-index. Since a, < 1and w, > 2
we have

(3.7 supp ¢, < {zeC%0,_, < |z| < 20,},
(3.8) o) =11if 20, , <)z S o,
and

(3.9) supp ¢, nsuppd, =9 if |v— pu > 1.

Lett;— 00,1, <t; <7, 4,,and let K be any compact subset of C™\ {0}. Since
a, — 0 and w, — oo we have

(3.10) ¢vj(tjz) + ¢vj+l(tjz) =1 for zeK and  large.
Ift; = 1,,, O even more generally t j/avj — 0, then

(3.11) é,,(t;z) =1, for zeK andj large.

If, on the other hand, t;/o, — + oo, then

(3.12) é,,+1(t2) =1, for zeK and jlarge.

PROOF OF THE SUFFICIENCY IN THEOREM (.2. We let d be some metric defining
the topology on PSH(C"). Let {q;} be a sequence in M with every element
repeated infinitely often and forming a dense subset of M. We choose the
sequences {a,}, {®,} and {p,} asin Lemma 1.5 and define the sequences {t,}, {5, }
and {¢,} by (3.2) and (3.5). We set p\, = T,, p,, py = T, Py+1, choose a corre-
sponding sequence &, according to Lemma 2.2 (ii), and set r, = R(é,)p,. The
function p will be of the form (3.1). In order to estimate the Levi form of the
sum in (3.1), we set s, = T,, r, and s = Y ¢,s,. By (3.8) the Levi form of s is
non-negative in {ze C"; 20,_, < |z| £ 0,}. In the set {zeC"; 0, < |z| < 20,} We
have ¢, + ¢,,, = 1, so the Levi form of s is given there by the formula

2

a s Sy+1 -
(3.13) %62,62’,‘ ¢'z 62 62 Wi+ ¢"“Z 0z, 0%, Wi%




LIMIT SETS OF PLURISUBHARMONIC FUNCTIONS 319

09, 0 _
az ) Ez:(sv - sv+l)’w>)
2

%9,
+Zaz oz, WiW (s, — 5, 41)

Jjk

The first two terms in the right hand side are non-negative. If 5, < |z| < 20,, then
z = ¢, for some { with 1 <|{| < 2, so

5y(2) = 6YT,, Ty, r,)(C) = 0XT,, 1))

and
Sy+1@) = 6UT,, Ty, 1y 1)) = oUT,,, ,7y41) Q).
This gives
(8 = 8y+1)(2) = 62(RO,)T,,p,) — (R, + )T, , Py 1))
and

(:%(sv Sy+1)(@2),W) =071 (K C((R(év)vapv)—(R(5v+1)T,v,.pvn))(C),W))-

Now Lemma 2.2ii) and (3.6) imply that the last two terms in the right hand side of
(3.13) can be estimated by

Y128 2w if o, <2l <20,

where {y,} is a sequence of positive real numbers tending to 0. We let y be
a positive continuous function on R, such that y(r) = 0 as r - + o0, and

yryzy, if o,<r<20,.

Then we choose @ satisfying the conditions in Lemma 2.3. If p is defined by (3.1),
then pe PSH (C"), is of order ¢ and finite type.

It now remains to prove that L (p) = M. For proving M < L_(p), it is
sufficient to show that every element g in the sequence {q;} lies in L (p). In fact,
{q,} is dense in M and L (p) is closed. Since {g;} is a subsequence of {p,} and
q appears infinitely often in {q;}, we have q = p, for some subsequence. We set

tj=r1,, . If K is a compact subset of C™\ {0}, then (3.11) gives

(T, @) = (T, RG, ) Tyye, p,)@) + (T, 9)(2)
= (R(évl)q)(z) + (T ®)(z) for zeK and j large.

Now Lemma 2.2 i) and Lemma 2.3 give that T, p — g in Li,.(C"), so ge L (p).
For proving L (p) = M, we let t; » oo and assume that T p—qin L. (C.
Lett, =t; <71, .. Wetreat separately each of the three cases where t;/o,,—0,
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t,/avj — o0 and that {tj/avj} converges to a positive limit s. One of these must
occur after passage to a subsequence.

Assume that t;/e, — 0. Then (3.11) gives that for any compact subset K of
c"\ {0}

(3.15) (T, p)(2) = (R(3, )T, e, P, )(2) + (T, P)(z) forzeK and jlarge.

Since M is compact and T invariant, {T, s, p":} has a convergent subsequence
with limit in M. We conclude from Lemma 2.2 and Lemma 2.3 that this limit is
equal to q. Hence ge M. If ¢ j/oy,— + oo, then (3.12) gives that (3.15) holds with v;
replaced by v; + 1, and we conclude as in the previous case that ge M.

Assume now that s;:= tj/o,,—se R .. By (3.10) we have

(T,,p)2) = (RG,) T, 1, P,)@) + (T, ®)2) —
= ¢, +1t;2) (T, (R, )T, pv) — (R(S,,+1)T,, . Py, +1))(2)]
for ze K and j large. The continuity of I} .(C") x R, (f,t)— T,f, and Lemma

loc

2.2ii) now give that the last term tends to zero in L (K). The same reasoning as in
the previous cases then gives g€ M. The proof is complete.

vy
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