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SMOOTHNESS OF SUMS OF CONVEX SETS
WITH REAL ANALYTIC BOUNDARIES

JAN BOMAN

1. Introduction.

Given two compact, convex sets in R", 4 and B, with smooth boundaries, how
smooth must the boundary of the vector sum 4 + B be? For plane sets this
problem was studied in [K2]. If 64 and 6B are C*®, d(4 + B)must be C%;if 64 and
0B are real analytic, (A + B) must be C2%. Counterexamples show that those
statements are sharp (see also [B]).

If the dimension n is arbitrary and the boundaries of 4 and B are C®, it is
known that 3(4 + B)must be C*'! (see [KP]) and that d(4 + B)is not always C>.
The latter statement follows from an example given by C.O. Kiselman in
a different context: a convex set in R with C® boundary is constructed, whose
plane shadow does not have C? boundary ([K2], [K1] p. 243). For dimensions
n > 2 and the boundaries of 4 and B real analytic nothing seems to be known
about our problem apart from the fact that d(4 + B) must be C*:! and the
two-dimensional result that (4 + B) may be as bad as C2°/. Here we give the
solution to this problem for n = 4.

THEOREM 1. There exist two compact, convex sets A, B in R* with real analytic
boundaries, such that the boundary of A + B is not C2.

The analogous statement is true in R" for any n = 4; see Remark 2 at the end of
the paper. However, we do not know if there exists a similar example in R>.
2. Preliminaries.

As was explained in [K2] our problem is equivalent to the study of the infimal
convolution

SO glx) =inf(f(y) + gx —y)

————
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of two convex germs at the origin. Here f and g are (germs of) functions of
n — 1= d 2 2 variables, whose epigraphs are equal to A and B locally near
x = 0. We may assume f(0) = g(0), and f'(0) = g'(0) = (0,...,0).

Set f O g = h.If f and g are C' we have (see [K2] and [B])

(1) hx) = f'(y) =g'(x - y)
where y is a solution to the equation
) Sy =gkx-y).

If f or g is strictly convex, the solution to (2) is unique and depends continuously
on x. If f and g are C? and f"(0) + g"(0)is non-singular, one can prove he C* and
obtain an expression for h”(x) generalizing (5) in [B] as follows. Let dy/0x be the
matrix (a;) = (0y;/0x,) and I the identity matrix. Differentiating (1) and (2) we
obtain

h'(x) = f"(y)0y/0x = g"(x — yWI — 0y/0x).
Hence dy/dx can be solved from the equation
(S"() + ¢"(x — y))0y/ox = ¢"(x — ),
so that
3) H'x) = f"ONS"O) + g"(x — y) ™ 'g"(x — y).

3. Definition of the convex germs.

It is natural to ask if the expression (3) must have a limit as |x| =0, if
f"(0) + g"(0) is a singular matrix. Looking at this as a question of pure matrix
algebra we may ask if the matrix F(F + G)~ G must tend to a limit, if the positive
definite, symmetric matrices F and G tend to a singular matrix. The answer is no;
a counterexample is given by

1 b 10
~Ga) el )

where |bj<d and d—0. In fact F(F+ G)"'G=H =(h;), where
hyy = (2d? — b?)/(4d* — b?). We therefore look for functions f and g whose
second derivatives resemble F and G, respectively. For reasons that will be
explained later this idea does not work for functions of two variables, so we have
to consider functions of three variables. Choose

go(X) = go(x1, X2, X3) = x3/2 + x3/2 + (x3/2)(x} + x3 + x3/6)
and

So(x) = go(x) + cx1x3x3,
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where |c| < 1. The matrix gg(x) = (0;0xgo(x)) can be written

10 0
gox)=1{0 1 0 )+R(x)
0 0 |x?

where R(x) = (r;j(x)) = O(x|?) as |x| > 0, and r33(x) = 0. Similarly

0 cx3 cx,

0(x) = go(x) + (CX: 0 ex;
cx, ¢x; 0

It is clear that g, is strictly convex. To see that f; is strictly convex we compute
det fg(x) = |x*| — c*(x} + x3) + O(x), as |x| -0,

which is positive if |c| < 1 and |x] is sufficiently small, |x| £ 0. The fact that f; is
positive definite for small x outside the origin now follows from Jacobi’s criterion
[S, p. 127]: a sequence of ascending minors have positive determinant.

PROPOSITION 1. Let fy and g, be defined as above, |c| < 1. Then f, O g, & C>.
More generally, if f and g are arbitrary real analytic germs, whose Taylor expan-
sions at the origin to fourth order coincide with those of f, and g, then f 0 g ¢ C2.

The second statement of the proposition will be needed in the proof of
Theorem 1.

It is obvious that fj(y) + go(x — y) is nonsingular for sufficiently small
Ix| # 0, hence formula (3) is valid for such x. Our goal is to show that this
expression does not have a limit as |x| — 0.

4. Study of h".

LEMMA 1. Let f and g be defined as in Proposition 1, and h = f O g. Then
0th(x) = —c? y3/0(x, y) + w(x), where Q is a positive definite quadratic form in
x and y, y = y(x) is the solution to (2), and w(x) is a continuous function. More
precisely,

0(x,y) = 4|yl> + 4]x — y* — 2c%(% + ¥3).

PROOF. Set f"(y) + ¢"(x — y) = T and f"(y) — g"(x — y) = S. Then according
to (3)

@ h'(x) = (1/4)(T + S)T YT — 8) = —(1/4)ST™ 'S + ...,

Wwhere the omitted terms are continuous. Write S = (s;;) and denote the cofactors
of T by T, By (3) and (4)

40%h(x) + (det )™ Y. sy, TSk
ok
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is continuous. Now s;; = O(x| +|y|) for all i, j, and detT = Q(x,y) +
O(Ix|*> + |y%), as |x| = 0. Therefore only zero order terms in Tj can give
non-continuous contributions to d7h. The only cofactor containing a constant
term is

Tss =4+ O(xI* + |y*), as |x|—0.
Hence
—402h(x) = (1/Q)sy3T33531 + ... = 4c*y3/Q + ...,
where the omitted terms are continuous. The proof is complete.

To be able to prove that the function x — y3/Q(x, y) is discontinuous we must
study the solution y = y(x) to the equation (2).

LEMMA 2. Let y = y(x) be determined by the equation (2), where f and g are
defined as in Proposition 1. Then there exists a number 6 > 0 such that

(5) Ixl <dé and xyx,=0
implies
6) IWSClx|] and y;=x;/2+O0(x|*) as |x]—»0 for j=12
ProOF. The first two equations of the system (2) are
yialys) + cyays = (xy — yyalxs — y3) + ...
yaa(ys) + cyays = (x; — yz)alxs — y3) + ...,

where a(t) = 1 + t? and the higher order terms are omitted. These equations can
be written

(7) {2)’1 =x;+w

2y; = x3 + W,

where w; = wj(x, ) = O(|x|*> + |y|?). Applying the Implicit Function Theorem we
can solve y, and y, in terms of x and y, from this system; we then obtain (7) with
new functions w; satisfying the same estimates and depending only on x and ys.
We next want to use the third equation of the system (2) for estimating y;. This
equation can be written

®) y3b(y) + bx — y) + cy1y2 = x3bx — y) + ...,

where b(y) = y? + y2 + y2/3, and terms of order >4 are omitted. Now
b(y) + b(x — y) Z (1/3)(y* + Ix — y) = |x*/6.

We need an estimate for y,y,. From (7) we obtain, if x,x, = 0,

) 4ly1yal S xywz + xwy + wiwa| < CIxI (X% + 1y3l?) + [xI* + [yal*).
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The higher order terms in (8) are initially known to be < C(|x|* + |y|*); applying
(7) we see that those terms are in fact majorized by C(|x|* + y%). Using alternative-
ly |y|? and |x|*/2 as lower bound for |y|> + |x — y|*> we obtain from (8) and (9)

lyal < C(Ix| + lysl?),
which implies
lysl = Clx|,

if|x| < & and ¢ is small enough. Combining this with (7) we obtain (6). The proof
is complete.

PROOF OF PROPOSITION 1. By Lemma 1 it is enough to prove that the function
k(x) = y3/Q(x, y) is discontinuous at the origin. But Lemma 2 shows that k(0, ¢, 0)
for t £ 0 is bounded away from zero, whereas k(t,0,0) = 0.

ReMARK. The conclusion of Lemma 2 is not true if the assumption x,x, = Oin
(5)is omitted. Infact, if x = wt, w e S te R, the solution to (2)is y; = w;t/2 + o(t)
forj=1,2,and

y3 = —(Bcw2/8)" |t]* + o|t|*?), as t — 0.

This implies that the limit of y2/Q(x, y) is zero on all rays through the origin
except t+—(0,¢,0).

5. Construction of the convex sets.

PROOF OF THEOREM 1. Denoting points in R* by (x,z), xe R?, set u(z) = z* — z
and

F(x,2) = u(z) + efo(x) + IxI°,  G(x,2) = u(z) + ego(x) + |xI°,

for some small ¢ > 0 to be determined later, and let 4 and B be the sets
determined by F < 0 and G < 0, respectively. Then A and B are compact, and
since F and G are convex, A and B must be convex. To see that the boundary of
A is real analytic we must check that the gradient of F does not vanish when
F = 0. Now 0F/dz = u/(z) vanishes only for z = z, = 4~ !/3, the minimum point
of u(z). It is clear that we may choose ¢ so small that the gradient of [x|® + efo(x)is
different from zero whenever F(x,z,) = 0, i.e. |x|® + efo(x) = —u(zo) = 3-4743.
We finally need to check that 04 near x =z = 0 is given by an equation

z = gfo(x) + v(x),

where v is real analytic and v(x) = O(|x|®) as |x| = 0. In fact, since 4'(0) = —1,
u"(0) = 0, and fy(x) = O(|x|?), the equation F(x, z) = 0 gives z = &fo(x) + O(Ix(°).
The corresponding statements for the set B are of course verified similarly. The
fact that (4 + B)is not C? at the origin is now a consequence of Proposition 1.

REMARKS. 1. It is rather easy to see that the function x,x,x3 occurring in the
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definition of f,(x) can be replaced by any function of the form x3q(x,, x,), where
q is a second order homogeneous polynomial with some non-degenerate zero
outside the origin. For instance we could take g equal to x? — x2. The fact
that there exists no polynomial in one variable with those properties is the reason
why we could not construct functions f and g on R? with the properties in
Proposition 1.

2. Itis easy to see that the statement of Theorem 1 is true in R" for any n = 4.
Denote pointsin R",n = 5,by(x, z,t),xeR3,zeR,te R" % let Abe theset F < 0,
where

F(x,z,t) = gfo(x) + |x|® + u(z) + |t|%,

and construct B similarly. Then the boundaries of A and B near the origin will be
given by z = f(x,t) and z = g(x, t), where f(x,t) = &fp(x) + |t|> + O(x|® + [t[°),
g(x,t) = ego(x) + |t|2 + O(|x|® + |t|°), as (x,t) = (0, 0). The arguments in Lemma
1 and Lemma 2 are valid for this pair of functions and therefore the boundary of
A + B will not be C2.

3. The fact that f, ge C? implies f (1 ge C"!, the class of C!-functions with
Lipschitz continuous first derivatives, can be proved as follows. For ¢ > 0, set
fulx) = f(x) + ¢|x|* and set h, = f,O0 g. Then f" = 2¢l, so that h,e C? and (3)
holds. If F and G are symmetric, positive definite matrices, the norm of
F(F + G)™'G can be estimated by | F|| (| F|| + ||Gl) ! |G| ([AD], Theorem 25).
Hence the second derivative h] must be uniformly bounded as ¢ — 0. By Arzela’s

’

theorem there is a uniformly convergent sequence h,, k = 1,2,..., converging to
some function u, which is Lipschitz continuous. By a theorem of elementary
calculus u must be equal to h'.
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