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EXISTENCE OF MEROMORPHIC SOLUTIONS
OF ALGEBRAIC DIFFERENTIAL EQUATIONS

GARY G. GUNDERSEN and ILPO LAINE

1. Introduction.

In this paper we consider algebraic differential equations of the form

(.1 Qz,w) = i:o A2,

‘where each A,(z) is meromorphic (4, F 0), and where (z,w) is a differential
polynomial in w and its derivatives with meromorphic coefficients, i.e.,

1.2 Az, w) = T Bi@ww) ... (wP)e,

Ael
where 4 denotes the multi-index A = (i, ..., i,), where each B;(z) is meromorphic,
and where the index set I is of course finite. As a special case of (1.1) we will, in
particular, consider first order equations of the form

W = Zl': =0 Ak(Z)Wk
Yo Bt

where each 4,(z), B,(z) is meromorphic (and A4, * 0, B,, & 0). We assume that the
right-hand side of (1.3) is irreducible as a rational function in w. Throughout this
paper, the term “meromorphic” always means meromorphic in the whole com-
plex plane.

The classical Malmquist-Yosida theorem (see, e.g., [11] and [16]) states that if
a differential equation of the form

(1.4) (W)? = R(z,w),

(1.3)

where pis a positive integer and R(z, w) is a rational function in z and w, possesses
a transcendental meromorphic solution w = f(z), then (1.4) must actually be of
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the more restricted form
(1.5) (W) = Ro(2) + Ry(z)W + ... + R, (20"

where n < 2p (and where each R,(z) is rational). The possible types of equations
(1.5) with transcendental meromorphic solutions, and the possible orders of
growth of such solutions, have been settled completely in the articles by Stein-
metz [15] and Bank and Kaufman [1].

Several authors have generalized the Malmquist-Yosida theorem by proving
that, if an equation of the form (1.1) possesses a meromorphic solution whose
growth dominates the growth of all of the coefficients, then the equation must
actually belong to some smaller subclass of equations of the form (1.1), see, e.g.,
[4], [13] and the references in [4] and [8].

If the equations in these smaller subclasses are loosely called “Malmquist”
equations, then the question of whether or not a “non-Malmquist” equation can
actually admit a meromorphic solution seems to have been treated very little in
the literature, see however [5], [6], [8] and [10]. We believe that the first
question to be asked about a “non-Malmquist” equation of the form (1.1) is
whether or not a meromorphic solution exists. More generally, it is natural to ask
how many distinct meromorphic solutions can a “non-Malmquist” equation of
the form (1.1) possess. These are the main questions we address in this paper.

2. Statement of the main results.

The following results, as well as their proofs, need some familiarity with the
Nevanlinna theory, see, e.g., [9] for notations and basic results. In particular,
S(r, f) denotes any quantity satisfying S(r, f) = o(T(r, f)) as r - + oo, possibly
outside a set of values r of finite linear measure.

For convenience in stating our results, we will give the following definition
separately:

DEerINITION 2.1. Consider the algebraic differential equation (1.1), and sup-
pose that g is a fixed integer such that 0 < g < n. We say that the A,-hypothesis
holds, if there exist » £ 0 meromorphic and h nonconstant entire such that

(V)] A, = ve",
where
(2.2 T(r,v) = S(r,e"),

and where for all k + ¢, 0 < k < n, and all AeI we have

(2.3) T(r, Ax) = S(r, Ap), T(r, B;) = S(r, A,).
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Of course when we speak about the A,-hypothesis for an equation (1.3), we first
rewrite it in the form

2.4 i Bi(z)ww' = i Ay (2w,
k=0 k=0

Our first results give conditions under which an algebraic differential equation
cannot possess a meromorphic solution.

THEOREM 2.2. Consider an equation (1.1) such that

p
(2.5) n>d4= max( Y (e + l)ia>
i€l \a=0
and assume that the A,-hypothesis holds for some q that satisfies A < q < n — 1.
Suppose also that A % 0, B(g, .., o) = 0. Then (1.1) does not possess a meromorphic
solution.

,,,,,

When we consider the special case (1.3) in Theorem 2.2, we have 4 = m + 2
from (2.4). Therefore we obtain an immediate corollary:

THEOREM 2.3. Consider an equation (1.3) such that n = m + 3 and assume that
the A ~hypothesis holds withm + 2 < q < n — 1. Suppose also that A, £ 0. Then
(1.3) does not possess a meromorphic solution.

In the next section we give examples to show that Theorem 2.3 is sharp. In
Section 6 we give several results concerning (1.3) that come out of the proof of
Theorem 2.2. For example, Theorem 6.2 gives a maximum number for the
possible number of distinct meromorphic solutions that certain equations of the
form (1.3) could possess.

Now we consider the special case of (1.3) of “non-Malmquist” polynomial
equations, i.e., equations of the form

(2.6) w = }n: A2)W, nz3,
k=0

where each A4, is meromorphic (4, % 0). With additional assumptions, we can
extend Theorem 2.3 slightly with

THEOREM 2.4. Suppose the A,-hypothesis holds for (2.6). Suppose also that
Ao £ 0,A4,_, £ 0. Then (2.6) does not possess a meromorphic solution.

None of the hypotheses in Theorem 2.4 can be deleted (see §8). Finally, in
Section 9 we consider (2.6) in the special case of polynomial coefficients, mostly to
obtain upper bounds for both the number of distinct meromorphic solutions, and
also for the number of linearly independent meromorphic solutions.
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3. Sharpness of Theorem 2.3.

ExaMPLE 3.1. Wecannot have g = m + 1in Theorem 2.3. In fact,letm = O be
any integer. Then w(z) = ¢* + 1 satisfies the equation
—1+4 eZz“}m+1 + 2wm+2 _ Wm+3
w =
l+w+...+w" 4w

This is a straightforward verification by observing that w' =w — 1 and that
e =w? — 2w+ 1.

ExaMpPLE 3.2. Also, we cannot have g = nin Theorem 2.3. For example, for all
n = 4, w(z) = e satisfies

B e e
w = .
1+w
ExaMPLE 3.3 The assumption 4, F 0in Theorem 2.3 cannot be deleted, since,
for example, w(z) = € satisfies
w4+ wl4ew ! —w
1+w

’

w =

for any n = 4.

ExaMPLE 3.4. In Theorem 2.3, the two assumptions n=m + 3 and
m+ 2 £ q £ n— 1 cannot be replaced by the two assumptions n = m + 2 and
m+ 1< g £n— 1, since, for example, w(z) = €* + 1 satisfies

14wt —w
- —1—-w

’

4. Lemmas.

In addition to the basic results of the Nevanlinna theory, we need the following
three lemmas:

LEMMA A. Let f be a transcendental meromorphic solution of the equation
S"P(f) = Q(f)

where P(f), Q(f) are polynomials in f and its derivatives with meromorphic coeffi-
cients, say a;. If the total degree of Q is at most n, then

m(r, P(f)) < 2 m(r,a;) + S(r. f).

Lemma A is essentially due to J. Clunie. In fact, the proof of Lemma A is
a simple modification of the proof of Lemma 3.3 in [9], see also [3] and [2],
Lemma 1.
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The next lemma may be found in [14].

LeEMMA B. There does not exist a transcendental meromorphic function f which
satisfies an identity

ao(?) + a,(2)f(2) + ... + a,(I)(f(2))" = 0,

wherep 2 1,a, % 0, and a,, . ..,a, are meromorphic functions such that

$ T0.0) = o)

as r — oo through some sequence ry, r,, rs, ... of r-values.

The last lemma is contained in a more general result due to Mok’honko in
[12], see also [4], p. 279-280.

LemMA C. Let f, ao,...,a, be meromorphic functions with a, £0, p 2 1, and
define

G=as+a f+...+a,f"
Then
T(r,G) = pT(r, f) + ¥(r),

where

p
T(r,a,-)) asr— .
=0

() = 0<

J

5. Proof of Theorem 2.2.

Suppose that w = f(z) is a meromorphic solution of (1.1), and write (1.1) in the
form

(5.1) Ay=f %z, f)— Ao — .. — Ago S5 = Ay f1 = = A, f).

By elementary Nevanlinna theory and by (2.3), we can deduce from (5.1) that
there exists a constant D > 0 such that

(5.2) T(r,A,) = DT(r, f) + S(r, f).

Hence, from (2.3) and (5.2), we see that for all k £ ¢,0 < k < n,and all Ae I we
have

(53) T(r, Ak) = S(r9 f)7 T(r’ Bl) = S(ra f)

Now, from (1.1) and n > 4, any pole of f must either be a zero of A4,, a pole of
some A, (k # n), or a pole of some B;. By taking multiplicities into account, it is
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easy to see that

(5.9 N(r, f) N(r,/—i—) + nil N(r,A) + Y. N(r, B,).
n k=0

Ael
From (2.1) and (2.2), N(r, A,) = S(r, A,); hence N(r, A,) = S(r, f) from (5.2). Then
from (5.3) and (5.4),
(5.5) N(r, f) = S(r, f).

Regarding (5.5), see also [10], (5) on p. 81.

We make two observations here. First, it follows from (2.1), (2.2) and (5.2) that
f is necessarily transcendental. Second, from (2.1), (2.2), the lemma for the
logarithmic derivative, and (5.2), we obtain

(5.6) T(r, -j—f’:) = S(r, f).

Taking now the logarithmic derivative of both sides of (5.1), then rearranging
the terms and noting that n > 4, we obtain

.7) 7(tn -+ (4 . 55) ) = 0

where Q, is a differential polynomial in f and its derivatives with total degree
<n. The coefficients of Q, are polynomialsin Ay, A;, where k # g,in A}/A,and in
B;, B, A€l. Thus, by (5.3) and (5.6), all the coefficients, say c,, of Q, satisfy
T(r,c,) = S(r, f). Let us define

(5.8) H=(n—qAf + (A; 4, —j—)f

Suppose now that H = 0. Since n + g, we may integrate (5.8) to obtain
(5.9 A f1= CAf,
where C # 0 is some constant. Substituting (5.9) into (1.1) we obtain
(5.10) Qz,f=Ac+ A f +...+(C+ 1A, f",

where the term A4, f? is now missing from the right-hand side. By repeated
differentiation of (5.8), we see from (5.3) and (5.6) that

(5.11) fY=pB2)f

for all ke N, where T(r, B,) = S(r, f). Substituting (5.11) into (5.10), we eliminate
all derivatives from the left-hand side, resulting in an algebraic equation of the
form

(5.12) Y Difiet*ir =4y + ...+ (C + DAL,

Ael
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where T(r, D;) = S(r, f)forall AeI,and D,
results now in the contradiction 4, = 0.

Thus from now on, we may suppose H % 0. Applying the Clunie lemma,
Lemma A, to (5.7) we obtain m(r, H) = S(r, f). On the other hand, it follows from
(5.3), (5.5), and (5.6) that N(r, H) = S(r, f). Hence

(5.13) T(r,H) = S(r, f).

o) = 0. Lemma B applied to (5.12)

.....

Now from (5.8), we get

LI N PR TR ¢
(5.14) 7 = ((n DA, 7 + A, — A, Aq>'
Hence, by (5.13), (5.3) and (5.6), (5.14) gives

m(r, %) = S(r, f),

and therefore

(5.15) T(r, f) = N(r,%) + S(, f).

Suppose now that z, is a zero of f of multiplicity v = 2. Then it follows from
(5.8)that H/A, must have a zero of multiplicity >v — 1 at z,. Let N,(r, 1/f) denote
the counting function for multiple zeros of f. Then we obtain from (5.3) and (5.13)
that

(5.16) N2<r, -}—) < 2N <r, %) = S(r, f).

Let now N,(r, 1/f) denote the counting function for simple zeros of f. By (5.15)
and (5.16), we have

1
(5.17) T(r,f) =N, (r,f) + S(r, /).
From (5.8), we again obtain by repeated differentiation
(5.18) fO=B@)f + a2

for all ke N, where T(r, o) = S(r, f), T(r, B) = S(r, f) by (5.13), (5.6), and (5.3).
Substituting (5.18) into (1.1) we obtain an algebraic equation

(5.19) S G@ft =0,
k=0

where C, = A, + D, with T(r,D,) = S(r, f) holding for k = 0,...,n. Moreover,
D, = Ofor all k 2 g, since Byo,....0) = 0 and q 2 4, see (2.5).

.....
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Now suppose that z, is a simple zero of f that is not a pole of any of the
coefficients C,. Then we must have Cy(zo) = 0. Since T(r,Co) = S(r,f) and
N(r,C,) = S(r,f) for all k = 0,...,n, we obtain that either C, = 0 or

N1<r,71;> < N(r,—cl—o> + S(r, f) = S(r, f).

In view of (5.15), we must have C, = 0. Therefore (5.19) takes the form
n—1
Z Cis 1(Z)fk =0.
k=0

We may now repeat this same reasoning up to
n—q
2 Cirgdf* =0,
k=0

i.e., we have
n-gq

(5.20) Y Ar+q2)f*=0.
k=0

Now let z, again be a simple zero of f. Then from (5.20), either 4, has a pole at z,
for some k > g or A,(zo) = 0. Hence, from (5.3) and (5.6), we obtain

M09=%ﬂ

which contradicts (5.17). This contradiction proves Theorem 2.2.

6. Corollaries of the preceding proof.

In the preceding proof, the assumptions of Theorem 2.2 were used mostly in
a few critical points. Therefore, the reasoning given in this proof may be used to
obtain related results to Theorem 2.2, with only part of the assumptions being
assumed to hold. For simplicity, we restrict ourselves to results related to the
special case of Theorem 2.3.

PROPOSITION 6.1. Consider the equation (1.3) with n=m + 3 and Ay = 0.
Suppose the A,-hypothesis holds with 1 < q < n— 1. If f % 0 is a meromorphic
solution of (1.3), then necessarily

Ay + A f"9=0.

PrOOF. We can apply the proof in the preceding section up to (5.8). Assuming
H =% 0 holds, then also (5.13) and (5.15) hold. As well, (5.16) and (5.17) remain
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true. Solving now f” from (5.8) and substituting into (1.3), we obtain

1 A, A, H m "
6.1 A ) " )( B ,,>= AT
(6.1) n_q<<Aq A f A kgo S k; xS
Let now z,, be a simple zero of f such that z, is not a pole of any 4,, By, and such

that 4,(zo) F 0, A,(zo) * 0. Then obviously H(zy)By(z,) = 0 by (6.1), and there-
fore we either have HB, = 0 or

6.2) N, <r,%> < N(r, HLO) + S(r, /) = S(r, f).

Since (6.2) and (5.17) give a contradiction, we must have HB, = 0. Since
Ao = By = 0 would contradict our irreducibility assumption about (1.3), it
follows that H = 0. Therefore,

A f'=CA,f"

for some C e C, see (5.9). Substituting this into (6.1) gives

(6.3) Bfika*=A1f+...+(C+1)A,f"
k=0

where the term A, f7 is missing on the right-hand side and where all coefficients
on both sides have a characteristic function of the form S(r, ). Since f is
transcendental,and n = m + 3, we may apply Lemma B to (6.3) to conclude that
C = —1, which proves the assertion.

THEOREM 6.2. Consider the equation (1.3) with n = m + 3, and suppose the
A,-hypothesis holds for some q.

(@ If Ag£0 and 1 < q<m+ 1, then (1.3) admits at most n — q distinct
meromorphic solutions.

(b) If Ag=0and 1 £ q < n— 1, then (1.3) admits at most n — q + 1 distinct
meromorphic solutions.

PROOF. (a) In this case, we may follow the proof of Theorem 2.2 up to (5.19),
where here we can only say that (5.19) holds with C, = 4, + D, where
T(r,D,) = S(r, f) for k = 0,...,n. Then by the same reasoning that was used after
(5.19), we see that C, = ... = C,_, = 0; hence we get a polynomial equation of
degree n — g in f,

n—q
Y. Cerald)f* =0,
k=0

Since the collection of all meromorphic functions is a field, there can exist at most
n — q distinct meromorphic solutions to this polynomial equation by basic field
theory, see [7], p. 515.
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(b) This follows immediately by Proposition 6.1, observing that w = 0 also
satisfies (1.3) in this case.

The next three examples and remark illustrate the sharpness of Theorem 6.2.

EXAMPLE 6.3. Let n >3 be given, and let C be any constant such that
C"~! = 1. Then there exist complex constants by, ..., b,_ 3, where b, _5 # 0, such
that w(z) = Ce* + 1 satisfies

n—2—e""w4 (1 —nw 4w

6.4 ' =
(6.4) v bo+bw+...4+b,_ 3w 3

for every such CeC. Hence we have the maximal number of meromorphic
solutions for case (a) of Theorem 6.2. The coefficients by, ..., b, 3 can be deter-
mined by substituting w(z) = Ce* + 1 into (6.4), and we will leave the details of
this elementary calculation to the reader. We mention that

by=—4n+3n—140.

EXAMPLE 6.4. Let n = 3 be given, and let C be any constant such that
C"" 2 = 1. Then w(z) = Cé* satisfies

(6.5) w=w+ e D22y

for every such C € C. Since w = 0 also satisfies (6.5), we have the maximal number
of meromorphic solutions for case (b) of Theorem 6.2.

EXAMPLE 6.5. Let n =3 be given, and let C be any constant such that
C"~! = 1. Then w(z) = Cexp(z/n) satisfies

! {l—n},l
w = —exp zpwh
n n

Hence we cannot allow g = n in Theorem 6.2 (b).

REMARK. Itis easy to construct examples with n = 2, m = 0, which show that
we cannot replace the assumptionn = m + 3 withn =2 m + 2in either (a) or (b) of
Theorem 6.2.

PROPOSITION 6.6. Consider the equation (1.3) withn = m + 3, and suppose the
A,-hypothesis holds for some q. Let f be a meromorphic solution of (1.3). Then we
have:

@ N@, f) =S, f).

(b) IfAg£0and 1 £ q<m+ 1, then T(r, f) = N(r,1/f) + S(r, f).

(€) IfAg=0,1=qg=<n—1andf % 0,then N(r,1/f) = S(r, f).

PROOF. (a) and (b) will follow by applying the proof of Theorem 2.2, for (a) up
to (5.5) and for (b) up to (5.15).
(c) follows immediately from Proposition 6.1.
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REMARK. The condition 1 < g < m + 1in (b) above cannot be improved. See
Theorem 2.3, Example 3.2, and the fact that w(z) = ¢* satisfies

e4z+w+w2_w4
1+w

’

w =

PROPOSITION 6.7. Consider the equation (1.3) with n = m + 3 and where the
Ag-hypothesis holds with 1 < q < n — 1. Let f % 0 be a meromorphic solution of
(1.3). Then

1
T f) = P T(r, A,) + S(r, f).

ProoF. If Ay = 0, then the assertion follows immediately from Proposition
6.1.

Suppose now that A, = 0. We may use the same reasoning as in part (a) of the
proof of Theorem 6.2 to obtain

n—gq
(6.6) Z o +q(z)fk =0.

k=0
By applying Lemma C to (6.6), the assertion follows immediately.

7. A Bhypothesis in (1.3).

It is natural to ask whether there is some general nonexistence theorem like
Theorem 2.3 in the case when for some g, B, dominates the other coefficients in
(1.3) in the way described in Definition 2.1 for the 4,-hypothesis. The examples
below seem to indicate that the answer might be negative when one asks this
question about nontrivial meromorphic solutions in the case when 4, =0,
because of the variety of different values that n, m, and q take in these examples.

In fact w(z) = 7 satisfies all the following equations, except for (4) which is
satisfied by w(z) = &* + 1:

wH+ w4 W

(1) WI=1+e"""_”zw"+w'”’ n2m+21<qg<m-—1.

, w+ w"
@ e e wr mzn+1l,n<gsm—1.

, 2w + 2wt
3 W=2+ezwrrI-1+wm’ n=m+1l,g=m—1

-1+ w?
4 = — n=m=2, =1_
@ w 1 —ew+w?’ !
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&) W= 1+wn~lj_:m‘tnl_e_zwm, mzn+1l,qg=m.
6) w'=—1—_+_—;—:’"—-_+-7%»7"-, nzm+2qg=m.
(M W'=—%‘%;, m=n=qz21.

®) WI=e”'z+w:)il—-w"" mznz?2q=0.
) w'=e—':,'-"%}, nzm+223,¢=0

8. Proof of Theorem 2.4.

In Theorem 2.4, neither of the two assumptions 4, % 0 or 4,_, $£0 can be
removed, and the assumption n = 3 cannot be replaced by n = 2. This is illus-
trated by the following three equations, which are all satisfied by w(z) = €%

m w=w+w?—e w,
2) w=14+w-—e "w, nz3.
3) w=1+w-—e 22w?

Of course, in the case when 4, = 0, w = 0 always satisfies (2.6).

PrROOF OF THEOREM 2.4. A lot of the reasoning will be similar to the proof of
Theorem 2.2.
Suppose that f is a meromorphic solution of (2.6). Writing (2.6) in the form

@.1) A=f""f"—Ao—Aif — ... = Api "),

taking the logarithmic derivative of both sides of (8.1), rearranging terms and
noting that 4,_, F 0, we obtain

AI ’
n—1 ' In n—1 =
8.2 f (f + ( 7 )f) 0e)
where Q(z) is a differential polynomial in f, f’, f” of total degree <n — 1, with
coefficients y such that T(r,y) = S(r, f). Denote again

P (R '
8.3) H—f+<An A..-l)f'
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Consider first the case H = 0. Integrating then (8.3) we get
(8.4 f=CA,_/A,

for some Ce C. Since A, % 0, we must have f F 0, hence C + 0. By (8.4), we may
write (2.6) in the form

f'=Ac+ ...+ Ay f"" 1+ A4,_ 1+ 0O f L

If C # —1, then Lemma A and the fact that N(r, f) = S(r, f) by Proposition 6.6
(a) would imply T(r, f) = S(r, f). Hence we must have C = —1 and

(85) fI=A()+...+A,,~2f"_2.

Now if A, % 0 for some k, 2 < k < n — 2, then Lemma A and N(r, f) = S(r, f)
again would imply T(r, f) = S(r, f). Therefore (8.5) must reduce to

(8.6) fr=A40+ A f.
Combining now (8.6), (8.3) with H = 0, and (8.4) with C = — 1, we obtain

1 (A,_, A 1 A,
- _____.___Al _— = —
AO An—l An

hence

This implies T(r, A,) = S(r, A,) from the 4,-hypothesis, a contradiction.

Let us now assume that H £ 0. From Lemma A applied to (8.2), we get
m(r,H) = S(r, f). Since N(r, f) = S(r, f) and T(r, A,/A,) = S(r, f), we also have
N(r, H) = S(r, f). Hence

8.7 T(r, H) = S(r, f).

Suppose now that z, e C is such that f(zo) = 0. If z, is a multiple zero of f; of
multiplicity v = 2, then z, is a zero of H of multiplicity =v — 1 from (8.3). If z¢ is
a simple zero of f, then either (i) A4,(zo) + 0,00 for all k and H(zo) =
f'(z9) = Ag(zo)from (2.6) and (8.3), or (ii) Ax(zo) = O or oo for some k. Assume that
H £ A,. Then from this discussion, (8.7), and the A,-hypothesis, it follows that

N(r,—}—) < 2N(r,—11;) + N(r,ﬁ;) + S(r, f) = S(r, f).

Since

(8.8) m(r, %) < m(r, —;—1—> + m<r, —Ifi) = S(r, f),
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we have

T(r,%) = S(r, ),

a contradiction. Therefore H = A, and (8.3) becomes

A, A,
(8.9) f+<__n_n_—1) 4
f A A, S =4
Substituting (8.9) into (2.6), we get
A, A,
8.10) A4, + (Al - A” +A—”_—i>f‘("‘“ = —Af "D A, fL

Considering counting functions for poles on both sides of (8.10), we deduce that

1
N{r,—|= 8@, f).
( f) s
By (8.8), this results in

T<r, %) =S, f),

a contradiction. The assertion follows.

9. Polynomial non-Riccati equations with polynomial coefficients.

We close this paper with some remarks concerning the equation (2.6) with
polynomial coefficients, i.e., equations of the form

9.1 w =Y Pz n=3,
k=0

where each P, is a polynomial (P, % 0). Looking at the proofs in Sections 5 and 8,
we see that their key idea is that all meromorphic solutions of the original
differential equation satisfy a second, simpler differential equation. Combining
these two differential equations, we obtained an algebraic equation that the
meromorphic solutions would have to satisfy. This same idea may be applied to
(9.1). Theorem 3 in [8] tells us that (9.1) may possess at most finitely many
distinct meromorphic solutions. Of course, it is well known that (9.1) with n = 2
can possess an infinite number of distinct meromorphic solutions. He Yuzan
proved in [10], Theorem 2, the existence of a constant K = K(n,deg P,, ...,
deg P,) such that the number of distinct meromorphic solutions of (9.1) is at most
K. A new proof for this result is contained in
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THEOREM 9.1. Let dy, =deghP,;, k =0,...,n, denote the degrees of the poly-
nomials P, in (9.1), and set

d,—d,"*
9.2) q=d,+ max G =dn)”
osksn-1 N—K
Then we have:
(i) (9.1) possesses at most (@ + 1)n — q distinct meromorphic solutions.
(i1)) (9.1) possesses at most q + 1 linearly independent meromorphic solutions.

PROOF. Let w = f(z) be an arbitrary meromorphic solution of (9.1). By the
Malmquist theorem f is rational, hence we may assume that f = R/S where
R and S are irreducible polynomials with degrees dg, ds, respectively. Denote
d = max(dg, ds). Any pole of f of multiplicity u has to be a zero of multiplicity = u
of P, by (9.1). Therefore, P,f is a polynomial, say Q, and we must have dg < d,,.
Although Q depends on the solution f, we can give an upper bound for the degree
of Q that is independent of f.

First suppose that dg > ds. Then f(z) — oo as |z]| » co. Write now (9.1) in the
form

n—1
©.3) = 2 Pf*=Pf"
k=0

Clearly, P, f" behaves like z%*"@r =49 a5 |7 - c0. To get equality near z = oo in
(9.3), at least one of the numbers
dR - dS - 1: dO’ dl + dR - dS’--"dn—l + (n - l)(dR - dS)

must be =d, + n(dg — ds). Hence for at least one k,0 < k < n — 1, we have

d, — d,
—ds <
0< dR dS = n—k )
and we get from (9.2),
(i — dn)”

dRéds'i‘ max =ds+q-‘d,,

osksn-1 NM—Kk
For the degree of Q we now obtain
degQ =dr +d, —ds = q.

In the case when dy < ds, we obviously have deg Q < d,, < g. Thusin all cases we
have

(9.4) degQ < ¢.
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By (9.4), 0“* 1) vanishes identically, independent of f. Differentiating repeat-
edly we get

Q' =fP +fP =P, io Pf* + Pif = z Porf,
k= =

2n—1

Q"= Z P f*+ Y kP f ! Z Pf*= Y P.f%
k=0 k=0 k=0 k=0

ey
in—(i—1) in—(i—1) n (i+1)n—i

Q=Y PR+ Y KRSTIY RS = Y Panafb
k=0 k=0 k=0 k=0

where each Py ;4 is a polynomial, and where P, ,),_; ;+; ¥ 0 for any i. Since
Q@*D = (, it follows that the algebraic equation

(@t+1l)n—gqg

9.5 Z Pk,q+l(z)fk=0
k=0

with polynomial coefficients holds for all rational solutions f of (9.1). By basic
field theory, (9.5) may have at most (g + 1)n — g distinct solutions in the field of
rational functions. This proves part (i).

From Q = P,f and Q4*1 = 0, it also follows that any rational solution f of
(9.1) must satisfy the linear differential equation

P(2)f 9V + (@ + DPU2)f@ + ... + Pa* V() f = 0.
Part (ii) immediately follows.

ReMARK. The above reasoning can be applied, with minor modifications, in
the more general case where (9.1) has rational coefficients. The upper bounds in
(i) and (ii) of Theorem 9.1 will then be modified. See also [5] and [6].

ExampLE 9.2 [8]. If Q,,0Q,,...,Q, are distinct polynomials such that Q; -- Q;
is a constant for all i and j, then the differential equation

9.6) w=01+Mw-01)w-0)...(w— 0,

is satisfied by w = Q,,0,,...,0,.
As an example, the differential equation

9.7) w = —z3 + 322w — 3zw? + w3
admits the three distinct meromorphic solutions
w,=z+f;, i=1,23, where B = 1.

Thus we have two linearly independent meromorphic solutions of (9.7), which is
the maximum number that is allowed by Theorem 9.1 (ii). Observe that the upper
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bound given by Theorem 9.1 (i) for the number of meromorphic solutions of (9.7)
equals 5.
ExaMPLE 9.3. Gao Shi’an [5] gave the differential equation
9.8) = —143zu—322u® + 2(z*> — D
which has the four rational solutions

1 1 1 z

ue)=—, w@=——7, u3(2)=m, ual@) = ——7-

Note that u, = $(u, + u,), hence we have three linearly independent meromor-
phic solutions, which is one less than the upper bound that is given by Theorem
9.1 (ii). Observe that the upper bound given by Theorem 9.1 (i) for the number of
meromorphic solutions of (9.8) equals 9!

ReMARKS. Neither of the upper bounds given in (i) and (ii) of Theorem 9.1 are
the best possible. We can obtain better bounds in special cases (see Theorems 9.4
and 9.6 below). We mention that a similar example to Example 9.3, where the
number of meromorphic solutions of (9.1) exceeds n, can be found on page 84 of

[10].

THEOREM9.4. Let K # 0,ceC,q = Oandn = 3 begiven,andlet P,,...,P,_ be
polynomials. Then the differential equation

9.9 f =Py +Pf+..+P_f""'+K(z—c)ff"
possesses at most n distinct meromorphic solutions.

EXAMPLE 9.5. Let n = 3 be given, and let C be any constant such that
C"~! = 1. Then f(z) = C/z satisfies

(9.10) = —gn2pm,

Since f = 0 also satisfies (9.10), there exists n distinct meromorphic solutions of
(9.10), which is the maximum number that is allowed by Theorem 9.4.

REMARK. Similar examples are given in Example 9.2.

PROOF OF THEOREM 9.4. For any meromorphic f solving (9.9), K(z — ¢)*f has
to be a polynomial by the same argument as in the proof of Theorem 9.1. Now if
fi % f;are two meromorphic solutions of (9.9), then it can be deduced from (9.9)
that w = K(z — c)!(f; — f;) satisfies
.11) Kz =o' 2w =Qi@W + ... + Qu_y(2W" ™1 + W,

where Q,,...,0Q,_, are polynomials (see [8], p. 291). From (9.11), it follows that
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2o = c can be the only possible zero of w(z). Hence, for some constant B;; % 0,
K(Z - c)q(f;' - L) = B,'j(Z —_ C)m"j.

Let now f},..., f,+1 be distinct meromorphic solutions of (9.9) and let f,, f;, fi
be any three of them. Then obviously

Bij(z — o)™’ — Byj(z — o)™/ = By(z — of"~.
It follows that there exists a single m such that
(9.12) wj=K(z — )(fj+1 — fi) = Bjz — )"

forallj = 1,...,n,where B,,..., B, are distinct nonzero constants. Since all of the
wy,..., w, satisfy (9.11), we may substitute (9.12) into (9.11), and this yields

Q1 —mK""*z — )" P71 + BjQ,(z — o) + B} Qs(z — o)*"
+...+ B;_an_l(Z - C)(n—Z)m + B;_I(Z - C)("‘l)m = 0, J = 1,...,".
By selecting any point z ¢, we obtain an n X n linear system of equations
$o(2) + B;$1(2) + ... + B} '¢,_1(2) = 0

with a nontrivial solution (¢¢(2), ..., ¢, - 1(2)). Thus by Cramer’s rule, the coeffi-
cient determinant must vanish. Since this determinant is a Vandermonde deter-
minant, we have a contradiction.

THEOREM 9.6. Let k=0, q=0, C+0, n =3 and a+ b be given, and let
Py,...,P,_ be polynomials. Then the differential equation

(9.13) f =Py +Pif+...+P_f" '+ Clz— afz — bf"
possesses at most three linearly independent meromorphic solutions.

ProoF. Denote P,(z):= C(z — a)(z — b)%, and suppose that f,, f5, f3, f4 are
four linearly independent meromorphic solutions of (9.13). Considering
w; j = P,(f; — fj)fori % j, we get, by the same argument as in the preceding proof,
that for some constants K;; % 0, a;; = 0, ;; = 0, we have

w;, (2) = Kij(z — a)*(z — b)Pu.
Changing slightly the notation, we have therefore

P.(fi — f2) = Ki(z — a)*'(z — by
9.14) P.(f1 — f3) = Ka(z — @)**(z — by

P,(fs — f2) = K3(z — a)**(z — b)
where K, K ,, K5 are all # 0. Denote o = min(a,, ®,,%3)and f = min(B;, b, B3).
By (9.14) , we have

9.15) K (z — a)*'(z — bY* — K,(z — a)*¥(z — b)P* = K5(z — a)**(z — b)*.
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Checking the multiplicities of the zeros (at z = aand z = b) on both sides of (9.15),
we deduce that at least two of the integers a4, «,, «3 must equal «, and at least two
of 1, B2, B must equal B. Assume, without restricting generality, that a; = a,

131 = ﬁ
If a3 = a, f3 = B, then by (9.14),
fi—fy _ Ky
L—-f Ky’

which contradicts the linear independence of f, f,, f3. Thus we have either
a3 > aor f3 > f. Suppose oz > o Then o, = a. If now B, = B, a contradiction of
the linear independence of f;, f;, f; follows. Hence B, > B and therefore f5 = B,
and from (9.15),

Kl - Kz(z - b)ﬁz_ﬂ = K3(Z - a)“_a.
This implies immediately that §, — = a3 — a = 1. Then (9.14) reduces into
P(f1 — f2) = K\(z — af*(z — b/

(6.16) P,(fi — f3) = Ka(z — a)*(z — by’*!
P(f3 = f2) = Ks(z — af**'(z — bY.

Similarly, if ;5 > $, then

P(fi = f2) = Ki(z — af(z — bf
(6.17) Pfi = f3) = Ky(z — af** !z — b
P(fs = f2) = K3z — af*(z = b 1.

Let us consider now f3, f5, f4 instead of f}, f>, f3. For some K, + 0, K5 % 0,
and some ay, as, B4, Bs, we have

P.(f1 — f2) = Ky(z — @)z — b)ﬂ
9.18) P,(fi — fa) = Ku(z — a)**(z — b)’*
P.(fs — f2) = Ks(z — a)*3(z — b)P>.

If now o = min(a, oy, a5) and B = min(B, B4, Bs), then the reasoning used above
to obtain (9.16) and (9.17) implies that either ay, = a + 1 and 4, = f, or a, = «
and f, =+ 1. Therefore, by (9.16) and (9.17), we see that either
(fi = fa)(f1 — f3) " tor(fi = fa(f5 — f2)~ !is a nonzero constant. This contra-
dicts the linear independence of f}, f3, f3, fa.

Therefore, again by the reasoning used to obtain (9.16) and (9.17), we see that
exactly one of the following four situations must hold:

(1) oy =as =o— 1, Ba =B, Bs=B+1
(2) a4=a5=a_1, B5=ﬁ’ ﬁ4=ﬂ+1’
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3 Ba=Bs=B—-1, as=a as=a+1;
“@) Bs=PBs=p—1, os = o, og =0 + 1.

Without restricting generality, we may assume that we have the situation (1).
Then (9.18) gives

P(fi — fa) = Kaz — @) 'z — b)f
9.19) P,(fi — f2) = Ki(z — a)*(z — b}
P(fa — f2) = Ks(z — a)"l(z - b)ﬂﬂ-

We showed earlier that either (9.16) or (9.17) holds. If (9.16) holds, then from
(9.16) and (9.19), we obtain

Pf: — fa) = —=Ks(z — a)* " '(z — by *!
P(f2 — f3) = —Kj3(z — a)““(z - b)ﬂ
P.(f5 — fa) = Ke(z — a)**(z — b)Ps,

which contradicts our usual reasoning since the exponents a — 1, « + 1 differ by
2. Hence, we must have (9.17). Combining (9.17) with (9.19), we obtain

P(f: = f3) = —Kj(z — a)(z — by'*!
(-20) Pf; — fa) = —Ks(z — af*"'(z — by’"!
P(fa = f3) = Koz — af*"'(z — b *2.

From (9.17), (9.19) and (9.20) we now get

P.(fs — f3) = Ke(z — a)* " !(z — b)P*?
P.(fs— fi) = —Kuyz —af "'z — b/
P(fi — f3) = Ka(z - a)"“(z - b)ﬂa

a contradiction, proving the assertion.

REMARK. Example 9.2, Example 9.3, [8, Example 9.1], and the proof of
Theorem 9.6, suggest the following question: Does the maximum number of
linearly independent meromorphic solutions of (9.1) depend only on the number
of distinct zeros of P,(z)?
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