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ON THE POISSON EQUATION IN THE POTENTIAL
THEORY OF A SINGLE KERNEL

E. NUMMELIN

Abstract.

We study the Poisson equation f(x) = g(x) + Kf(x) for a non-negative transition kernel K on
a measurable space (E,#£). The main results are concerned with the case where K is irreducible
recurrent. It is shown that the general solution f is the sum of a recurrent potential, of a harmonic
function (w.r.t. a “minorized” kernel) and of a harmonic function (w.r.t. K).

1. Introduction.

Let E be a set and & a countably generated o-algebra of subsets of E. Let
K = (K(x, A); xe E, A€ &) be a (non-negative) kernel on (E, &); i.e., K is a map
K: E x & - [0, o0] such that
(i) for each xeE, K(x,-) is a measure on (E, £), and
(ii) for each xe &, K(-, A) is a measurable function on (E, &).

Throughout this paper we assume that the kernel K is o-finite, i.e., there exists
a jointly measurable function f E x E — (0, o0) such that

(iii) ‘f K(x,dy) f(x, y) < o for all xeE.
E

Thekernel K acts as a linear operator on the cone &, of non-negative measurable
functions f: E — [0, 0],

def
Kf(x) = JK(x, dy)f(y), x€E.
E
With the kernel K we can associate a potential theory by defining the family
H, ={he&: h% 0,Kh<h}

as the class of superharmonic functions.

———————
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Our objective in this paper is to study the Poisson equation (abbrev. P.E.)
(1.1) f(x) = g(x) + Kf(x) for xeD (f(x) finite for some xe D),

where g is a given measurable function: E — [ — 00, 00], D is a given subset of
E (often D = E), and f: E — [ — 00, 0] is an unknown measurable function.
We will refer to the function g as the charge and to f as the solution. The set D is
called the domain. So e.g. a superharmonic function h is a solution of the P.E. with
domain D = E and charge g = h — Khe&,. (We set g = 0 on {Kh = o0}.)

REMARK 1.1. We do not demand that de.ér Kf, — Kf_ or g + Kfare finite

everywhere on D but only that they are well defined (i.e. are neither of the form
00 — 00 NOr — oo + o).

REMARK 1.2. The more general equation

f=g+rKf,

where r > 0 is a constant could be treated by considering the kernel rK instead
of K.

Section 2 deals with preliminary general results some of which have indepen-
dent interest, too. The main results are given in Section 3 and they are concerned
with recurrent kernels. By introducing a new recurrent potential kernel (to be
denoted by G;_,, see Section 3) we are able to remove the usual assumption that
the charge g is a special function. As an example we study the case of a Harris
recurrent transition probability. In Section 4 we will briefly study the dual
Poisson equation for measures.

Our approach is based on the probabilistic theory of positive kernels develop-
ed by Vere-Jones (1967, 1968), Tweedie (1974), Althreya & Ney (1982) and others.
The notation and terminology follows Nummelin (1984) (abbrev. [N7]).

There is an extensive literature on the potential theory of positive kernels. We
refer the reader to the books by Kemeny, Snell & Knapp (1966), Constantinescu
& Cornea (1972), Revuz (1975) and their bibliographies. The closest reference to
us is the paper by Neveu (1972a). Neveu introduced the important concept of
a special function and proved the existence and uniqueness of bounded solutions
to the P.E. Our main contribution is to remove the assumption of specialty. This
is done via a “reduced” kernel which allows the transformation of results from the
transient case to the recurrent case. Due to the lack of the assumption of specialty
we have first to investigate carefully the existence and finiteness of the solutions of
the P.E. for transient kernels. This forms the topic of Section 2. Section 3 then
deals with the main new results concerning with the P.E. for recurrent kernels.

Most articles deal with the case where K is a substochastic kernel, that means

K(x,E) <1 for all xeE.
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But this is not an essential restriction, since by transforming the general kernel
K via a superharmonic function h one gets the substochastic kernel

Ki(x,dy) = h(x)" ' K(x,dy)h(y),

and there is an obvious isomorphism between the solutions of the Poisson
equations for K and K.

2. Preliminary results.

Let G be the potential kernel of K; that means,

(Note that G may be non-o-finite. G(x, A) may even attain only the values 0 and
o0; cf. Proposition 2.4 below.) A function pe &, p £ o0, is called a potential, if

p = Gg for some geé,.

Clearly every potential p satisfies the P.E. (on D = E) with charge g. Hence p is
superharmonic.

Let ¢ be a measure on (E, &) (that is, a countably additive set function:
& — [0,0]). Aset Ae & is said to support ¢, if p(A°) = 0. The measure Y = @G is
called the potential measure (associated with ¢). A set Aeé& is called o-full, if
A supports the potential measure ¢@G.

For any xeE, Aeé, we write x > A when K"(x,4)>0 for some
n=n(x,A) = 1. A non-empty set Fe¢& is called closed (for the kernel K), if
F supports K(x,) for all x e F (or, equivalently, x + F* for all xe F).

We shall illustrate the concept of a ¢-full set in three special cases:

ExaMPLE 2.1. If ¢ = ¢, (= the unit mass at &) for some element a € E, then 4 is
¢,~full ifand only if a € 4 and o + A°. In particular, every closed set F € « is &,-full.

EXAMPLE2.2. Let ¢ be a g-finite measure on (E, &). Assume that the kernel K is
@-irreducible; that means,

x — Afor all xe E, all ¢-positive Ae&

(seee.g. [N, Section 2.2). Then any o-finite measure y which is equivalent to the
potential measure @G is also an irreducibility measure for K;  is even maximal in
the sense that ¢’ < y for all irreducibility measures ¢'. By the uniqueness of the
maximal irreducibility measure, if ¢’ is any irreducibility measure, its potential
measure ¢'G is equivalent to y. Hence the classes of ¢-full and ¢’-full sets
coincide (and are equal to the class {4 € &: Y(4°) = 0}). In what follows, when
dealing with an irreducible kernel K we call this unique class of ¢-full sets simply
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the class of full sets. In this case also every closed set F is full ((N], Proposition
2.5). The elements of the class

&L (Aes Y(A) > 0}
are called positive sets.

ExaMmpLE 2.3. (Neveu (1972b)) Assume that K is weakly ¢-irreducible; that
means

x — A for p-a.e. xeE, all ¢-positive Aeé.

(A standard example is the “deterministic” transition kernel f —» Kf = fo T
associated with an ergodic measure-preserving transformation T on a probabil-
ity space (E, &, ¢).)

Then similarly as in the case of ¢-irreducibility, any o-finite measure which is
equivalent to the potential measure @G is a maximal (weak) irreducibility
measure. Again we call the unique class of ¢-full sets the class of full sets, and the
class of y-positive sets simply positive sets. Now every positive closed set is full.

It is easy to see that the classes of ¢-full sets and of closed sets which support
¢ almost coincide:

PROPOSITION 2.1. (i) A closed set F € & is @-full if and only if it supports ¢.
(ii) If a set A€ & is @-full, then there exists a closed ¢-full set F < A.

PROOF. (i) Obvious.
(ii) Set F = {x € E: G(x, A°) = 0}.

If the domain D is closed, then the values of the solution f outside D have no
influence:

PROPOSITION 2.2. Assume that [ is a solution of the P.E. on a closed domain D.
Let fbe any function such that f = f on D. Then also f is a solution of the P.E.
on D.

Proor. Since D is closed, also Kf = K f on D, from which the assertion
follows.

REMARK 2.1. Proposition 2.2 allows us to apply any result proved for the case
D = E (= the whole space) to the case D = F (= any closed set).

The following proposition gives a sufficient condition for the existence of
a closed ¢@-full domain where f is finite:

PROPOSITION 2.3. Assume that f is a o-almost everywhere finite solution of the
P.E. on a @-full domain D'. Then there is a closed @-full domain D = D’ where f is
finite.
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PrOOF. By Proposition 2.1 (ii) there is no loss of generality in assuming that D’
is closed. Set

D={fl<o}nD.

Then, by our hypotheses, D supports ¢. Hence, by Proposition 2.1 (i), it suffices to
show that D is closed. To this end, take an arbitrary element x e D. Since f(x) is
finite and equal to the well defined (see Remark 1.1) quantity g(x) + Kf(x), it
follows that Kf(x) is finite, too. Consequently, K(x, {|f| = o0}) = 0, and there-
fore (recalling that D’ is closed) K(x, D) = 0.

Proposition 2.3 has the following corollaries:

COROLLARY 2.1. (cf. Example 2.1) Assume that f is a solution of the P.E. on
a domain D', and that o€ D' is such that f(a) is finite and o. + (D). Then there is
a closed domain D 30, D = D' on which f is finite.

COROLLARY 2.2. (cf. Examples 2.2 and 2.3) Assume that K is weakly irreducible.
Let f be a solution of the P.E. on a full domain D' and suppose that f is finite on
a positive set. Then there exists a closed full domain D — D' where f is finite.

REMARK 2.2. Henceforth we will usually assume that the domain D is closed
and that f is finite on D. Often we will even take D = E, since by Proposition 2.1
the Poisson equation can be properly restricted to any closed set.

The proof of Proposition 2.3 contains also the following result:

COROLLARY 2.3. Suppose that the domain D is closed. Then, the intersection
D {If| < o} is closed. In particular, if D = E, then the set {| f| < o} is closed.

Next we will study the P.E. in the case where there exist finite potentials.
Concerning the finiteness of potentials we have the following results:

Since a potential p = Ggis a solution of the P.E., Corollary 2.3 implies that the
set {p < oo} is closed. For irreducible and weakly irreducible kernels we can say
more:

PROPOSITION 2.4. Suppose that K is an irreducible kernel with maximal irreduci-
bility measure \. Then either

(i) there is a closed full set F and strictly positive charge g,, g, > 0 everywhere,
such that the potential p, = Gg, is finite on F, or

(i) Gg = oo for all ge &, with Y(g) > 0.

. Infact, Proposition 2.4 is a special case of Theorem 3.2 in [N]. Since the proof
1s a simple application of the previous results we present it here.
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Proor. If (ii) does not hold, then for some y-positive g, p; = Gg, is not
identically infinite. By Corollary 2.3 the set F = {p, < o0} is closed (Whence also
full; see Example 2.2). Define a charge g, by

@

go = Z 2_‘"“)1("91.
n=0

By irreducibility g, > 0 everywhere. Clearly
po=Gg, = p; <o on F.

In the case (i) we call the irreducible kernel K transient. Similarly one can
prove:

PROPOSITION 2.5. Suppose that K is a weakly irreducible kernel with maximal
weak irreducibility measure . Then either

(i) there is a closed full set F and a charge g,,9, > 0 y-a.e., such that the
potential p, = Gy, is finite on F, or

(i) Gg = oo Y-a.e. for all ge &, with y(g) > 0.

In the case (i) we again call K transient.
For the rest of this section we consider the P.E. in the case where the potential
of the absolute value of the charge g exists:

Glgl % oo.

(In particular, if K is irreducible and y|g| > 0, this means that we are necessarily
in the transient case; see Proposition 2.4.)

Let ge & be a charge such that the potential G|g| = Gg, + Gg_ is not ident-
ically infinite. (g, and g_ denote the usual positive and negative parts of the
function g.) It follows that the function p = Gg is well defined on the closed set

D,*E {Gg, < 0} U{Gyg_ < 0}
and finite on the closed set
{Glgl < 0} = {Gg+ < 0} N {Gg- < o}

We call p the signed potential with charge g (on the domain D).
The following result is obvious:

PROPOSITION 2.6. If p = Gg is a signed potential, then p satisfies the P.E. wich
charge g on the domain D,,.

We need also the concept of a signed harmonic function:
Let D be a closed set. A function he & is called signed harmonic on D, if h(x) is
finite for some xe D and

h= Kh on D.
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Thus a signed harmonic function his a solution of the P.E. on D with zero charge.
Hence all the previous results concerning the P.E. hold true for h. A non-negative
signed harmonic function is simply called harmonic.

The classical Riesz decomposition result states that a superharmonic function
can be written as the sum of a potential and of a harmonic function (see e.g. Doob
(1959)). A similar decomposition is valid for the solution of the P.E.:

THEOREM 2.1. (i) Suppose that is a closed domain D’ such that f € & satisfies the
P.E. with charge g on D' and that the set D' n {|f| < o0} N {Glg| < 0} is non-
empty (Whence closed). Define iteratively a sequence of functions (f,) by setting

fo=fifa=Kfauy for n2 1.

Then, on the closed set D = D' n {Glg| < oo} we have:
The functions f, are all well defined,

lim £,(x) = foo(x)

exists, the limit function f,, is signed harmonic, and the solution f of the P.E. can be
written as th sum

f=Gg+ fs.

Moreover, the functions f,, f, all are finite on the closed set D n {|f| < o0}.
(i) Conversely, suppose that there is a closed set D and g e & such that Glg| is
finite on D and h is a signed harmonic function on D. Then the sum

f=Gg+h

satisfies the P.E. with charge g on D. Moreover, the decomposition of f into a signed
potential and a signed harmonic function is unique:

fo=Ilimf, =h on D.

PROOF. The basic ideas of the proof are standard and follow those of the proof
of the classical Riesz decomposition.
(i) On D = D' n {G|g| < oo} we have: Iteration of the equation

f—g9g=Kf="/
yields

N-1

f— Y K'g=fy foral N2 1.
0
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As N — oo the left hand side tends to the limit f — Gg. Hence also lim f, = f,,
exists. That f,, = f — Gg is signed harmonic follows from the equations

f—Gg=f—-g—KGg

= Kf — KGg
= K(f — Gg).
(i) On D we have:
f=Gg+h

=g+ KGg + Kh
by Proposition 2.6 and since h is singed harmonic,

=g + Kf.
By (i)

f=Gg+ fo,

and consequently,

h=f,.

Note that in the iterative definition of the functions f, we do not require that
K"f < [ K"(x,dy)f(y) should exist for n = 2. Of course, if K"f exists (e.g., if f is
non-negative) then f, = K"f for such n.

According to Proposition 2.6 a signed potential is always a solution of the P.E.
The following two corollaries of Theorem 2.1 give conditions which force the
solution to be a signed potential. By Theorem 2.1 this is equivalent to requiring
that

fo =lim f, = 0.

COROLLARY 2.4. Let f be a solution of the Poisson equation with charge g. If
|f1 £ p, for some potential p, = Gg, % oo, then f = Gg on the closed set
{p, < 0}. In particular, if G|f| % oo, then f = Gg on the closed set {G|f| < o0}.

ProoF. Clearly |f,| £ (p,) = 0 on {p, < o0}.

ExaMPLE 2.4. Animportant special case is the case where K is a substochastic
kernel, that means K(x, E) < 1 for all xeE, or in other words, the function 1,
defined by 1(x) = 1, is superharmonic. In this case we use the symbol P instead of
K. A substochastic kernel P always governs the transitions of a (possibly
terminating) Markov chain (X,; n =0, 1,...) on (E, &) (see e.g. [N], Section 1.2).
Let L denote the life time of (X,,), that is the random time

L=sup{n20:X,eE} (L)
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Note that in this case any signed potential p = Gg has the probabilistic interpre-
tation Gg(x) = Ex ) r-0g(Xa) (= Ex 2 r-09+(Xa) — Ex Y k-0 g-(X,)). Clearly

P.{L 2 n} = P,{X,eE} = P"1(x).
Hence the probability
P, {the Markov chain does not terminate} = P, {L = o0}
is equal to the limit

lim P"1(x) = 14(x),

n— oo

which is the harmonic part in the Riesz decomposition of the superharmonic
function 1. The charge is

1 — Pl(x) = P, {L = O}

Since clearly the set where a harmonic function equals zero is closed, Corollary
2.4 gives the following results:

COROLLARY 2.5. Let (X,;n=0,1,...) be a Markov chain with substochastic
transition kernel P and life time L. Suppose that P, {L < oo} =1 for some a€E.
Let f be a bounded solution of the P.E.

f=9+Ff
Then

<] L
f=Gg=Y Pg=E,) gX,)
n=0 o
on the closed set

{1, =0} ={xeE:P,{L<oo}=1}

3. Recurrent kernels.

Basic assumption. Throughout this section we assume that K is an irreducible
kernel satisfying the following “limiting transience” conditions (cf. Proposition
2.4).

(i) Forall0 < r < 1, the kernel 7K is transient, i.e. for all such r there is a closed
full set F® and strictly positive charge g’ such that the potential

pe = 3 rK"gQ
0

is finite on F ™ and
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(i) the kernel K is not transient, i.e.
Gg = o forall ged&, with Y(g) > 0.

We call such a kernel K recurrent. (In Vere-Jones’ (1967) and Tweedie’s (1974)
terminology K is 1-recurrent. See also [N], Section 3.2.) The important special
case of a Harris recurrent Markov chain will be discussed later in this section.

From condition (ii) it follows that for charges g € & with y(|g|) > 0 the signed
potentials Gg appearing in the solutions given by Theorem 2.1 are either infinite
or not well defined. However, it turns out that non-trivial solutions for the P.E.
may still exist for such charges.

Our starting point is the following minorization condition, with holds true for
any irreducible kernel K (see [N], Theorem 2.1):

There exist an integer m, = 1, a function se &, with y(s) > 0 and non-zero
measure v on (E, &) such that

K™(x, A) = s(x)v(A) for all xeE,Ae€é.
Using the notation s ® v for the kernel (s(x)v(A); x € E, A € &) we can write briefly
K™ 2>s®v.

Let us assume for a while that m, = 1, i.e. that K satisfies the minorization
condition

3.1) K=Zs®v.

Note that, in the special case where K has a proper atom, that is a point o € E with

{a} € &7, the minorization condition (3.1) is automatically satisfied. Namely, set

s(x) = K(x, {a})for all x,v = ¢, = the unit mass at « (see also Example 3.1 below).
We denote by G, , the potential kernel of the kernel K — s ® v,

o= Y (K —s@".
n=0

Note that

(3.2 Gs, =1+ (K —s®v)Gq,

and G;,, is the minimal non-negative kernel G satisfying the inequality
(3.3) G21+(K—-s®vG.

By Theorem 5.1 of [N] (see also Tweedie (1974)) the potential

(3.4) h, < G,,s

is harmonic for K. Moreover, h, > 0 everywhere, the set {h, < oo} is closed and
full, v(h,) = 1, and h, is the unique minimal superharmonic function h with
v(h) = 1 (that means, h = Kh implies h = ch, everywhere and h = ch, y-almost
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everywhere, where ¢ = v(h) is a finite constant). Hence, in particular, there exist
finite potentials for the minorized kernel K — s @ v.

Note that a set F € & is closed (for K) if and only if F supports v and F is closed
for the kernel K — s ® v. From this and from Corollary 2.3. we immediately
obtain the following lemma. Recall that any closed set F is also full (that means
n(F¢) = 0, where 7 is the invariant measure of the recurrent kernel K).

LeMMA 3.1. Let geé.. If G, ,g < o v-a.e., then in fact the set {G, ,g < o0} is
closed.

By Theorem 5.2 of [N] (see also Tweedie (1974)) the potential measure
def

(3.5) n, = VG,
is invariant for K, that means
K = 7.

Moreover 7, is o-finite and equivalent to y (hence is a maximal irreducibility
measure), 7(s) = 1 and 7w, is the unique subinvariant measure 7 (that means
n 2 nK) satisfying n(s) = 1.

From Lemma 3.1 we get:

COROLLARY 3.1 (cf. Proposition 5.12 of [N]). If g € &, is n-integrable, then set
{G;,,g < 0} is closed.

Recall our basic assumption that K is an irreducible recurrent kernel satisfying
the minorization condition (3.1). Our main result for such kernels is the following
theorem:

THEOREM 3.1. (i) Suppose that f € & is a solution of the P.E. with charge ge & on
aclosed domain D' satisfying G, ,|g| < oo v-almost everywhere. Define a sequence of
Junctions (f,) iteratively by setting

(3.6) fo=fifi=(K—=s®vf,—, for n=12,....
Then, on the closed set D = D' A {Gy.,lgl < o0} we have:

The functions f,(n = 0,1,...)and f,, ' im, ..., f, are all well defined, and they
are finite on the closed set D N {| f| < o0}. Moreover, f and the sum G,,,g + fo are
v-integrable,

(3.7 WG9 + fo) =0,
f can be written as the sum

f = Gs.vg + fco + V(f)hv’
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and f is signed harmonic for the kernel K — s ® v:

fao =(K _s®v)foo'
(ii) Conversely, suppose that on some closed set D the potential G, |g| is

finite, ee & is finite and signed harmonic for the kernel K — s ® v and that
WG ,g + €) = 0. Then for any constant — o0 < ¢ < oo; the function

f=G,,9+e+ch,

satisfies the P.E. with charge g on the domain D. Moreover, this representation is
unique; namely,

e=lim f, on D

n— o

and c = v(f).

REMARK 3.1. Note that the condition G;,|g| < co v-a.e. is automatically
satisfied if g is n-integrable (see Corollary 3.1). Then also the condition (3.7) takes
the form

(3.8) Wf) = —nlg).

ProoF OF THEOREM 3.1. First observe that, if f is a solution of the P.E., then it
is finite on a closed full set F. Since f satisfies the P.E., K f(whence also K| f) is
finite on F. This and the minorization (3.1) imply that f is v-integrable.

Secondly, note that f satisfies the P.E.

f=g+K/
if and only if it satisfies the “transient” P.E.
3.9 f=@+vf)e)+(K-sQ@V)f.

Applying Theorem 3.1 to the P.E. (3.9) and recalling formula (3.4) proves the
asserted results.

Using Corollary 2.4 we obtain a criterion for the vanishment of the signed
harmonic part f:

COROLLARY 3.2. Suppose that f € & is a solution of the P.E. with charge ge &,
G, gl < o v-a.e If |f| £ Gs,\go, Gs,vgo < 0O V-a.€., for some g, € &+, then necess-
arily g is n-integrable, n(g) = 0 and

(3.10) f= G:.vg + v(f)hv

on the closed set {G, g, < ©}.
In particular, i G,,,|f| < c v-a.e. (e.g. if f is n-integrable), then (3.10) holds on
the closed set {G, ,|f| < o}.
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Setting g, = s in the above corollary yields the following corollary. In what
follows the symbol M denotes a constant 0 < M < oo whose value may vary in
different contexts:

COROLLARY 3.3. Suppose that fe&,|f| £ Mh, is a solution of the P.E. with
charge ge &, Gy ,|g| < oo v-a.e. Then n(g) = 0 and (3.10) holds on the closed set
{h, < ©}.

Specializing to the case g = 0 gives the following uniqueness result for signed
harmonic functions.

COROLLARY 3.4. Supposethathe &,|h| < Mh, is signed harmonic. T hen necess-
arily

h = v(hh,.

In fact, it turns out that the assumptions of Corollary 3.3 can be weakened:
First recall from Section 5.7 of [N] (see Propositions 5.13 (iii) and 5.26 of [N])
the definition of a special function. A function g € £ is special, if

G, gl < Mh,.

(The concept of specialty was first introduced by Neveu (1972a) for Harris
recurrent stochastic kernels K = P.)
Let us call function g € & special from below, if

(3.11) G,,9 = —Mh,.

So, e.g. every non-negative function g € &, is special from below. Clearly, g€ & is
special from below if its negative part g _ is special.
We have the following result:

THEOREM 3.2. (i) Suppose that f = — Mh, is a solution of the P.E. with charge
9,1(g) = 0. Then necessarily, g is special from below, f, = 0 n-a.e., and

f=Gs,9 +v(f)h, n-a.e.

(i) Conversely, suppose that g € &, n(g) = 0,is special from below. Then for any
constant c, the function

f = Gs.vg + ch,
satisfies the P.E. with charge g. Moreover, f = — Mh, and ¢ = v(f).

PROOF. (i) Since also f' = f + Mh, = Ois a solution of the P.E. with the same
charge g, we can assume without loss of generality that f = 0. By (3.8)

Wfo) = —nlg) = 0.
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Hence, by Proposition 3.2 of [N], the set { f,, = 0} is closed for K — s ® v. Since
Jf» = 0 v-a.e., this set is closed (whence full) for K, too.
(ii) This is a direct consequence of Theorem 3.1.

The solution f with f,, = 0 has the following uniqueness property:

THEOREM 3.3. The function f = G, ,g + v(f)h,, n(g) = 0, is the unique (modulo
a n-null set and multiplication with a constant) solution of the P.E., which can be
written in the form

f=f1—f2,

where fori = 1,2, f; 2 0 is a solution of the P.E. with charge g;, g, is special from
below, n(g;) = 0 and g = g, — g,. We can take

f1=Gs\g+ +cihy, g1 =9+ — (g4,
f2 = Gs.vg— + c2hv9 g2=9g- — ns(g—)s’
wherec; 2 0, ¢y — ¢, = v(f).

ProoF. It is sufficient to prove the uniqueness only. So let f = f; — f, be
a solution of the P.E. having the stated properties. Then by Theorem 3.2 (i)

fi = Gs.vgi + v(ﬁ)hv’
from which it follows that
f=Gsg + vk,

All the above results were based on the specific minorization condition (3.1)
and the associated potential kernel G, , = Y (K — s ® v)". One might ask how
the potential kernel G, , =Y (K —s ®v)" associated with a different
minorization with quantities s’ and v’ is related to the potential kernel G, ,. The
corresponding result in Neveu (1972a) is Proposition 5.7.

Let E, = {h, < ©} (= {h, < 00}, by uniqueness).

PROPOSITION 3.2. On E,:
Gy, = Gy, — G, 8 @1y + by @ 1y — b, ® VG, + (VG 8y ® Ty
= —h,®V)G,, (I —5 ®@ny) + hy @ 7.
ReMARK. The corresponding result in Neveu (1972a) is Proposition 5.7.

PrOOF. Note that for x € E, G, ,(x,) and Gy ,.(x, ) are o-finite measures. We
define the kernels F and F’ by

F = G:,v + Gs',v’s® Ts,
F =Gy, + h, ®VG,,.
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We shall first prove that these two kernels are equal. To this end, from (3.2) and
(3.3) it follows that
F+ (K -s®V)G;,=G,,+KG,+ (K —-5®V)Gy ,s® 7,
=G, +5®VG, + (K —5 ®V)F.

(3.12) F=14+5®VG,,+(K—-5®V) on E,
This implies (see (3.3)) that
F = the minimal solution of (3.12)
=G, (I +5 ®VGy,)
=F"

By symmetry, in fact F = F’ (on E,). Let now g€ &, n(g) < oo, be arbitrary.
The identity

F(g — ny(9)s') = F'(g — ns(9)s)
leads to the identity
Gy, vg + m(9)Gy,vs — 15(9)Gs, 08" — Te(g)s(s) Gy 08
= Gy,vg + (VGsy9hy — 1:(9)Gy, 8" — 1 (9)(V' G5y
from which the assertion follows.

We will now look at two examples. At first we consider the case where the
kernel K is induced by a matrix:

ExampLE 3.1. Suppose that E = {0,1,...}, @ + F c E and let K = (k(x, y);
x, y € E) be a Card-irreducible 1-recurrent matrix on E (see Examples 3.1 (a) and
4.1 (a) of [N]). Then any state a € E is a proper atom, and letting K, denote the
matrix obtained by removing the « th column

k(x,y) for y # a,

ka(x,y) = {0 for y—a,

ks(x, y) can be written in the form

ku(x, y) = (k - ® v)(x, y)9
where s(x) = k(x, o) for all x, v(y) = 0 for y + a, v(a) = 1. Let
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Then the column vector h, with components
h,(x) = G, K(x, ), xekE,
is the unique (on F) harmonic vector satisfying h,(«) = 1. The unique invariant
row vector =, satisfying n,(o) = 1is
.(x) = Gu(a, x), xeE.

As a direct corollary of Theorem 3.1 we have:

COROLLARY 3.5. Let K be a Cardg-irreducible 1-recurrent matrix on
E =1{0,1,...}. Let acF be arbitrary.

(i) Suppose that the column vector f = (f(x); x € E) is a solution of the P.E. on
F with charge g,n,|g| < oo.(Thenin fact G,|g|(x) for all x € F.) Define the sequence

(/) by (3.6).
Then on F we have: f,,n =0,1,..., and f,, are finite, f () = —n,(g), and

f=Geg + fo + f(0)hs,

f o = Kaf "
(ii) Conversely, suppose that g, m,|g| < 0, is a column vector, e is a finite (on F)
harmonic (for K, on F) column vector with e(n) = —n,(g). Then for any constant c,

the column vector
f=G.g+ e+ ch,
satisfies the P.E. with charge g on F. Moreover,
e=f,onF
and c = f(a).

ExAMPLE 3.2. Suppose that K = P is an irreducible recurrent transition ker-
nel of a Markov chain (X,) on (E, &) satisfying the minorization condition (3.1).
Then the harmonic function h, = 1 y-a.e. (see [N], Proposition 3.13 and Corol-
lary 5.1). (X,) is called Harris recurrent, if

P.{X,€ A infinitely often} = 1 for all xeE, Ae&™*.
By theorem 3.8 (ii) of [N] Harris recurrence is equivalent to the condition
h, = a constant (= (V(E)) " !, since v(h,) = 1).
Usually we norm v to a probability measure; hence in this case
(3.13) h,=1.
Since h, = 1 is harmonic, the kernel P is stochastic; that means

P(x,E) = 1.
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This implies that the life time L = oo P,-almost surely for all xe E.

The minorization (3.1) has a probabilistic interpretation; namely there is
a proper atom « in a suitably extended state space (see Athreya & Ney (1978) or
[N], Section 4.4). With the atom « there is associated the hitting time T, of the

atom a. The potential G, f o G, , f has the interpretation

(3.14) Guf() = E. 3. f(X)

In fact 7, is the life time of the Markov chain associated with the reduced kernel
P — s® v. It follows from the Harris recurrence that T, is finite P,-a.s. for all
x€E, i.e. (X;) terminates (a.s.).

From the expression (3.4) we also see that h, = 1 is the potential with charge
s for the kernel P — s ® v:

1 = Gy,s.

Theorem 3.1 and Corollary 3.2 could easily be restated for the Harris recurrent
kernel P. Let us however only remark that the general solution of the Poisson
equation has the form

f= Gs.vg +f00 + C,
where the constant ¢ = v(f). Corollary 3.3 takes the following form.

COROLLARY 3.6. Let (X,) be a Harris recurrent Markov chain with transition
kernel P satisfying (3.1). Let f be a bounded solution of the Poisson equation with
charge g, G, ,|g| < oo v-a.e. Then n(g) = 0 and

f= Gs.vg + v(f).

In fact this corollary could be obtained also by applying Corollary 2.5 to the
ter terminating Markov chain (X;) introduced above.

Note that, conversely, if |g| is special then f = G,g is a bounded solution of the
P.E. (cf. (1972a), Proposition 6.1).

So far we have assumed that K satisfies the minorization condition (3.1). As
noted there, this assumption is not very restrictive, since for an irreducible kernel
K on a countably generated state space there always exists an integer m, such that
K™ satisfies the minorization condition, i.e.

(3.15) K™ 2s®v

for some s € &, with y(s) > 0 and non-zero measure v on (E, &). In this section we
will briefly discuss this general case. So we will assume for the rest of this section
that K is a recurrent kernel satisfying the minorization condition (3.15).
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We denote by G, , the potential kernel of K™ — s® v, i.e.
Gmn,s,v = Z (Kmo -5 ® V)".
n=0

By Corollary 5.1 of [N] the function
(3.16) by E Gp, 08
is harmonic for K, and it is the minimal superharmonic function h satisfying
v(h) = 1. It follows that G,,_;,, satisfies the identities
317 G, °,=1+K"G, ,,—s@n,=1+ G, ;, K" —h,Q®v.
(The invariant measure 7 satisfying my(s) = 1 is given by the formula
(3.18) T =17,=VGp_
see Theorem 5.2 of [N].)
We need the following lemma:

LEMMA 3.2. Suppose that g € & is n-integrable. Then the set

0

F= ) {K"lgl < o0}

n=0
is closed (whence n(F€) = 0).
Proor. Clearly, n(F) = 0; hence F is not empty. If x€ F, then K(x, {K"|g| =
o0}) = 0 for all n, which proves the assertion.
For any n-integrable g we write g for the functiong =g + Kg + ... + K™ 1g.
g is well defined at least on the set F of the above lemma. We say that g is special
from belowe, if § is special from below for the iterated kernel K™, i.e.

Gm,,.s.vg ; - th,

(see (3.11)).
Theorems 3.1 (i) and 3.2 (i) extend to the following form:

THEOREM 3.4. (i) Suppose that feé& satisfies the P.E. with charge geé&,
n(g) = 0, on a closed domain D'. Then there is a closed set D = D’ such that f is
finite on D and

f =G, sv§+ fo + Wf)h, on D,
where

fo = lim f,

n-* o

fo=Lf =KK™ —=s®V)fo-y for n21
all are finite on D. Moreover v(f,) = 0.



ON THE POISSON EQUATION IN THE POTENTIAL THEORY OF . .. 77

(ii) If, in addition, g is special from below, then f,, = 0 n-a.e.

Proor. (i) Iterating the Poisson equation we see that f satisfies also the
Poisson equation for the kernel K™ and with charge § on the closed set F of
Lemma 3.2. Then applying Theorem 3.1 (i) we see that f has the form

= Gmpsnd + fo + W),

Since VG, 5,v§ = (g) = 0 by (3.18), it follows that v(f,) = 0.
By Theorem 3.2 (i) f,, = 0 if g is special from below for K™°. This proves the
second part.

In the converse direction we are able to prove the following result (cf. The-
orems 3.1 (ii) and 5.2 (ii)).

THEOREMS 3.5. Suppose that g € & is n-integrable with n(g) = 0. Then there is
a closed domain D such that for any constant c, the function

f = Gmo.s,vg + Chv

satisfies the P.E. with charge g on D. Necessarily ¢ = v(f). If, in addition, g is
special from below then f = — Mh, for some constant M < co.

ProorF. Clearly, it suffices to consider the case ¢ = 0. Suppose first that ge &,
n(g) = 0, is special from below, i.e.

f= Gm,.s.vg- g _th

Let f"= f+ Mh, =G, ,,(§ + Ms) =0 (see (3.16)). Since v(f)=n(g) =0,
v(f") = M. By (3.17)

(3.19) ff=d+Ms+ K™ —s®V)f =g+ Kmf

i.e. f'satisfies the P.E. for the kernel K™ and with charge §. Since f” is a potential
(for the kernel K™ ® v), 2 = 0. Further, by “multiplying” the P.E. (3.19) with K,
we see that Kf” satisfies the P.E.

Kf' = Kg + K™(Kf").
Applying Theorem 3.2 (i) to the kernel K™, we see that (Kf’),, = 0 n-a.e. and
Kf' = G, Kg + Kf')h, m-a.c.
For the first term on the right hand side we have
Gmyois,vKG = G, .s,"(§ + K™g — g)
= Gp,svd — g + v(9h, by 3.17)
= f'— g+ (Ug) — M)h,.



78 E. NUMMELIN

Consequently,

(3.20) Kf' = f"—g+ch, n-a.e.,

where ¢’ is the constant ¢’ = v(g) — M + v(Kf)). Iteration of the above P.E. gives
K™ f"= ' — g+ ¢'m,h,, n-a.e.

Comparison with (3.19) yields ¢’ = 0. Hence by (3.20) f* satisfies the P.E. with
charge g. But then also f = f* — Mh, satisfies the same P.E. So the assertion is
proved in the case where g is special from below.

In the general case the function f = G,,_,,d s first decomposed into two parts,

f =fi — f5, where
fi = Gpm,s,vGi With
g1 =9+ —m(g+)s, g2 =g- —mlg-)s.
Clearly n(g,) = n(g;) = 0.
Since s is a special function (see Propositions 5.13 (iii) and 5.26 of [N]), g, and

g, are special from below. Now the assertion follows from the first part of the
proof and from Proposition 2.1 (ii).

4. On the Poisson equation for measures.
Let A be a signed measure on (E, &). We write

def

AK(A4) = fl(dx)K(x, A) = Jh(d)K(x, A) - ji-(d)K(x, A)
(whenever well defined).
In this section we shall briefly discuss the “dual” P.E.

4.1 A=u+ K

where A and u are two o-finite signed measures on (E, &). The given signed
measure u is called the charge and the unknown signed measure 4 a solution of the
P.E.

REMARK 1. By a o-finite signed measure we mean a (partially defined) set
function from & into the extended real line [ — o0, o] such that it acts as
a bounded signed measure on some sets E; e &, i = 0,1,..., covering E. Note that
the assumption of the o-finiteness of 4 and u in (4.1) forces AK to be o-finite, too.
The convergence of a sequence (4,) of signed measures towards a signed measure
A always means setwise convergence:

‘lim A4, = 4, if and only if there are sets

E;eé8,i=0,1,...,UE; = E, such that
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lim 4,(4) = A.(A)forall A = E;, all i.

n— o

The absolute value || of a signed measure is defined in the usual manner as the
sum of the positive and negative parts of :

A=Ay +A_.

Note that 1 is o-finite if and only if so is |A|.

We have again first to treat the transient case. Qur main new result is
Theorem 4.2 where we can remove the assumption that the charge be a special
measure (cf. Neveu (1972a), Proposition 6.7).

The following theorem is the dual result to Theorem 2.1:

THEOREM 4.1. Suppose that the potential measure || G = Y |u| K" is o-finite.
(1]

(i) If A satisfies the P.E. with charge u, then an induction argument based on the
inequality |A|(K) < |ul + |A| shows that |A| K" is o-finite for all n, and hence the
signed measures A,, n = 0, 1,..., defined iteratively by

Ao = Ay =A,—1K for n=1,2,...,
are o-finite. The limit lim A, = 1, exists, is o-finite and invariant for K:
Ao = A K.
The solution A can be written as the sum
A=puG + Ay.
(i) Conversely, suppose that
A=uG+p

where p is a o-finite invariant measure. Then J satisfies the P.E. with charge p and
necessarily

p = A, =limA4,.

PROOF. The basic idea is again well known. The only thing one has to worry
about is whether the quantifies involved are all well defined.
Let (E;) be a countable partition of E such that

|| G(E;) < o for all i.
By iterating the P.E. we get

N-1

(4.2) A— Y uK"=iyforall Nz 1.
0
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Letting N — co we have for all j, 4 < E;,

lim i pK"(A) = lim Ti e K"A4) — lim Ti - K"(A)

N—-o 0 N—-xo O N—-w O
=+ G(A) — u-G(4)
= puG(A)e(— o0, ).
Consequently,
N
lim Y uK" = uG,
N—-wo O

and hence by (4.2), lim A, = 4, exists, and

A—uG = A
The rest of the proof is analogous to that of Theorem 2.1.

EXAMPLE 4.1. Let (X,) be a Markov chain on (E, &) with transition kernel
P and life time L (see Example 2.4). As a corollary of Theorem 4.1 we have:

COROLLARY 4.1. Let A be a finite signed measure such that
P.{L < 0} =1 for |Al-almost all xeE.
Then necessarily
(A —AP)G = A
PrOOF. Let u = 4 — AP. It is easy to see that the hypotheses imply that the

potential measure |u| G is o-finite. By the monotone convergence theorem

lim sup |AP"(A4)| < lim | |A| P"1 =0 for all A€éd.

n— o n— o
Hence 1, = 0.

For recurrent kernels satisfying the minorization condition (3.1) we have the
following result (cf. Theorem 3.1).

THEOREM 4.2. Suppose that K is a recurrent kernel satisfying the minorization
condition (3.1) and suppose that p is a.signed measure such that the potential

measure |y G, = Z |ul (K — s ® v)" is o-finite. (This is automatically true if p is

n=0
finite.)
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(i) Suppose that A is a solution of the P.E. with charge u. Define a sequence of
signed measures iteratively by setting

Ao =AAn=2,1(K—s5®v) for n=1,2,....

Then the signed measures A,,(n = 0,1,...)and A, & im Ay are all well defined and
o-finite. Moreover, A(s) and A (s) are finite, and in the case where pis finite we have

HE) = —A4(s).
Moreover, A can be written as the sum
A= uG,, + Ay + AS)Ts
and 2, is invariant for the kernel K — s ® v:
Ao = Ao(K — s @)

(ii) Conversely, suppose that p is a o-finite signed measure, invariant for
K—-—5®v,

p=pK-s®v),

and that (uG;,, + p)s = 0. Then for any constant —oo < c¢ < o0, the signed
measure

A=uG,,+ p+cm
satisfies the P.E. with charge p. Moreover, this representation is unique; namely,
p=limi, =1,,
and ¢ = A(s).

PrROOF. The proof is analogous to that of Theorem 3.1, and it is based on the
application of Theorem 4.1 to the P.E.

A=+ AsY) + (K —s® ).
We record the following corollary giving a criterion for the vanishing of A.,:

COROLLARY 4.2. In addition to the assumptions of Theorem 4.2 assume that A is
a solution of the P.E. satisfying || (h,) < co. Then necessarily

A= uG,, + Ms)n, on {h, < oo}
PROOF. In the proof of Theorem 6.7 of [N] it is noted that

lim | |A{(K — s ® V\'h, =0

n— oo

implying 4, — 0.



82 E. NUMMELIN

Specializing to the case u = 0 we get:

COROLLARY 4.3. Let K be asin Theorem 4.2. Let  be a signed invariant measure
Jor K satisfying |n| (h,) < c0. Then necessarily

T = n(s)ms.

Note that for Harris recurrent Markov chains h, = 1, whence the above
requirement |4| (h,) < co means that 1 is a finite measure.
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