THE EXISTENCE OF NONTRIVIAL SOLUTIONS OF VOLTERRA EQUATIONS

W. MYDLARCZYK

Abstract.

The paper is devoted to the study of the equation

$$u(x) = \int_{0}^{x} (x - s)^{\alpha - 1} g(u(s)) ds \quad (x \ge 0, \alpha > 0).$$

Under weaker assumptions than in G. Gripenberg work [2] some necessary and sufficient conditions for the existence of nontrivial solutions u of this equation are given.

Introduction.

The following equation

(1.1)
$$u(x) = \int_{0}^{x} k(x - s)g(u(s)) ds \quad (x \ge 0),$$

where g is a nondecreasing function such that g(0) = 0, can be used for comparison purposes in the study of integral Volterra equations by monotonicity methods (see [2]).

Such equations arise also in some problems of mathematical physics. For example in the theory of nonlinear waves (see [3], [6]) (1.1) is studied with $k(x) = x^{\alpha-1}$ ($\alpha > 0$) and $g(u) = u^{1/\gamma}$ ($\gamma > 1$).

From a physical point of view only nonnegative nontrivial solutions of (1.1) are interesting. But let us note that $u \equiv 0$ satisfies (1.1). Under some assumptions (see [4]) the equation (1.1) has a continuous solution u such that u(0) = 0 and u(x) > 0 for x > 0.

The purpose of this paper is to study the existence of nonnegative continuous solutions of the equation

Received September 4, 1989

(1.2)
$$u(x) = \int_{0}^{x} (x - s)^{\alpha - 1} g(u(s)) ds \quad (x \ge 0).$$

The main results of this work are inspired by G. Gripenberg paper [2]. To compare our results with [2] let us write g in the following form g(u) = uh(u). In paper [2] it is assumed that

- (1.3) $h:(0, +\infty) \to (0, +\infty)$ is continuous and nonincreasing on $(0, \delta)(\delta > 0)$,
- (1.4) for each p > 0 the function $h^p(u)u$ is nondecreasing on $[0, \delta_p)(\delta_p > 0)$.

Under these assumptions in [2] it is shown that for $\alpha > 0$ the function $u \equiv 0$ is the unique continuous solution of (1.2) if and only if

$$\int_{0}^{\delta} [uh^{1/\alpha}(u)]^{-1} du = +\infty.$$

Here under weaker assumptions we get similar necessary and sufficient conditions for the existence of nonnegative nontrivial solutions of (1.2). Thus we can study a larger class of the equations (1.2), for example we can consider the case $g(u) = u^{1/\gamma}(\gamma > 1)$. Such a case would not be allowed in [2].

2. Assumptions and auxiliary theorems.

In this section we collect some useful facts concerning the equation (1.1). We assume

(2.1) $k: R_+ \to R_+$ is a locally integrable function $(R_+ = [0, \infty))$,

(2.2) the integral
$$K(x) = \int_{0}^{x} k(s) ds$$
 is positive for all $x > 0$,

(2.3) $g: R_+ \rightarrow R_+$ is a nondecreasing function,

$$(2.4) \ g(0) = 0, g(x) > 0 \quad \text{for } x > 0.$$

Throughout the paper $\delta > 0$ always denotes a constant. We permit it to change its value from paragraph to paragraph.

REMARK 2.1. As it has been shown in [2], from (1.3), (1.4) it follows that g is absolutely continuous on $[0, \delta]$. Hence our assumptions on g are weaker than those in [2].

Let M > 0 be an arbitrary number. By (2.4) we can construct a continuous

strictly increasing function

$$\Phi: [0, M] \to \mathsf{R}_{,+}$$

such that

(2.5)
$$\Phi(x) \le x/g(x) \quad \text{for } x \in (0, M] \text{ and } \Phi(0) = 0.$$

Now, let $\delta > 0$ be such a number that $K(\delta) < \Phi(M)$.

Denote

$$\phi(x) = \Phi^{-1}K(x) \quad \text{for } x \in [0, \delta].$$

LEMMA 2.1. For any continuous nonnegative solution u of (1.1) we have

$$(2.6) u(x) \le \phi(x), \quad \text{if } x \in [0, \delta_u]$$

PROOF. Taking $v(x) = \max_{s \in [0,x]} u(s)$, by (1.1) we get

(2.7)
$$v(x) \le K(x)g(v(x)) \quad \text{for } x \in [0, \delta].$$

Since v(0) = 0, from the continuity of v and (2.5) it follows (2.6) and the proof is completed.

For any continuous function w: $R_+ \rightarrow R_+$ we define

$$T(w)(x) = \int_{0}^{x} k(x-s)g(w(s)) ds.$$

The operator T is monotonuous and we have

LEMMA 2.2.

$$T(\phi)(x) \le \phi(x)$$
 for $x \in [0,\delta]$.

The proof of this lemma is very easy.

In much the same way as in [1], [5] we get

REMARK 2.2. The sequence

$$\phi_0 = \phi$$
, $\phi_{n+1} = T(\phi_n)$ for $n \ge 0$

is the decreasing sequence convergent on $[0, \delta]$ to a nondecreasing solution \bar{u} of (1.1).

By (2.6) this solution is maximal in the following sense

$$u(x) \le \bar{u}(x)$$
 for $x \in [0, \delta_u]$,

where u is an arbitrary solution of (1.1).

Integrating by parts in (1.1) we can represent the maximal solution \bar{u} as the Lebesgue-Stieltjes integral in the following way

(2.8)
$$\bar{u}(x) = \int_{0}^{x} K(x-s) d(g \circ \bar{u})(s) \quad (x \in [0,\delta]).$$

Hence we get

THEOREM 2.1. The maximal solution \bar{u} of (1.1) is an absolutely continuous function on $[0, \delta]$.

By the a priori estimate given in (2.6) the following theorem may be proved (see [1], [4], [5])

THEOREM 2.2. The equation (1.1) has a nontrivial continuous solution if and only if there exists a continuous function $F \neq 0$ such that

$$T(F)(x) \ge F(x)$$
 for $x \in [0, \delta]$.

3. The main results.

In this section we consider the equation (1.2). Our aim is to prove the following theorem:

THEOREM 3.1. Let $\alpha > 0$ and let (2.3), (2.4) be satisfied. Then (1.2) has a nontrivial continuous solution if and only if

(3.1)
$$\int_{0}^{\delta} \frac{1}{s} \left[s/g(s) \right]^{1/\alpha} ds < +\infty \quad (\delta > 0).$$

PROOF. The constant $\gamma = \alpha^{-1/\alpha}$ will appear in many places of our proof.

First we prove that (3.1) is a necessary condition for the existence of a non-trivial solution of (1.2).

Assume that the maximal solution \bar{u} of (1.2), which is a nondecreasing function, satisfies $\bar{u}(x) > 0$ for $x \in (0, \delta]$.

Denote

$$L(x) = \frac{1}{\bar{u}(x)} \int_{0}^{x} \bar{u}(s) \, ds \quad \text{for } x \in (0, \delta],$$

$$L(0) = \lim_{x \to 0+} L(x) = 0.$$

Representing \bar{u} as in (2.8) and then applying the Jensen inequality we get

$$\bar{u}(x) \leq \alpha^{-1} g(\bar{u}(x)) \left[\frac{1}{g(\bar{u}(x))} \int_{0}^{x} (x-s)^{\alpha+1} d(g\bar{u})(s) \right]^{\alpha/(\alpha+1)} \quad (x \in (0,\delta)).$$

Hence

(3.2)
$$[\bar{u}(x)/g(\bar{u}(x))]^{1/\alpha} \le \gamma(\alpha+1)L(x) \quad (x \in (0,\delta)).$$

Since

$$L'(x) = 1 - \frac{\bar{u}'(x)}{\bar{u}(x)} L(x)$$

for almost every $x \in (0, \delta)$, by (3.2) we get

$$(3.3) 0 \leq \frac{\overline{u}'(x)}{\overline{u}(x)} \left[\frac{\overline{u}(x)}{g(\overline{u}(x))} \right]^{1/\alpha} \leq \gamma(a+1)(1-L'(x))$$

for almost every $x \in (0, \delta)$.

Note that by Theorem 2.1 L(x) is absolutely continuous on every $[\delta_1, \delta]$, $0 < \delta_1 < \delta$. Hence the right side of (3.3) is integrable on $[0, \delta]$ and the substitution $\tau = \bar{u}(x)$ gives (3.1), which completes the proof of this part of the theorem.

Now we are going to prove that if (3.1) holds then equation (1.2) has a non-trivial solution.

Define

$$F_c^{-1}(x) = c \int_0^{x/2} \frac{1}{s} \left[\frac{s}{g(s)} \right]^{1/\alpha} ds \quad (x \in (0, \delta), c > 0).$$

First we establish some useful property of F_c^{-1} .

LEMMA 3.1. There exists a constant c such that

$$\int_{0}^{y} (F_{c}^{-1}(y) - F_{c}^{-1}(\tau))^{\alpha} dg(\tau) \ge \alpha y \quad (y > 0).$$

Proof. Note that

$$F_c^{-1}(y) - F_c^{-1}(y/2) \ge cg(y/2)^{-1/\alpha} \int_{y/4}^{y/2} s^{1/\alpha - 1} ds =$$

$$c(2^{-1/\alpha} - 4^{-1/\alpha})\alpha y^{1/\alpha} g(y/2)^{-1/\alpha} \quad (y > 0)$$

and that

$$\int_{0}^{y} (F_{c}^{-1}(y) - F_{c}^{-1}(\tau))^{\alpha} dg(\tau) \ge (F_{c}^{-1}(y) - F_{c}^{-1}(y/2))^{\alpha} g(y/2) \quad (y > 0).$$

Therefore it suffices to take c satisfying

(3.4)
$$c(2^{-1/\alpha} - 4^{-1/\alpha})\alpha = \alpha^{1/\alpha}$$

to get our assertion and the proof of the lemma is completed.

Now let F be the inverse function to F_c^{-1} with c as in (3.4). Substituting $s = F_c^{-1}(\tau)$ and then integrating by parts we get

(3.5)
$$T(F)(x) = \alpha^{-1} \int_{0}^{F(x)} (x - F_c^{-1}(\tau))^{\alpha} dg(\tau).$$

If we take y = F(x) in Lemma 3.1, then from (3.5) we obtain

$$F(x) \le T(F(x)) \quad (x \in [0, \delta)),$$

which in view of Theorem 2.2 completes the proof of the theorem.

REFERENCES

- P. J. Bushell and W. Okrasiński, Uniqueness of solutions for a class of non-linear Volterra integral equations with convolution kernel, Math. Proc. Camb. Phil. Soc. 106 (1989), 547-552.
- 2. G. Gripenberg, Unique solutions of some Volterra integral equtions, Math. Scand. 48 (1981), 59-67.
- J. J. Keller, Propagation of simple nonlinear waves in gas filled tubes with friction, Z. Angew. Math. Phys. 32 (1981), 170-181.
- W. Okrasiński, Nonnegative solutions of some nonlinear integral equations, Ann. Polon. Math. 44 (1984), 209–218.
- 5. W. Okrasiński, On a nonlinear Volterra equation, Math. Methods Appl. Sci. 8 (1986), 345-350.
- W. R. Schneider, The general solution of a nonlinear integral equation of convolution type, Z. Angew. Math. Phys. 33 (1982), 140-142.

MATHEMATICAL INSTITUTE UNIVERSITY OF WROCŁAW PL. GRUNWALDZKI 2/4 50-384 WROCŁAW POLAND