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THE EXISTENCE OF NONTRIVIAL
SOLUTIONS OF VOLTERRA EQUATIONS

W. MYDLARCZYK

Abstract.

The paper is devoted to the study of the equation
u(x) = J{x — s g(u(s))ds (x = 0,0 > 0).
o

Under weaker assumptions than in G. Gripenberg work [2] some necessary and sufficient conditions
for the existence of nontrivial solutions u of this equation are given.

Introduction.

The following equation

X

(L.1) u(x) = f k(x — s)g(u(s))ds (x = 0),
(4]

where g is a nondecreasing function such that g(0) = 0, can be used for compari-
son purposes in the study of integral Volterra equations by monotonicity
methods (see [2]).

Such equations arise also in some problems of mathematical physics. For
example in the theory of nonlinear waves (see [3], [6]) (1.1) is studied with
k(x) = x*~! (« > 0) and g(u) = u'”” (y > 1).

From a physical point of view only nonnegative nontrivial solutions of (1.1) are
interesting. But let us note that u = 0 satisfies (1.1). Under some assumptions (see
[4]) the equation (1.1) has a continuous solution u such that «(0) = Oand u(x) > 0
for x > 0.

The purpose of this paper is to study the existence of nonnegative continuous
solutions of the equation
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(1.2) u(x) = j (x — s g(u(s)ds (x = 0).
o

The main results of this work are inspired by G. Gripenberg paper [2]. To
compare our results with [2] let us write g in the following form g(u) = uh(u). In
paper [2] it is assumed that

(1.3) h:(0, + o0) = (0, + o0) is continuous and nonincreasing on (0, ) (5 > 0),
(1.4) for each p > 0 the function h”(u)u is nondecreasing on [0, ,)(6, > 0).

Under these assumptions in [2] it is shown that for a > 0 the functionu = Ois
the unique continuous solution of (1.2) if and only if

5
J[uh”"(u)] “ldu= +o0.
0

Here under weaker assumptions we get similar necessary and sufficient condi-
tions for the existence of nonnegative nontrivial solutions of (1.2). Thus we can
study a larger class of the equations (1.2), for example we can consider the case
g(u) = u'’"(y > 1). Such a case would not be allowed in [2].

2. Assumptions and auxiliary theorems.

In this section we collect some useful facts concerning the equation (1.1).
We assume

(2.1) kR4 — R, is a locally integrable function (R . = [0, «0)),
(2.2) the integral K(x) = Jk(s) ds is positive for all x > 0,

0
(2.3) g:R+ — R, is a nondecreasing function,

(2.4) g(0) = 0,g(x) >0 for x > 0.

Throughout the paper § > 0 always denotes a constant. We permit it to
change its value from paragraph to paragraph.

REMARK 2.1. As it has been shown in [2], from (1.3), (1.4) it follows that g is
absolutely continuous on [0, §]. Hence our assumptions on g are weaker than
those in [2].

Let M > 0 be an arbitrary number. By (2.4) we can construct a continuous
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strictly increasing function

&:[0,M] >R,
such that
2.5) &(x) < x/g(x) for xe(0, M] and $(0) = 0.
Now, let § > 0 be such a number that K(d) < ®(M).
Denote

d(x) = & 'K(x) for xe[0,6].
LEMMA 2.1. For any continuous nonnegative solution u of (1.1) we have

(2.6) ux) £ ¢(x), if xe[0,6,]
Proor. Taking v(x) = rr{lg.lx] u(s), by (1.1) we get

@.7) o(x) < K(x)gw(x)) for x&[0,5].

Since v(0) = 0, from the continuity of v and (2.5) it follows (2.6) and the proof is
completed.

For any continuous function w: R, — R, we define

T(w)(x) = j k(x — s)g(w(s)) ds.
0
The operator T is monotonuous and we have
LEMMA 2.2,
T(@)(x) < ¢p(x) for xe[0,0].

The proof of this lemma is very easy.
In much the same way as in [1], [5] we get

REMARK 2.2. The sequence

¢0=¢a ¢n+l =T(¢n) forngO

is the decreasing sequence convergent on [0, 5] to a nondecreasing solution i of

(1.1).
By (2.6) this solution is maximal in the following sense
u(x) < a(x) for xe[0,d,],

where u is an arbitrary solution of (1.1).
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Integrating by parts in (1.1) we can represent the maximal solution # as the
Lebesgue-Stieltjes integral in the following way

(2.8) i(x) = j K(x — s)d(gou)(s) (xe[0,d]).
0
Hence we get

THEOREM 2.1. The maximal solution @ of (1.1) is an absolutely continuous
Junction on [0, 8].

By the a priori estimate given in (2.6) the following theorem may be proved (see

(1], [4]. [5D

THEOREM 2.2. The equation (1.1) has a nontrivial continuous solution if and only
if there exists a continous function F % 0 such that

T(F)(x) = F(x) for xe[O0,4].
3. The main results.

In this section we consider the equation (1.2). Our aim is to prove the following
theorem:

THEOREM 3.1. Leta > OQand let (2.3),(2.4) be satisfied. Then(1.2) has anontrivial
continuous solution if and only if

)
3.1 J\%- [s/g(s)]**ds < + 0 (6 > 0).
0

PrOOF. The constant y = a~!/* will appear in many places of our proof.

First we prove that (3.1) is a necessary condition for the existence of a non-
trivial solution of (1.2).

Assume that the maximal solution 4 of (1.2), which is a nondecreasing function,
satisfies #i(x) > 0 for x€(0, 6].

Denote

1 ( .
L(x) = E(;TJ‘u(s) ds for xe(0,6],
[\]

L) = lim Lx) = 0.
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Representing @ as in (2.8) and then applying the Jensen inequality we get

1 " af(a+1)
a(x) < a” g(a(x)) [m j (x —s**! d(gﬂ)(S)] (x€(0,9)).
0

Hence
(3.2) [a(x)/g(@c)]** < pa + DL(x) (x€(0,4)).
Since
£ =1 -2 1
u(x)
for almost every x €(0, ), by (3.2) we get
@) [ e :
(3.3 0= ) [g(ﬂ(x»] Sya+ DI - L(x)

for almost every x (0, d).

Note that by Theorem 2.1 L(x) is absolutely continuous on every [J,,5],
0 < d, < 4. Hence the right side of (3.3) is integrable on [0,5] and the substitu-
tion t = #(x) gives (3.1), which completes the proof of this part of the theorem.

Now we are going to prove that if (3.1) holds then equation (1.2) has a non-
trivial solution.

Define

x/2

. 1 s
F'(x)=c " .9—6 ds (xe(0,0),c > 0).
0

First we establish some useful property of F,” L

LEMMA 3.1. There exists a constant ¢ such that
y
J(F[ Y(y)— F7 () dg(r) Zay (v >0)
4]

Proor. Note that
/2
Fi(y) — FY0/2) 2 ca(y/2)™ " IS”““ ds =
y/4

o2 Y — 47 yayting(y/2)~ 1 (y > 0)
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and that

'[(F[ ') — F @) dg() 2 (F7 () — F7 (/2 9(v/2) (v > 0).
0

Therefore it suffices to take c satisfying
(3.9 cR7Me — 4ty = gl/e
to get our assertion and the proof of the lemma is completed.

Now let F be the inverse function to F, ! with ¢ as in (3.4). Substituting
s = F, () and then integrating by parts we get

F(x)

(3.5) T(F)(x) = o™ J (x — F'(2))" dg(x).
0

If we take y = F(x) in Lemma 3.1, then from (3.5) we obtain
F(x) = T(F(x)) (x€[0,9)),

which in view of Theorem 2.2 completes the proof of the theorem.
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