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THE DIOPHANTINE EQUATION X(X + 1) = Y(Y+ 1).

J. H. E. COHN

The equation of the title seems to have occurred naturally in a combinatorial
problem, and my colleague B. J. Wilson has asked me to solve it completely. In
this note we prove that Y =0, 1 and 3 provide the only solutions in integers
X and Y.

The method we shall use is outlined in [ 1]; the process consists of showing that
the cubic equation may be reduced to a finite set of equations, known as Thue
equations, each of the form F(x,y) = 1 where F(x, y) is a binary quartic form.
These can be tackled by Skolem’s p-adic method, of which an account appears in
[1; p. 207]. There are a number of practical difficulties; often many quartics
appear, there is no a priori guarantee of success in proving that all solutions have
been determined, and the arithmetic is often highly non-trivial. Perhaps because
of these difficulties, many of the examples in the literature toillustrate the method
are capable of much shorter treatment in other ways, and both of the examples
given in [1] can be reduced to u* + v* = w? by substitutions, whence neither has
a solution apart from y = 0 in rationals, let alone integers.

Writing u = 2X + 1 our equation becomes 2u?> = (2Y)* + 4(2Y) + 2 with
u odd, and we work in the algebraic number field Q[ ¢] with defining polynomial
©3 + 49 + 2. Properties of the field which are easily obtained are:

a. the integers of the field have an integral basis 1, @, ¢?

b. the discriminant is — 364

c. since the defining equation has one real and two complex roots there is one
fundamental unit of infinite order; it may be taken tobe e = 1 + 2¢

d. the class number is 1, and so there is unique prime factorisation

e. the rational primes 2, 7 and 13 wnich divide the discriminant, have the
following factorisations into primes of the field:

2= —¢’le= —o(9* +4)
7=(1- )3 + ¢?) = n’(3 + ¢?), say
13=(1+ @)1 + ¢ + /e = (1 + ¢?)1’/e, say.
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Then the equation becomes
—@(@? + Hu? = Y — @)dY? + 20Y + @2 + 4)
and so u? = (1 =2Y/p)1 — p*Y—2¢pY?)
= (1 + (@2 + Y)(1 — %Y —2¢Y?)
= aff say.

Now B — a@?(Y + ¢) = 1 — @3 = nt. Thus « and # have common factor divid-
ing n7, and so each is an associate of a square times one of 1, %, t and nz.

We show next that («, f) = 1. This will follow from the fact that each of =,
7 occurs squared in the factorisation of its norm. Suppose that 7 divided «. Then
we should find n|(1 + 5Y), and hence also its norm 7|(1 + 5Y)3,ie. Y= —3
(mod 7). Butn?|7andsoax =1 — 3¢? — 12 = 3(1 — ¢)(1 + ¢) (mod n?) and so
a is divisible by = precisely once since n does not divide (1 + ¢). Similarly we
would obtain B =1 + 3¢? — 4¢ = n(1 — 3¢) (mod %) and now = || B, since
ndoes not divide (1 — 3¢). But then n? || u? and this cannot be since 72 | u? and so
n*| u®. A similar argument shows that t cannot divide («, ). Thus we must have

1+ (@*+4)Y = £ &"a+ b + cp?).

Now for any solution of our equation Y = 0, and so we can reject the lower
sign since for the real root ¢, ¢ > 0. Absorbing even powers of ¢ into the
expression in the bracket it suffices to consider onlyn = —1 orn = 0.

Consider n = —1 first. Then

(1 + 20)1 + (¢* + 4)Y) = a? + 2abg + b*¢? + 2bce® + 2ace? + c*p*
= a® + 2abp + b2p? — 2bc(4¢ + 2) + 2acp?
—clp(d4e +2)
and so
14+ 2¢ + @*Y = (a® — 4bc) + 2¢(ab — 4bc — c?) + @*(b* + 2ac — 4c?)
whence
1 =a® — 4bc
=ab — 4bc — c?
Y = b? + 2ac — 4c>.

The difference of the first two gives a(b — a) = c2. From the first equation we see
that (a,c) = 1 soa = + 1 and bc = 0. Then from the second b = 0 is impossible
and ¢ = 0 gives a = b whence Y = 1.
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Now consider n = 0. We obtain
1 +4Y = a® — 4bc
0 =ab — 4bc — c?
Y = b? + 2ac — 4c.
From the second of these (a — 4c)b = ¢? and so for suitable integers 4, x and y,
a — 4c = Ax%, b = Ay? and ¢ = Axy. Eliminating Y from the first and third then
yields
1 = a®? — 4bc — 4b? — 8ac + 16c?
= (a — 4c)* — 4bc — 4b*
= 22(x* — dxy® — 4y%)
and so 4> = 1 and x* — 4xy® — 4y* = 1. We observe that this equation has the
solutions (+ 1,0) and + (1, — 1) yielding respectively Y = 0 and 3. The remainder
of this paper is devoted to showing that the Diophantine equation
x*—dxy? —4y* =1,

has no other solutions.

We consider the field Q(6) where 6* + 46 — 4 = 0, and then we require x + y0
to be a unit of norm + 1. For the integers in this field an internal basis is provided
by 1, 8, 0% and 16°. Since two of the roots of the defining equation are real and
two complex, there are two fundamental units of infinite order which may be
taken to be ¢ = 46% and n = 0 + 102 having norms respectively +1and —1, and
so we require =+ (x + y0) = ERy2S for some integers R and S, not necessarily
positive. We can absorb the + into the values of x and y, and shall assume this
has been done. Since £° = 1 and ¢2 = 1 — 6, we need to show that the only cases
that arissare R=0,S=0and R=2,S = 0.

Since 6* = 4 — 40 and 1/8 = 1 + 163, we may define numbers A(n), B(n), C(n)
and D(n) for each integer n by the equation

0" = A(n) + B(n)@ + C(n)6* + D(n)6?

and of course the representation is unique since the defining polynomial of the
field is irreducible. Itis clear that these numbers are integers for positive n,and are
rationals whose denominators are powers of 2 when n is negative. Then

A(n+ 1) + B(n + 1)0 + C(n + 1)8> + D(n + 1)6°
— 0n+ 1
=A(n)0 + B(n)8> + C(n)¢® + D(n)6*
= 4D(n) + {A(n) — 4D(n)}0 + B(n)8* + C(n)6?
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and so
A(n + 1) = 4D(n)
B(n + 1) = A(n) — 4D(n)
C(n+1)=B(n)
D(n + 1) = C(n).
Thus

An+4)=4D(n + 3) =4C(n + 2) = 4B(n + 1) = 44(n) — 16D(n)
and so
An+4) = —4A(n + 1) + 44(n),
with
B(n)=1A(n + 3)
Cn)=4%4An +2)
D(n) =%A(n + 1),

and so all the properties of all four sequences can be derived from the sequence
A(n). Clearly we have

A0)=1,4(1)=0,4(2) =0, A(3) = 0.
It is now convenient to make the substitution

) = {AGmI2" if n = 4m
MWV=V4@m + jy22m+2 ifn=dm+j,1<j<3.

Then the initial and recurrence conditions for the sequence a(n) are
2(0)=1,a(1) =0, 2(2) =0, 2(3) =0,
an+4) = —an+1)+ an)if n % 0(mod4)
a(n +4) = —4a(n + 1) + a(n) if n = 0 (mod 4),

and for these formulae it follows immediately that a(n) is an integer for every
integer n, positive or negative, and then by induction on m that

a(4m) = 1 (mod 4).

We prove that a(n) = O if and only if n = 1, 2, 3, 5, 6 or 9. Calculation shows
that a(n) = O for these six values, but not for 4, 7 or 8, and that «(10) = 1,
a(11) = —2, a(12) = 1, a(13) = — 1. The recurrence and induction then show
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that for n = 10, a(n) > 0 when n is even and a(n) < 0 when n is odd. Similarly
a(0) = a(—1) = a(—2) = a(—3) = 1, and so by induction on —n, a(n) > 0 if
n £ 0. In both cases a(n) $ 0. This implies that in the special case S = 0, the only
solutions arise from R = 0 or R = 2. For with § = 0 we find

x + y0 = (36%)® = {A(2R) + B(2R)8 + C(2R)6? + D(2R)63}/2%,
and then successively C(2R) = D(2R) = 0, A(2R + 2) = AQ2R + 1) = O yielding
2R +1)=a2R +2)=0. Thus R =0 or 2.

All that remains is to prove that we must have S = 0. Consider first § > 0.
Then irrespective of the sign of R we find

x + y0 = 36°)%(0 + 16%)*°
28 28 92R 045—2,;
= I T
0=
and so

_ § (2s) AQR + 45— p)

= R+25-p
p=0 p 2

Now if p is odd, the binomial coefficient is even. If p =2 is even then
AR + 48 — p)/2R*25-7 is even and so x = A(2R + 45)/28*?5 (mod 2). But
now if R were odd it would follow that A(2R + 48)/2%*25 = 24(2R + 4S)and so
x would be even which is clearly inconsistent with the Diophantine equation. So
Ris even, R = 2r say.

The next step is to prove that S must also be even. We observe that /¢ =
1+2/0=3+16%andsox + yd = (36%)**25(3 + 10%)*Sandsoifk = 4r + 10S

X + y0 = A(K) + 0B(k) + 6°C(K) + 6°D(k)(mod 3)

and it then follows, since x cannot be divisible by 3, that we must have a(k) =% O,
ak + 1) =0, a(k + 2) = 0 (mod 3). It is easily calculated from the recurrence
relation for « that these imply that k = 0 or 4 (mod 40), whence 2| S. Let S = 2s,
and then k = 4r + 20s. Thus

x + ye — (%02)2r+43(3 + %03)4.‘

3 (4g g3
Eepe

and so we obtain

f (‘Ls) 6°C(k — 3p) = f (tj) 6’ D(k — 3p) =0,

p=0 p=0
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4s
1) C?yAw+1—3m=Q
p=0 p
4s 4,
Q) (ﬁ@Aw+2—3m=Q
p=0 4
and then in view of the recurrence relation for 4 we also have
& (45
3) y 6 Ak + 5 — 3p) = 0.
p=0 P

Then k # 0, for otherwise since 4(1) = 0, we should find from (1)

4s 4

Z(vyﬂpdm=q
p=1 p
impossible since A(n) > 0 for all n < 0. Although we shall not need the fact, the
argument proves that k cannot be negative either. The same argument shows that
k % 4, since A(5) = A(2) = 0.

Consider first the case k = 0 (mod 40). Since neither k nor s is zero, we write
k=40-1-3% s=3%p,
where K = 0, 0 = 0 and neither A nor u is divisible by 3. Then
640 = 22°{3545 — 5442 0 + 2949 6> — 16326}
4{—1+ 36 —36%—36°} (mod9)
—143{—-1+6—-6*>—6° (mod9),

and so we have
4) A0 + m)= —A(m) (mod3)
and so

0403 = —1 4+ 35K*1{ 1 40— 0> - 6%} (mod3X*?),

and so
Ak + u) = (—D)*{A@W) + A 351 [A(w) — A(u + 1) + Au + 2) + A(u + 3)]}
(mod 3¥*2),
Since A(2) = 0 and A(2) — A(3) + A(4) + A(S) = 4, we obtain
(5) Ak +2)=(—=1*1-3%*1 (mod 3K*2),

and similarly
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(6) Ak + 1) = (—1)*- 4-3K*1 (mod 3X*2),
W) A(k) =(—D*{1 + A-3%*1}  (mod 3%¥+2),
® Ak =)= (=1 (mod 3¥*2),
)] Ak —2) = (—D*{1 + A-3%*1}  (mod 3%X*2),
and

(10) Ak — 4 =(—1)*""1 (mod3X*?)

We could of course have considered the value of 6*° moldulo 27 instead of
modulo 9, obtaining more complicated results analogous to those of (5) — (9) but
correct to a power of 3 one higher. There is just one result we shall require in this
direction, and we state without proof

1) Ak + 5) = (=1)*"1-2-3K+2  (mod 3K+3),

We then find using (2) that A(k + 2) + 24 sA(k — 1) = 0 (mod 3°*?2) and so
since from (8) A(k — 1) is not divisible by 3, it follows immediately from (5) that
K = o, and that

(—1)*2-3°*1 4 24-37 4 (=1)* =0 (mod 3°*?)

and so A = u (mod 3).

We now consider equation (3), and distinguish the two cases K = 0and K & 0.
In the first case we find that except for the first three terms of the series, all
the terms are divisible by 27, and accordingly A(k + 5) + 24s4(k + 2) +
72s(4s — 1)A(k — 1) = 0 (mod 27), or in view of the above

—(=1)*-94 + 24u-34- (= 1)* + T2p@u — 1) (=1)* =0 (mod 27)

whence, cancelling (—1)* !9 we obtain A + Ay + 1 — u = 0 (mod 3), which is
impossible as we have already seen that 1 = py(mod 3).

In the second case we find that the first, third and fourth terms are divisible by
37*2_ and all other terms by higher powers. Thus modulo 3°*3,

(=11 2:30%2 4 7237 o (ds — 1)(— 1)} + 144-3% p-(4s — 1)(ds — 2)(— 1)} 1 =0
and cancelling (—1)*~!-3°*2 we obtain A — u — u = 0 (mod 3), which is also
impossible.

Now consider the case k = 4 (mod 40). Since k = 4r + 20s, this implies r = 1
(mod 5), and we shall show that this is impossible, by considering the equation
modulo powers of 5. It is found without difficulty that £4? = 5 — 56% — 263,
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and so
X + y0 = E¥pts = £ T125(5 — 507 — 203)%
= 212s72rgar=245293 4 502 — 5)%,
Let s = 5°f, where 5 ¥ f and m = 4r — 18s. We find easily that
(12) A(m + 1) + 5s{A(m) — A(m — 2)} =0 (mod5°*?),
(13) Am +2) + 5s{Am + 1) — Am — 1)} =0 (mod 5°*?).

Itis a matter of routine calculation to show that the period of the sequence {A(n)}
modulo 5 is 124, and hence that (12)-(13) hold modulo S onlyif m =0 or 1 or
4 (mod 31). We then find modulo 25 that the period is 620 and that (12) and (13)
could only hold if 5| s and m = 0 (mod 31) or m = 1 or 4 (mod 155). At the next
stage we find that 25|s and m = 0 (mod 155) or m = 1 or 4 (mod 775). But since
r=1, s=0 (modS5), we obtain m = 4r — 18s = 4 (mod 5), and so the only
possibility is m = 4 (mod 775). But it is then easily found that 5| {A(m + 1) —
A(m — 1)} and 5 } {A(m) — A(m — 2)}, and so using (12) and (13) we find

(14) 57|l A(m + 1); 572 A(m + 2).

It remains to show that (14) is impossible. Certainlym + 4and soweletm — 4 =
31-5#-g where 5 ¥ g. Now we find easily that

63! = 8(1 + 1060) (mod 25)
and so 0™ = 65"0%1 + 2g-5++10) (mod 5#*2).
Thus A(m + 1) = 8%9(A(5) + 2g-5**1A(6)) =0 (mod 5#*2),
whilst A(m + 2) = 8%9(A(6) + 2g- 51 A(7))
—32g-8%"95**1  (mod 5**?)

and so A(m + 1) is divisible by a higher power of 5 than A(m + 2). Thus (14) is
impossible.

This concludes the proof for the case S > 0. To extend the result to negative S,
consider the integer congruences as equalities in the ring of 3-adic or 5-adic
integers. Then the only differences if S is negative are that (1) and (2) become
infinite series, which of course converge as the powers of 3 steadily increase, and
similarly modulo 5. The arguments then proceed without change.
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