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ON SIMPLE GERMS WITH NON-ISOLATED
SINGULARITIES

A. ZAHARIA

§1. Introduction.

Let @ = 0, denote the local ring of germs of analytic functions f:(C",0) - C and
m its maximal ideal. For an analytic germ f € @ we denote by J, its Jacobi ideal,
namely J, = (—;{T,..., aaf ) For an ideal I = @ we consider as in [8], [9]:

— the primitive ideal [I, defined by (I = {fe®|(f)+ J; = I}; we have
Pcflcl

— the group 2; of local analytic isomorphisms h:(C",0) — (C",0) such that
h*(I) = I;itis asubgroup of the group of all germs of local analytic isomorphisms
of (C", 0).

9, acts on | I and we shall consider the % (right-equivalence) relation on | I.

In the next section we prove the following.

THEOREM 1. Let I < (O be aradical ideal defining a germ of a quasihomogeneous
complete intersection in (C",0) with isolated singularity. Suppose that there exist
R,-simple germs in [ 1. Then in some coordinates(z,,.. ., z,) of (C",0) we have either

a) there exists ke {1,...,n} such that I = (zy,...,2), or

b) there exists ke{l,...,n} and a quasihomogeneous isolated singularity
g=9(zy,...,2) €O such that I = (g, Zi 4 1,5 2n)-

A. Némethi has proved a similar result in [ 7] for the case when I = (f*) where
s 2 1and f e @ is anisolated singularity. When n = 3, D. Siersma has considered
a similar problem for the inner modality (see [12]).

In the last section we derive the list of %,-simple germs for I = (z,,2;).
§2. Proof of Theorem 1.

We recall from [8], [9] that for anideal I = @ and for f € [ I, the tangent space at
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f to the &;-orbit of f is defined by

Tx(f)={n(f) n= Z i, 0 wnhn(I)cIand njemforj=1,.. }

and the I-codimension of f is

— dim. 1
ci(f) = dimc¢ o0

Let f},..., f, be a minimal set of quasihomogeneous generators of 1. Let g be
the dimension of the C-vector space (I + m?)/m2. If q = p, we have a) with
k=q=p.

Suppose that g < p. Using a linear change of coordinates, we can assume,
without altering the quasihomogeneity of fi,..., f,, that fj(z) = z; + higher
monomials not containing z;, for j = 1,..., q (we assume that the weights of the
coordinates are positive). Thus, we can consider, by subtracting suitable
multiples of fi,..., f;, if necessary, that f, . 4,..., f, are quasihomogeneous poly-
nomials, not depending on z,,...,z,. It follows that, in a suitable system z of
coordinates, the ideal I is generated by f; = z,,..., f, = 2,, f, =25, fyv 10+ > [
where fy41,..., f,em? are quasihomogeneous polynomials depending only on

Zq+1, ceesZye

Since there exist %;-simple germs in { I, we can find f € j' I such that ¢;(f) =
(The #,-simple germs are defined similarly with the simple isolated singularities;
see for example [2] or [4].) From [8], [9], we have [I = I and we can write

f= Z gi;fif;, with g;; = gj;. Let r be the rank of the matrix (g;5(0));, j=1,,- Then

i,j=1
2
r is also the rank of the Hessian matrix evaluated in 0, ( 66 g (0)) .Asin
i,j=1,n

the proof of Morse Lemma (see for example [6]) we can obtam a system Z of
coordinates, with Z; = z; for j > g, such that I is generated by f; = 3,..., f, = Z,,

fov1=fy+15---sfp = f, and such that

14
(1) f=8+...+2+ Y §ifif
i,j=r+1
with §;; = §; and with g‘,-jﬂf}em3. It is easy to see that for any i,j = r + 1, there
exists h;; = hij(Z, 4+ 1,. .., Z,) With hil-ﬁf}e m3 and such that for any ke N, k = 2, we
p P
havethat fis #-equivalenttoz} +... + 22+ Y hififi+ Y oufif;for
i,j=r+1 i,j=r+1
some @;;€(Zy,...,%,)" Since ¢/(f) < o, f is I-finitely determined (see [8], [9]).
Hence we can assume that in (1) the germs §;; do not depend on Zy,..., Z,.
We shall write in the sequel z for Z, f; for f; and g;; for g;;. Since c;(f) = 0, we
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must have T,(f)=[ I=1I% we prove that this equality implies that
r=q=p-—1
Let 6, =<5 = y d
o= £y
fields for I. Since I = (f3,..., f,) is a reduced quasihomogeneous complete inter-

section in (C", 0) with isolated singularity, the ¢-module 6; is generated by the
following vector fields (see for example [3]):

() < I} be the ¢-module of logarithmic vector

i
(A) fig,wherei= l,..,pandj=1,...,n
j

(B) the “trivial vector fields”

FR.
0z, ' 0z,
af i
62,1 6z‘-p“
b W
0z, T 0z,

for all (p + 1)-tuples (iy,...,i,4+,) satisfying 1 <i; i, ... Sipey

IA

n;

kd 0 .
(C) the Euler vector field E = ) w;z 5 where wy,...,w, are the weights of
i=1 j

J
the coordinates.

It is clear that T;(f) = 0,(f).
We recall that f;=z; for 1 <j < q and f,,,..., f,em? do not depend on

p
Zy,...,z,. Alsowerecall that f = z2 + ...+ z2 + Y g;fif; withg;; = g; not
i,j=r+1
depending on z,,...,z, and with g;; f; fyem®.

Suppose first that # < ¢q. Then a moment’s thought will convince us that for any
n € 0y, if we consider the expansion of n(f) in a power series, then the coefficient of
z? is zero. Hence z2 ¢ T;(f) = I?, a contradiction. It follows that r = g.

We look now for f2,,...,f;2. It is easy to see that if ne6; is one of the
generators from (A) or (B), then n(f) belongs to theideal L = m - (f;+1,..., f,)* +
(1. 529) (f415+ > fo) + (215 -, 2,)* On the other hand, for any germ gem we
havealso (gE)(f)€ L. Thus 6,(f) = L + C- E(f).If p — q = 2 we have the unique-
ness of the weights w, ., ;,..., w, (see for example [4]), hence fqz+ Leees f,,2 can not
belong simultaneously to §,(f), in contradiction with the equality 12 = 6,(f). It
follows that ¢ + 1 = p. The theorem is proved.
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§3. The simple germs for I = (z,,z,).

D. Siersma has found the #,-simple germs when I = (z,,...,z,_;) = @ in [10]

and for I = (z,2,,23,...,2,) = O in [12]. For the case when I = (z,) = 0, the list

of #;-simple germs follows from the work of V.I. Arnold [1] (see for example

[13]).

In the sequel we derive the list of %,-simple germs for I = (z,,z,). We shall
suppose that n 2 4 and we shall consider only germs f e I? with j*f = 0. (The
simple germs f e I? with jf % 0 are suspensions of those in [13].)

We use the following classical lemma:

LEMMA. Let f, = f + t ¢ € I? be a family of germs, with teR.

a) If e T () for every teR, then, for any teR, f, is Rj-equivalent with f,.

b) If & T (f,) for every teR, then, for any teR, f, is not R,-simple.

If we denote the coordinates zs,...,z, by u,,...,u,_, and the Milnor number of

an isolated singularity g by u(g), we have the following;

THEOREM 2. Let I = (z,2,) = O and f € I* with j*f = 0. Then f is R;-simple if

and only iff is #-equivalent to a germ in the following table.

Normal form of f ci(f) Conditions
I, Usz% + uyz3 + uzzy2, 3 n2s
L uyz? + uy 23 3 n=4
11 Uy22 + U232 + 2,2, g(U3, .. . Up—2) n—2+ug) | n=S5geA-D-E
I U292 + Uz2 + 23z, + v+ ud .+ k) k+n-2 n24k22
U212y + 023 + 232y Fugus + Ul +ud + .+ w2 ) | k+n—2 nz5kx3
U212y + Uz + 23z +ud +ud +ud 4.+ ully) n+2 nzs
v 12325 + Upz3 + 2325 +ud + .+ ully) k+n-1 n24kz2
Va Uzy2y + uz3 + 2323 + w3 +ud + ...+ udly) n+3 n24
Vb U2z +uzzd + 233 +ud +ud + .+ udy) n+4 nzs
A% Uy212; + Up23 + 23(zuy + 5 +ud + .+ u2,) k+n—1 n24k>3
A& 12,25 + U3z} + 23(zupy +ud + 3 + ..+ ul,) n+4 nzs

Proor. If fEIz has _]zf = 0, thenj3f = u1Q1(21,22) + ...+ un_an_z(Zl,Zz)
+ C(z4,2,), where Q,,...,Q,_, are quadrics and Cis a cubicin z,, z,. We suppose
that ¢,(f) < co. Hence f is #;-equivalent to a jet j*f for sufficiently large k (see

[9D.
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Let V be the C-vector space generated by Q,,...,Q,_, in the vector space of
quadrics in zy,2,.

Ifdim V = 3 thenn = S and we can find in Z; a linear isomorphismm of (C", 0)
such that j*f = uz3 + u,23 + usz,z,. It follows by [8], [9] that f is %#,-equival-
ent with j3f (f is a D(1, 1)-type germ) and f is #;-simple.

If dimV <1 then f is not %-simple. Namely, any neighbourhood of
f contains a germ which is Z%-equivalent to a germ f=u;z,z, + 2z} +
2+ 22Wi + ...+ ul_y) + 23 o(uy,. .., u,—,) Wwhere o e m?. It is easy to see that
for any ¢, f is not %;-simple.

Ifdim V = 2 then, using the classification of pencils of quadrics in z,, z, we can
find in 9, some linear isomorphisms of (C", 0) such that j3fis one of the following
cubics:

U122 + uyz3 uyz,z5 + Uyz3 or Uz z, + uyzd + 23,

When j3f = u,z? + u,z3 it follows, directly or using the technique of global
transversal from [5], that f is %-equivalent to u;z? + u,z% + z,2z,9(us, ...,
u,_,). Now itis easy to see, for n = 5, that f is %,;-simple if and only if g is a simple
isolated singularity (g is an A-D-E singularity; see [2], or [4] for the normal
forms).

If j3f = uyzyz5 + uyz? + z3, then f is #-equivalent to uyzyz, + uyz? +
22(z; + g(us,. .., u,—5)) with gem?. It is easy to see that f is %#,-simple if and only
if g is a simple boundary singularity in the sense of Arnold, the boundary being
u, = 0 (see [1]).

The most difficult case is when j3f = u;z,z, + u,z2. In this situation f is
R-equivalent to u,z,z, + uyz3 + z2h(z5, Uy, ..., U, ,) with he m*. If his a simple
boundary singularity with respect to z, = 0, we change the coordinates such that
h becomes the normal form of a B-C-F singularity. Then f is %,-equivalent to
U12125 + @Uy,. .., Uy—2)z3 + z3h, with @ € m\m?, and we obtain the germs in the
table by using the lemma and loocking at jl¢.

If h is not a simple boundary singularity then f can be deformed to a germ
which is ®-equivalent to u,z,z, + @Uy,...,Uy—2)22 + 25h(Z2, Uz, ..., Uy—3)
where @ e m\m? and h is one of the following unimodal boundary singularities

(see [2]):
Fiozs+azul+ul+ud+...+ul ,,4a>+27+0
KyyzZi+azul+ut+ul+...+ul ,a*+4

or Le: zauy + azyus + uduz + ud +ul + ... +ul_,.

Using the lemma with 7 (f) replaced by 7(f) + (43, ..., t, - 2)*(z1)* We obtain
that f is not %-simple.
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