ON SIMPLE GERMS WITH NON-ISOLATED SINGULARITIES

A. ZAHARIA

§1. Introduction.

Let $\mathcal{O} = \mathcal{O}_n$ denote the local ring of germs of analytic functions $f: (\mathbb{C}^n, 0) \to \mathbb{C}$ and m its maximal ideal. For an analytic germ $f \in \mathcal{O}$ we denote by J_f its Jacobi ideal,

namely
$$J_f = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right)$$
. For an ideal $I \subset \mathcal{O}$ we consider as in [8], [9]:

- the primitive ideal $\int I$, defined by $\int I = \{ f \in \mathcal{O} | (f) + J_f \subset I \}$; we have $I^2 \subset \int I \subset I$;
- the group \mathcal{D}_I of local analytic isomorphisms $h: (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ such that $h^*(I) = I$; it is a subgroup of the group of all germs of local analytic isomorphisms of $(\mathbb{C}^n, 0)$.

 \mathcal{D}_I acts on $\int I$ and we shall consider the \mathcal{R}_I (right-equivalence) relation on $\int I$. In the next section we prove the following.

THEOREM 1. Let $I \subset \mathcal{O}$ be a radical ideal defining a germ of a quasihomogeneous complete intersection in $(\mathbb{C}^n, 0)$ with isolated singularity. Suppose that there exist \mathcal{R}_I -simple germs in $\int I$. Then in some coordinates (z_1, \ldots, z_n) of $(\mathbb{C}^n, 0)$ we have either

- a) there exists $k \in \{1, ..., n\}$ such that $I = (z_1, ..., z_k)$, or
- b) there exists $k \in \{1, ..., n\}$ and a quasihomogeneous isolated singularity $g = g(z_1, ..., z_k) \in \mathcal{O}_k$ such that $I = (g, z_{k+1}, ..., z_n)$.

A. Némethi has proved a similar result in [7] for the case when $I = (f^s)$ where $s \ge 1$ and $f \in \mathcal{O}$ is an isolated singularity. When n = 3, D. Siersma has considered a similar problem for the inner modality (see [12]).

In the last section we derive the list of \mathcal{R}_I -simple germs for $I = (z_1, z_2)$.

§2. Proof of Theorem 1.

We recall from [8], [9] that for an ideal $I \subset \mathcal{O}$ and for $f \in I$, the tangent space at

Received May 7, 1990.

188 a. zaharia

f to the \mathcal{R}_{I} -orbit of f is defined by

$$T_I(f) = \left\{ \eta(f) \middle| \eta = \sum_{j=1}^n \eta_j \frac{\partial}{\partial z_j} \text{ with } \eta(I) \subset I \text{ and } \eta_j \in m \text{ for } j = 1, ..., n \right\}$$

and the I-codimension of f is

$$c_I(f) = \dim_C \frac{\int I}{T_I(f)}.$$

Let f_1, \ldots, f_p be a minimal set of quasihomogeneous generators of I. Let q be the dimension of the C-vector space $(I + m^2)/m^2$. If q = p, we have a) with k = q = p.

Suppose that q < p. Using a linear change of coordinates, we can assume, without altering the quasihomogeneity of f_1, \ldots, f_p , that $f_j(z) = z_j + \text{higher}$ monomials not containing z_j , for $j = 1, \ldots, q$ (we assume that the weights of the coordinates are positive). Thus, we can consider, by subtracting suitable multiples of f_1, \ldots, f_q , if necessary, that f_{q+1}, \ldots, f_p are quasihomogeneous polynomials, not depending on z_1, \ldots, z_q . It follows that, in a suitable system z of coordinates, the ideal I is generated by $f_1 = z_1, \ldots, f_q = z_q, f_q = z_q, f_{q+1}, \ldots, f_p$, where $f_{q+1}, \ldots, f_p \in m^2$ are quasihomogeneous polynomials depending only on z_{q+1}, \ldots, z_n .

Since there exist \mathcal{R}_I -simple germs in $\int I$, we can find $f \in \int I$ such that $c_I(f) = 0$. (The \mathcal{R}_I -simple germs are defined similarly with the simple isolated singularities; see for example [2] or [4].) From [8], [9], we have $\int I = I^2$ and we can write $f = \sum_{i,j=1}^p g_{ij}f_if_j$, with $g_{ij} = g_{ji}$. Let r be the rank of the matrix $(g_{ij}(0))_{i,j=1,q}$. Then r is also the rank of the Hessian matrix evaluated in 0, $\left(\frac{\partial^2 f}{\partial z_i \partial z_j}(0)\right)_{i,j=1,n}$. As in the proof of Morse Lemma (see for example [6]) we can obtain a system \tilde{z} of coordinates, with $\tilde{z}_j = z_j$ for j > q, such that I is generated by $\tilde{f}_1 = \tilde{z}, \ldots, \tilde{f}_q = \tilde{z}_q$, $\tilde{f}_{q+1} = f_{q+1}, \ldots, \tilde{f}_p = f_p$ and such that

(1)
$$f = \tilde{z}_1^2 + \ldots + \tilde{z}_r^2 + \sum_{i,j=r+1}^p \tilde{g}_{ij} \tilde{f}_i \tilde{f}_j,$$

with $\tilde{g}_{ij} = \tilde{g}_{ji}$ and with $\tilde{g}_{ij}\tilde{f}_i\tilde{f}_j \in m^3$. It is easy to see that for any $i,j \geq r+1$, there exists $h_{ij} = h_{ij}(\tilde{z}_{r+1}, \ldots, \tilde{z}_n)$ with $h_{ij}\tilde{f}_i\tilde{f}_j \in m^3$ and such that for any $k \in \mathbb{N}$, $k \geq 2$, we have that f is \mathcal{R}_I -equivalent to $\tilde{z}_1^2 + \ldots + \tilde{z}_r^2 + \sum_{i,j=r+1}^p h_{ij}\tilde{f}_i\tilde{f}_j + \sum_{i,j=r+1}^p \varphi_{ij}f_if_j$, for some $\varphi_{ij} \in (\tilde{z}_1, \ldots, \tilde{z}_r)^k$. Since $c_I(f) < \infty$, f is I-finitely determined (see [8], [9]). Hence we can assume that in (1) the germs \tilde{g}_{ij} do not depend on $\tilde{z}_1, \ldots, \tilde{z}_r$.

We shall write in the sequel z for \tilde{z} , f_j for \tilde{f}_j and g_{ij} for \tilde{g}_{ij} . Since $c_I(f) = 0$, we

must have $T_I(f) = \int I = I^2$; we prove that this equality implies that r = q = p - 1.

Let $\theta_I = \left\{ \eta = \sum_{j=1}^n \eta_j \frac{\partial}{\partial z_j} \middle| \eta(I) \subset I \right\}$ be the \mathscr{O} -module of logarithmic vector fields for I. Since $I = (f_1, \dots, f_p)$ is a reduced quasihomogeneous complete intersection in $(\mathbb{C}^n, 0)$ with isolated singularity, the \mathscr{O} -module θ_I is generated by the following vector fields (see for example [3]):

- (A) $f_i \frac{\partial}{\partial z_i}$, where i = 1, ..., p and j = 1, ..., n;
- (B) the "trivial vector fields"

$$\frac{\partial}{\partial z_{i_1}} \cdots \frac{\partial}{\partial z_{i_{p+1}}}$$

$$\frac{\partial f_1}{\partial z_{i_1}} \cdots \frac{\partial f_1}{\partial z_{i_{p+1}}}$$

$$\cdots$$

$$\frac{\partial f_p}{\partial z_{i_1}} \cdots \frac{\partial f_p}{\partial z_{i_{p+1}}}$$

for all (p+1)-tuples (i_1, \ldots, i_{p+1}) satisfying $1 \le i_1 \le i_2 \le \ldots \le i_{p+1} \le n$;

(C) the Euler vector field $E = \sum_{j=1}^{n} w_j z_j \frac{\partial}{\partial z_j}$, where w_1, \dots, w_n are the weights of the coordinates.

It is clear that $T_I(f) = \theta_I(f)$.

We recall that $f_j=z_j$ for $1 \le j \le q$ and $f_{q+1},\ldots,f_p \in m^2$ do not depend on z_1,\ldots,z_q . Also we recall that $f=z_1^2+\ldots+z_r^2+\sum\limits_{i,j=r+1}^p g_{ij}f_if_j$ with $g_{ij}=g_{ji}$ not depending on z_1,\ldots,z_r and with $g_{ij}f_if_j \in m^3$.

Suppose first that r < q. Then a moment's thought will convince us that for any $\eta \in \theta_I$, if we consider the expansion of $\eta(f)$ in a power series, then the coefficient of z_q^2 is zero. Hence $z_q^2 \notin T_I(f) = I^2$, a contradiction. It follows that r = q.

We look now for f_{q+1}^2, \ldots, f_p^2 . It is easy to see that if $\eta \in \theta_I$ is one of the generators from (A) or (B), then $\eta(f)$ belongs to the ideal $L = m \cdot (f_{q+1}, \ldots, f_p)^2 + (z_1, \ldots, z_q) \cdot (f_{q+1}, \ldots, f_p) + (z_1, \ldots, z_q)^2$. On the other hand, for any germ $g \in m$ we have also $(gE)(f) \in L$. Thus $\theta_I(f) = L + C \cdot E(f)$. If $p - q \ge 2$ we have the uniqueness of the weights w_{q+1}, \ldots, w_n (see for example [4]), hence f_{q+1}^2, \ldots, f_p^2 can not belong simultaneously to $\theta_I(f)$, in contradiction with the equality $I^2 = \theta_I(f)$. It follows that q + 1 = p. The theorem is proved.

190 a. zaharia

§3. The simple germs for $I = (z_1, z_2)$.

D. Siersma has found the \mathcal{R}_I -simple germs when $I = (z_1, \ldots, z_{n-1}) \subset \mathcal{O}$ in [10] and for $I = (z_1 z_2, z_3, \ldots, z_n) \subset \mathcal{O}$ in [12]. For the case when $I = (z_1) \subset \mathcal{O}$, the list of \mathcal{R}_I -simple germs follows from the work of V.I. Arnold [1] (see for example [13]).

In the sequel we derive the list of \mathcal{R}_I -simple germs for $I = (z_1, z_2)$. We shall suppose that $n \ge 4$ and we shall consider only germs $f \in I^2$ with $j^2 f = 0$. (The simple germs $f \in I^2$ with $j^2 f \ne 0$ are suspensions of those in [13].)

We use the following classical lemma:

LEMMA. Let $f_t = f + t \cdot \phi \in I^2$ be a family of germs, with $t \in \mathbb{R}$.

- a) If $\phi \in \mathcal{F}(f_t)$ for every $t \in \mathbb{R}$, then, for any $t \in \mathbb{R}$, f_t is \mathcal{R}_{I} -equivalent with f_0 .
- b) If $\phi \notin \mathcal{F}(f_t)$ for every $t \in \mathbb{R}$, then, for any $t \in \mathbb{R}$, f_t is not \mathcal{R}_t -simple.

If we denote the coordinates $z_3, ..., z_n$ by $u_1, ..., u_{n-2}$ and the Milnor number of an isolated singularity g by $\mu(g)$, we have the following:

THEOREM 2. Let $I=(z_1,z_2)\subset \mathcal{O}$ and $f\in I^2$ with $j^2f=0$. Then f is \mathcal{R}_I -simple if and only if f is \mathcal{R}_I -equivalent to a germ in the following table.

	Normal form of f	$c_I(f)$	Conditions
I _n	$u_1z_1^2 + u_2z_2^2 + u_3z_1z_2$	3	n <u>≥</u> 5
I4	$u_1 z_1^2 + u_2 z_2^2$	3	n = 4
II	$u_1z_1^2 + u_2z_2^2 + z_1z_2 \cdot g(u_3, \ldots, u_{n-2})$	$n-2+\mu(g)$	$n \ge 5; g \in A-D-E$
III	$u_1z_1z_2 + u_2z_1^2 + z_2^2(z_2 + u_2^k + u_3^2 + \ldots + u_{n-2}^2)$	k+n-2	$n \ge 4$; $k \ge 2$
	$u_1z_1z_2 + u_2z_1^2 + z_2^2(z_2 + u_2u_3 + u_3^k + u_4^2 + \ldots + u_{n-2}^2)$	k+n-2	$n \ge 5$; $k \ge 3$
	$u_1z_1z_2 + u_2z_1^2 + z_2^2(z_2 + u_2^2 + u_3^3 + u_4^2 + \ldots + u_{n-2}^2)$	n + 2	n ≧ 5
IV	$u_1z_1z_2 + u_2z_1^2 + z_2^2(z_2^k + u_2^2 + \ldots + u_{n-2}^2)$	k+n-1	$n \ge 4$; $k \ge 2$
Va	$u_1z_1z_2 + u_2z_1^2 + z_2^2(z_2^2 + u_2^3 + u_2^3 + \dots + u_{n-2}^2)$	n + 3	n ≧ 4
Vb	$u_1z_1z_2 + u_3z_1^2 + z_2^2(z_2^2 + u_2^3 + u_3^2 + \ldots + u_{n-2}^2)$	n + 4	n ≧ 5
VI	$u_1z_1z_2 + u_2z_1^2 + z_2^2(z_2u_2 + u_2^k + u_3^2 + \ldots + u_{n-2}^2)$	k+n-1	$n \ge 4$; $k \ge 3$
VI ³	$u_1z_1z_2 + u_3z_1^2 + z_2^2(z_2u_2 + u_2^3 + u_3^2 + + u_{n-2}^2)$	n + 4	n ≥ 5

PROOF. If $f \in I^2$ has $j^2 f = 0$, then $j^3 f = u_1 Q_1(z_1, z_2) + \ldots + u_{n-2} Q_{n-2}(z_1, z_2) + C(z_1, z_2)$, where Q_1, \ldots, Q_{n-2} are quadrics and C is a cubic in z_1, z_2 . We suppose that $c_I(f) < \infty$. Hence f is \mathcal{R}_I -equivalent to a jet $j^k f$ for sufficiently large k (see [9]).

Let V be the C-vector space generated by Q_1, \ldots, Q_{n-2} in the vector space of quadrics in z_1, z_2 .

If dim V=3 then $n \ge 5$ and we can find in \mathcal{D}_I a linear isomorphismm of $(\mathbb{C}^n,0)$ such that $j^3f=u_1z_1^2+u_2z_2^2+u_3z_1z_2$. It follows by [8], [9] that f is \mathcal{R}_I -equivalent with $j^3f(f)$ is a D(1,1)-type germ) and f is \mathcal{R}_I -simple.

If dim $V \leq 1$ then f is not \mathcal{R}_I -simple. Namely, any neighbourhood of f contains a germ which is \mathcal{R}_I -equivalent to a germ $\tilde{f} = u_1 z_1 z_2 + z_1^3 + z_2^3 + z_1^2 (u_2^2 + \ldots + u_{n-2}^2) + z_2^2 \cdot \varphi(u_2, \ldots, u_{n-2})$ where $\varphi \in m^2$. It is easy to see that for any φ , \tilde{f} is not \mathcal{R}_I -simple.

If dim V = 2 then, using the classification of pencils of quadrics in z_1, z_2 we can find in \mathcal{D}_I some linear isomorphisms of $(\mathbb{C}^n, 0)$ such that $j^3 f$ is one of the following cubics:

$$u_1z_1^2 + u_2z_2^2$$
; $u_1z_1z_2 + u_2z_1^2$ or $u_1z_1z_2 + u_2z_1^2 + z_2^3$.

When $j^3f = u_1z_1^2 + u_2z_2^2$ it follows, directly or using the technique of global transversal from [5], that f is \mathcal{R}_I -equivalent to $u_1z_1^2 + u_2z_2^2 + z_1z_2g(u_3, ..., u_{n-2})$. Now it is easy to see, for $n \ge 5$, that f is \mathcal{R}_I -simple if and only if g is a simple isolated singularity (g is an A-D-E singularity; see [2], or [4] for the normal forms).

If $j^3f = u_1z_1z_2 + u_2z_1^2 + z_2^3$, then f is \mathcal{R}_I -equivalent to $u_1z_1z_2 + u_2z_1^2 + z_2^2(z_2 + g(u_2, \dots, u_{n-2}))$ with $g \in m^2$. It is easy to see that f is \mathcal{R}_I -simple if and only if g is a simple boundary singularity in the sense of Arnold, the boundary being $u_2 = 0$ (see [1]).

The most difficult case is when $j^3f = u_1z_1z_2 + u_2z_1^2$. In this situation f is \mathcal{R}_I -equivalent to $u_1z_1z_2 + u_2z_1^2 + z_2^2h(z_2, u_2, \dots, u_{n-2})$ with $h \in m^2$. If h is a simple boundary singularity with respect to $z_2 = 0$, we change the coordinates such that h becomes the normal form of a B-C-F singularity. Then f is \mathcal{R}_I -equivalent to $u_1z_1z_2 + \varphi(u_2, \dots, u_{n-2})z_1^2 + z_2^2h$, with $\varphi \in m \setminus m^2$, and we obtain the germs in the table by using the lemma and looking at $j^1\varphi$.

If h is not a simple boundary singularity then f can be deformed to a germ which is \mathcal{R}_I -equivalent to $u_1z_1z_2 + \varphi(u_2, ..., u_{n-2})z_1^2 + z_2^2h(z_2, u_2, ..., u_{n-2})$ where $\varphi \in m \setminus m^2$ and h is one of the following unimodal boundary singularities (see [2]):

$$F_{1,0}: z_2^3 + az_2u_2^2 + u_2^3 + u_3^2 + \dots + u_{n-2}^2, 4a^3 + 27 \neq 0$$

$$K_{4,2}: z_2^2 + az_2u_2^2 + u_2^4 + u_3^2 + \dots + u_{n-2}^2, a^2 \neq 4$$
or
$$L_6: z_2u_2 + az_2u_3 + u_2^2u_3 + u_3^3 + u_4^2 + \dots + u_{n-2}^2.$$

Using the lemma with $\mathcal{F}(f)$ replaced by $\mathcal{F}(f) + (u_2, ..., u_{n-2})^3 (z_1)^2$ we obtain that f is not \mathcal{R}_I -simple.

REFERENCES

- V. I. Arnold, Critical points of functions on a manifold with boundary, the simple Lie groups B_k, C_k
 and F₄ and singularities of evolutes, Uspekhi Mat. Nauk 33 (1978), 91–105.
- V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps I, Monograph Math. 82, Birkhäuser, Boston-Basel-Stuttgart, 1985.
- 3. J. W. Bruce and R. M. Roberts, Critical points of functions on analytic varieties, Topology 27 (1988), 57-90.
- 4. A. Dimca, Topics on Real and Complex Singularities, Vieweg Verlag Braunschweig, 1987.
- A. Dimca and C. G. Gibson, Classification of equidimensional contact unimodular map germs, Math. Scand. 56 (1985), 15-28.
- 6. J. Milnor, Morse Theory, Ann. of Math. Studies 51, Princeton University Press, 1963.
- 7. A. Némethi, The Milnor fibr and the zeta function of the singularities of type f = P(h, g), Compositio Math.
- 8. G. R. Pellikaan, Hypersurfaces singularities and Resolutions of Jacobi Modules, Thesis, Rijksuniversiteit Utrecht, 1985.
- 9. G. R. Pellikaan, Finite determinacy of functions with non-isolated singularities, Proc. London Math. Soc. 57 (1988), 357-382.
- 10. D. Siersma, Isolated line singularities, Proceedings Sympos. Pure Math. 40 (1983), 485-496.
- D. Siersma, Hypersurfaces with singular locus a plane curve and transversal type A₁, Singularities Banach Center Publications 20, PWN-Polish Scientific Publishers Warsaw (1988), 397-410.
- D.Siersma, Quasihomogeneous singularities with transversal type A₁, Contemp. Math. 90 (1989), 261-294.
- A. Zaharia, Sur une classe de singularités non-isolées, Rev. Roum. Math. Pures Appl. 35 (1990), 373-378.

DEPARTMENT OF MATHEMATICS INCREST BD. PĂCII 220 79622 BUCHAREST ROUMANIA