MATH. SCAND. 68 (1991), 193-209

EMBEDDINGS OF n-DIMENSIONAL LOCALLY
COMPACT METRIC SPACES TO 2r-MANIFOLDS

JOUNI LUUKKAINEN

1. Introduction.

The classical Pontrjagin-Tolstowa-Hurewicz theorem [16, Theorem 1.11.4] that
the set of all embeddings of an n-dimensional compact metric space X to R? is
dense with respect to the compact-open topology in the space of all continuous
maps of X to R?whenevern = Oand g = 2n + 1 hasrecently been complemented
by the following theorem.

1.1. THEOREM. Let n > 0 and q > 0 be integers with q < 2n, and let X be an
n-dimensional compact metric space. Then the set of all embeddings of X to R is
dense with respect to the compact-open topology in the space of all continuous maps
of X to Riifand only ifn 2 2, q = 2n, and dim(X x X) < 2n.

Recall that dim(X x Y) < dim X + dim Y for all non-empty separable metric
spaces X and Y, with the equality if X is s-compact and dim Y < 1[16, Problem
1.9.E(b)and Theorem 1.5.3]. Moreover,dim(X x X) = 2n — 1if X is 6-compact
and n = dim X = 2 [29, Theorem 41.5], and for each n there is a compact space
X realizing the equality. The first example of such kind, for n = 2, was construc-
ted in [2], and multiplying this space with the cube I"~? gives an example
whenever n = 3. Obviously, for each n = 2 there is then also a non-compact
n-dimensional locally compact separable metric space X with
dim(X x X)=2n— 1.

Many authors contributed to the proof of Theorem 1.1. The existence of
n-dimensional compact metric spaces X for all n = 2 satisfying the density
condition of 1.1 with g = 2n answers positively to a question of F. D. Ancel and
negatively to a conjecture of Y. Sternfeld [36]. Ancel’s question was first erron-
eously answered negatively by D. McCullough and L. R. Rubin [26], but J.
Krasinkiewicz and K. Lorentz [23] showed that a lemma of [26] is incorrect if
n = 2. Theorem 1.1 for n = 1 follows, however, from [26]; see [23] and [27].
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Then McCullough and Rubin [27], generalizing ideas of [23], constructed for
eachn = 2 a counterexample to their previous claim (further such examples were
constructed by Z. Karno and Krasinkiewicz [20]) and asked whether this is
related to the phenomenon that dim(X x X) < 2dim X. That such is indeed the
case was answered by Krasinkiewicz [22] who proved the “only if” part of 1.1 for
alln > O with g = 2n. Subsequently the “if” part of 1.1 for n > 2 was proved by S.
Spiez [32] and again, independently and in a different way, by A. N. Dranish-
nikov and E. V. Shchepin [12], [10]. The case n = 2 was then established by
Spiez [33-34] and, independently and using different methods, by Dranishnikov,
D. Repovs, and Shchepin [10] (announced in [12]). Dranishnikov and Shchepin
[12], [10] (the first version) also gave a proof for the “only if” part of 1.1 for all
q < 2n, but they applied a recent result of D. O. Kiguradze [21], which is based
on a classical theorem of G. Chogoshvili [6], whose proof contains a gap as R.
Pol noted in 1988 (see the review 90k:54047 about [21] by R. Engelking in
Mathematical Reviews). However, in early 1990 Kiguradze proved a theorem
which, when applied to the proof of 1.1 in the first version of [ 10], gives the “only
if” part of 1.1 for g = 2n. The proof of Kiguradze’s theorem is included in the
corrected version of [10]. Finally, the “only if” part of 1.1 for all g £ 2n was
recently proved by Dranishnikov and J. West [13]. In Appendix A we present
a short alternative proof of it due to H. Torunczyk. Both proofs are based on
a result of Dranishnikov [9]. The results in [32], [34], [12], and [10] about
unstability of intersections of continuous maps of compact metric spaces to R?
which gave the “if” part of 1.1 have since been strengthened by Dranishnikov
[7-8], Spiez and Torunczyk [35], and Dranishnikov, Repovs, and Shchepin
[11].

The purpose of this paper is to generalize Theorem 1.1 by replacing R? by an
arbitrary topological g-manifold without boundary and by allowing X to be an
arbitrary n-dimensional locally compact separable metric space; we then con-
sider majorant approximation, also relative, of proper maps by closed embed-
dings. Our first main result, Theorem 2.5, is a direct generalization of 1.1 and an
application of it. Earlier R. E. Heisey and Torunczyk [17] and, independently,
the author [24] have generalized the classical result similarly. In Theorem 3.11
we show that in the case of Theorem 2.5 where approximation is possible, it is
also possible to approximate relatively proper maps extending a, fixed closed
embedding which is locally homotopically 1-co-connected (1-LCC), i.e., whose
image is a 1-LCC subset of the range manifold in the sense of [14]. As shown in
Theorem 3.15, at least in the case n = 3 it is necessary to assume this
1-LCC-property. If n = 3, the approximations can be chosen 1-LCC, even
without resorting to the more general results in [31] and [15]. The case
q = 2n + 1 is due to [17]. The main new ingredient of the proof, Lemma 3.10,
follows from each one of the above-mentioned papers [8], [10], [12], and [35].
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We adopt the convention that a manifold means a non-empty separable metric
topological manifold without boundary.

I thank Alexander Dranishnikov, Dusan Repovs, Stanistaw Spiez, Henryk
Torunczyk, and Jim West for preprints and for comments on the proof of
Theorem 1.1, and Henryk Torunczyk for permitting me to include Appendices
A and B in this paper.

2. Approximating proper maps by embeddings.

2.1. FuNcTION sPACES. We recall some well-known notions and facts; see [38,
§17, [39, §1], and [24, 1.2]. Let X and Y be metric spaces. We define two
topologies for the set C(X, Y) of all continuous maps of X to Y. In the source
majorant topology J; an open neighbourhood basis of f € C(X, Y)is given by the
sets U(f,¢) = {ge C(X, Y)|VxeX: d(f(x),g(x)) < &x)} where e C(X, (0, 0)). In
the target majorant topology Z; ¢ J; a neighbourhood basis of fe C(X,Y) is
given by the sets V(f, 6) = U(f, 9f) where d € C(Y, (0, 0)). These topologies do not
depend on the metric of Y. Let P(X, Y) denote the set of all proper maps of X to ¥,
by a proper map we mean a continuous map for which the inverse image of every
compact set is compact. Then Z; and 7 induce the same topology on P(X, Y), by
which we topologize P(X, Y). If X is compact, this is the compact-open topology
and given by the supremum metric d( f, g). If X and Y are locally compact, P(X, Y)
is an open and closed subset of C(X, Y) in J; and in 7.

Let E(X,Y) and E.(X,Y) be the sets of all embeddings or of all closed
embeddings, respectively, of X to Y. Then E.(X,Y) = E(X,Y)n P(X,Y), and
E(X,Y)is a Gs-set in P(X, Y). If F denotes any of C, P, E, and E, if X, = X is
closed, and if fye F(X,,Y), we let F(X,Y; f,) denote the set of all extensions
feF(X,Y)of f,.

In the following two lemmas and their proofs, the topology is Z; or 7,
whichever is more familiar to the reader.

2.2. LEMMA. Let X and Y be locally compact metric spaces, Xy = X closed, and
JoeP(X,, Y). Then P(X, Y, f,) is a Baire space.

Proor. Since Y is topologically complete, C(X, Y; fo) is a Baire space by [18,
Theorem 2.4.2] (for 7;) or by [39, Lemma 1.1] (= [5, Lemma 4.1]) (for ;). Since
P(X,Y; f,) is open in C(X, Y; f,), the lemma follows.

2.3. LEMMA. Let X be a metric space and Y an ANR, let X, and A be disjoint
closed subsets of X, and let fye C(X,, Y). Then the map C(X,Y, fo) - C(4,Y),
S f| A, is continuous and open.

Proor. The continuity being clear, consider the openness first in the case
X, = @. For 7 this is proved, e.g., in [38, (C) in §1], and for 7 it follows, e.g.,
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from [24, Lemma 3.5]. In the general case, letting B = X, U 4, the map
C(B,Y; fo) > C(A,Y), fr—>f|A, is the inverse of the continuous map
C(A4,Y) - C(B, Y; fo), f— fo L f, and, thus, a homeomorphism. Hence, it suffices
to show that the map C(X,Y;f,)— C(B,Y;f,), f—f|B, is open. Let
U < C(X,Y, f,) be open. We have U = Vn C(X, Y; fo) with V < C(X, Y) open.
By the above, V| B is open in C(B, Y). Hence, the set F = (V| B)n C(B, Y; fy) is
open in C(B, Y; fy). On the other hand, F = U | B.

2.4. COROLLARY. If X and Y are locally compact and f, is proper in 2.3, then the
map P(X,Y; fu) = P(A,Y), f+— f| A, is continuous and open.

The following theorem is the main result of this section. It characterizes
through embeddings the locally compact separable metric spaces X for which
dim(X x X) < 2dim X.

2.5. THEOREM. Let n > 0 and q > O be integers with q < 2n, and let X be an
n-dimensional locally compact separable metric space. Then the following condi-
tions are equivalent:

(1) n= 2, q=2n, and dim(X x X) < 2n.

(2) For each g-manifold M the set E (X, M) is dense in P(X, M).

(3) There is a g-manifold M having a non-compact component if X is
non-compact such that E (X, M) is dense in P(X, M) in the compact-open topology.

ProOF. (1) =>(2): Suppose that dim(X x X) < ¢ =2n =4 and that M is
a g-manifold. We may assume that every bounded closed set in M is compact.
Choose a countable family W, = V; c U, (iel) of open subsets of M such that
(U, Vi, W) is homeomorphic to (R%2B% B? and d(U;) <1 for each i, where
B? = {x e R%|x| < 1}, such that the family (U),, is locally finite in M, and such
that M = ( J;c; W.. Then the sets U* = {xe M | d(x, U;) < 1} are compact, and the
family (U¥);c; is locally finite in M. It follows that there is a continuous function
8: M - (0, 1] such that §(x) < d(V,, M\U;) and 8(x) < 3d(W,, M\V,)for allie I and
xeUF.

Now let f e P(X, M). Then N = P(X, M) n V(f, ) is an open neighbourhood
of f in P(X,M). Hence, N is a Baire space by 2.2. Define compact sets
A;=f"'W,c X and B; = f~'W, c A; for iel. We show that g4; = U; and
gB;ng[X\A;]=® whenever geN and iel. First, if xeA; then
d(g(x), fix)) < d(V,, M\U;) £ d(f(x), M\U;), and so g(x) € U;. Now consider x € B;
and yeX\A4;. If f(y)¢ U}, then d(g(y), U)) > d(f(y),U;) — 1 > 0, whereas if
f(»)e U}, then d(g(x), f(x)) + d(g(y), f(¥)) < d(W;, M\V)) < d(f(x), /(). Thus,
g(x) # g(y) in both cases.

Let i € I. Then restriction defines a map @; of N to the open subspace C(4;, U;)
of C(A4;, M), and ¢; is continuous and open by 2.4. Since dim(4; x 4;) < g,
Theorem 1.1 or its classical analogue implies that E(4;, U;) is a dense G4-set in
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C(A;, U;). Hence, E; = ¢; 'E(A;,U;) is a dense Ggset in N. It follows that
E* = \ier Ei is a dense G;-set in N. If ge E* and x,ye X, x # y, then, choosing
ie I such that x € B;, we conclude, considering the cases y € 4;and y & A; separate-
ly, that g(x) # g(y). Thus, g is injective. It follows that E* = E (X, M) n N.Hence,
fec E(X,M).

(2) = (3): Choose M = R4

(3) = (1): Choose an open subset U of M homeomorphic to R? such that U is
contained in a non-compact component M; of M if X is non-compact. If X is
compact, then (3) implies that E(X, U) is dense in C(X, U), and consequently (1)
follows from 1.1. Suppose now that X is non-compact. By the sum theorem for
dimension, there is a compact set A = X such that dim4 =n and
dim(X x X)=dim(A4 x A4). Hence, by 1.1 it suffices to prove that E(4,U) is
dense in C(4, U). By (3) this reduces to showing that every f e C(4, U) has an
extension g € P(X, M). Choose first a continuous extension f": X — U of f. Now,
as well-known, there exists a proper map a: [0, c0) - M,, and we can choose
a such that [0, 2] = U. Choose a homeomorphism ¢: U — R? with ¢(x(0)) = 0.
We may assume that every bounded closed set in X is compact. Then by setting

g(x) = ¢~ (max {1 — d(x, 4), 0}o(f'(x)) + @(a(d(x, A))))

if d(x,A) <2 and g(x) = a(d(x, A)) if d(x,A) =1 we get the desired map
geP(X, M; f).

2.6. COROLLARY. Let X be an n-dimensional locally compact separable metric
space suchthat n = 2 and dim(X x X) < 2n. Then X is homeomorphic to a closed
subset of R*".

PrOOF. There is a proper map f:X —[0,0) < R?", and so 2.5 applies.
Through one-point compactifications 1.1 applies also.

2.7. REMARK. It is known that for all n = 0 and q = 2n + 1, every n-dimen-
sional locally compact separable metric space X has the property (2) of 2.5. This
follows from [17, Corollary 5] and [37, Lemma] (see [24, Theorem D]), and it is
also proved in [24, Theorem 5.1]. The proof of 2.5 shows how this result also
follows from its classical special case where X is compact and M = R% See
Appendix B for a corrected proof of [37, Lemma].

2.8. PrRoBLEM. If X is an n-dimensional separable metric space with
dim(X x X) < 2n > 0, is E(X, R?") dense in (C(X, R*"), %)?

2.9. REMARK. We don’t know the answer to 2.8 even if X were locally compact.
A similar generalization of 2.7 is true; see [24, Theorems E and 5.6]. Related to
2.8 we finally give an example and a consequence of 2.5.

2.10. ExaMPLE. We construct for each n = 2 an n-dimensional non-compact
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separable metric space X such that E(X, M) is dense in (C(X, M), Z,) for every
2n-manifold M. In fact, choose an n-dimensional compact metric space X, with
dim(X, x Xp) <2n and a non-compact separable metric space X; with
dim X, < n; then define X to be the free union of X, and X,. Suppose that M is
a 2n-manifold, f € C(X, M), and é € C(M, (0, c0)). Then [16, Lemma 1.13.3] im-
plies (see [24, Lemma 3.8]) that there is a locally compact metric space
Y containing X, topologically as a dense subspace with dim Y = dim X, and
such that f| X, is extendable to a proper map f;: Y — M. Now the free union :
Z o X of X, and Y is an n-dimensional locally compact separable metric space
withdim(Z x Z) < 2n,and g = (f| Xo) U fi: Z — M is a proper map extending
f- Hence, by 2.5 there is an embedding h: Z - M in V(g, ). Then h| X is an
embedding in V(f,5). Note that the construction gives both locally compact
examples and examples which are not locally compact.

2.11. COROLLARY. Let n = 2, let X be an n-dimensional a-compact metric space
with dim(X x X) < 2n, let M be a 2n-manifold, and let C(X, M) be equipped with
either one of the topologies I, and J,. Then the set (X, M) of all continuous
injections of X to M is a dense G;-set in C(X, M).

PrROOF. Write X = (J2, X; with X; < X, ... compact. Then E(X;, M) is
a dense G;-set in C(X;, M) by 2.5 or 2.7. Hence, E; = {f e C(X,M)|f| X; is
injective} is a dense G;-set in C(X, M) by 2.3. Since C(X, M) is a Baire space and
I(X, M) = N2 E,, the assertion follows.

3. Relative approximation by 1-LCC embeddings.

3.1. TaMENEss. We recall three notions concerning tameness of a set A4 in
a manifold M with some of their basic properties and show their equivalence
under suitable conditions. As in [14], we say that A is locally homotopically
1-co-connected (1-LCC) in M if for each x € M and for each neighbourhood U of
x in M, there is a neighbourhood V < U of x in M such that every continuous
map a: S* — V\ A is null-homotopicin U\ A. Ifk = 0and if C(I*, M\ A)is dense in
C(I*, M), we say as in [17] that 4 is a Z*-set in M. If X is a metric space, an
embedding f: X — M is said to be 1-LCC or Z* if fX is 1-LCC or a Z*-set,
respectively, in M. For the definition of the number demension, dem A,
(= Shtan’ko’s embedding dimension) of a 6-compact set A in M we refer to [14].
Let 4 be a g-compact subset of a g-manifold M, andletdim 4 < n = 0. By [14,
Proposition 2.3] we conclude that if 4 is 1-LCC and n < q — 2, then, in fact,
dim 4 £ q — 3, and every subset of 4 is 1-LCC in M, and that, conversely, if
n £ q — 3 and A is the union of a countable family of s-compact 1-LCC sets, then
Ais 1-LCC. Let k = 0. Then every subset of a Z*-set is a Z*-set. Conversely, it is
easy to see that if 4 is the union of a countable family of 6-compact Z*-sets, then
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Aisa Z*-set. If n < g, then clearly A is a Z°%-set. It is easy to see that if n < q — 2,
then A is a Z!-set.

Let A be a g-compact subset of a g-manifold M, let 0 < n < q — 3, and let
dim A < n. Then the following three conditions are equivalent: (1) A is 1-LCC; (2)
Aisa Z? " l.set;and (3) Ais a Z2-set. In fact, the implication (1) = (2) reduces to
its special case where A4 is compact and has a neighbourhood homeomorphic to
R4, which then easily follows from [ 14, Proposition 1.3]; the implication (2) = (3)
obtains because a Z*-set is a Z'-set whenever 0 < I < k as I'is a retract of I*; and
the implication (3) = (1) follows from its easy special case where A is compact.
Further, at least if, in addition, q + 4, we have by [14, Theorem 2.4] that A4 is
1-LCC if and only if dem A = dim A.

For a metric space X and a manifold M, we let E*(X, M) and E}(X, M) be the
sets of all 1-LCC embeddings or of all closed 1-LCC embeddings, respectively, of
X to M. If F denotes E* or E!, if X, = X is closed, and if f, € F(X,, M), we set
F(X,M; fo) = F(X, M) n E(X, M; fo).

3.2. REMARK. The Heisey-Torunczyk theorem referred to in 2.7 is, in fact, the
following stronger result: Let X be a locally compact separable metric space,
dimX £n 20, M a g-manifold, g = 2n + 1, X, = X closed, and fy: Xo > M
a closed Z"-embedding; then the set of all closed Z"-embeddings f: X - M
extending f, is dense in P(X, M; f,). By 3.1, the Z"-property here is equivalent to
the 1-LCC-property if n = 2 and automatically true if n < 1. Moreover, ifn < 1,
q=n+ 3, and fy is 1-LCC, then by 3.6 it follows that EX(X, M; f;) is dense in
P(X,M; f,). H. G. Bothe [3] proved earlier a form of this theorem for the
manifold I9. With the aid of [3], the case n £ 1 of the theorem was also proved in
[24, Theorem 3.6].

In Theorem 3.11 we prove an analogue of the Heisey-Torunczyk theorem for
q=2n.

We need the following result on 1-LCC approximation of embeddings. Alter-
natively, we could use its special case 3.6.

3.3. THEOREM (Shtan’ko and Edwards). Let X be a locally compact separable
metric space, let Q be a g-manifold, let dimX < q — 3, let Y < X be closed, let
f: X — Q beanembedding, letf | Y be 1-LCC, and let ¢ € C(X\Y, (0, ). Then there
is a 1-LCC embedding g: X = Q such that g| Y = f| Y and d(g(x), f(x)) < &(x) for
each xe X\Y.

PRrOOF. The theorem is a special case of [15, Approximation theorem], which
concerns o-compact metric spaces X. We indicate a simpler proof. By replacing
Q by a suitable open subset we may assume by 3.1 that X is a closed subset of
Q and f the inclusion map.

Consider first the absolute case Y = (. Then the proof on p. 105 of [15] for the
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special case of the theorem of [15] where X is compact and 6Q = @ = Y also
works now if only there the embeddings g, j, are chosen so close to the inclusion
that they are closed. This proofis based on [15, Fundamental lemma], which by
[15, Proposition 3] (cf. also [31, Lemma 1]} is equivalent to [31, Theorem 3].

Consider now the relative case. By the absolute case there is a 1-LCC embed-
ding h: X\ Y - Q\Y such that d(h(x), x) < min{e(x), 3d(x, Y)} for each xe X\Y.
Then g =idy U h: X — Q is an embedding. Now gY and g[X\Y] are locally
compact 1-LCC sets in Q, and, hence, such is gX, too.

3.4. ReMARK. The proof of the “if” part of 1.1 in [12] and [10] applies the
special case of 3.3 due to [31] where X is compact,Q = R? and Y = @. However,
the alternative proof given in [32-34] is independent of 3.3. We therefore
consider it advisable to next deduce a sufficient special case of 3.3 from 1.1 and its
classical analogue. See [28, Remarks on p. 459 and Corollary 3.2] for related
ideas.

3.5. LEMMA. Let eithern = Oandq 2 max{2n + 1,n + 3} orn 2 3and q = 2n,
let X be an n-dimensional locally compact separable metric space, let M be
a g-manifold, and let dim(X x X) < 2n if ¢ = 2n. Then E}(X, M) is dense in
P(X, M).

PRrOOF. We first assume that X is compact and show that E}(X, R?) contains
a dense Gs-set in C(X, R9). Choose a dense set {¢;|i = 1} in C(I% RY) such that
each ¢; is PL. Let E; = {f € E(X,RY|fX n ¢;1> = @} for i 2 1. Then each E; is
a G;-setin C(X, R?) as an open subset of E(X, R%, and, obviously, each f € N2, E;
isa Z2-embedding and, thus, a 1-LCC embedding. Hence, it suffices to prove that
each E;is dense in C(X, R9). Let f € C(X, R% and ¢ > 0. It is well-known (see, e.g.,
[25, Lemma 2, p. 99]) that there are a compact polyhedron L with dim L < n,
a continuous map g: X — L, and a PL map h: L —» R? such that d(hg, f) < ie.
Since K=hL and K’ = ¢;I*> are compact polyhedra in R? with
dimK + dim K’ < n + 2 < g, by [30, Theorem 5.3] there is a homeomorphism
¥: R?— R? such that yK n K’ = @ and d(y,id) < e. Let f’' = yhge C(X,R9);
then f'X n K’ = @ and d(f’, f) < &. Hence, 1.1 or its classical analogue yields
f*eE;withd(f*, f) <e.

In the general case we follow the proof of the implication (1) = (2) in 2.5, also if
q = 2n + 1. It suffices to show that E!(X, M)~ N is dense in N. By the above,
E'(A4;,U;) contains a dense Gsset D; in C(A4;,U;) for each iel. Then
D! = Vie1 @i ' D; < E((X, M) is dense in N. By 3.1, D* < EX(X, M).

3.6. COROLLARY. Theorem 3.3 holds under the additional assumption
dim(X x X) <gq.

To proving a relative form of 2.5 we need the results 3.7 and 3.9 or 3.10.
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3.7. LEMMA. Let K = R* be a 1-LCC compact set withdim K < 2, and let X be
a compact metric space with dim X £ 2. Then C(X, R*\K) is dense in C(X, R*).

PrOOF. Let feC(X,R*) and & > 0. Choose a compact polyhedron L with
dim L < dim X and continuous maps g: X — L and h: L - R* such that d(hg,
f) < je. By [14, Proposition 1.3], there is b’ € C(L, R*\K) such that d(k', h) < }e.
Let f' = Wg; then f'e C(X,R*\K) and d(f’, f) < e.

The other lemma is a corollary to the following result related to Theorem 1.1.

3.8. THEOREM. Let K be a compact set in RY, g > 4, and X a compact metric
space which satisfy the following conditions:

(1) dimK + dimX < q.

(2) dim(K x X) < q.

(3) demK =dimK < q — 3.
Then C(X, R?\K) is dense in C(X, RY).

This theorem is the same as [12, Theorem 5] and [10, Theorem 4.1]. There in
the proof it is assumed that (1) is an equality, but if (1) is a strict inequality, the
theorem follows at once from the condition dem K + dim X < g: Proceed as in
the proof of 3.7, but choose h to be PL; then resort to [14, Proposition 1.2].
Dranishnikov has since proved 3.8 with (1) omitted altogether [8] as also the
necessity of (2) in this more general result [9].

3.9. COROLLARY. Let n>3, qg=2n KcR? compact with demK =
dim K £ n, X acompact metric space withdim X < n,and dim(K x X) < q. Then
C(X,RN\K) is dense in C(X, R9).

We give an alternative proof, based on 3.5 and [35], for the following special
case of 3.9 sufficient for us.

3.10. LeMMA. Corollary 3.9 holds under the additional assumption
dim(X x X) < gq.

PrOOF. Let f;eC(X,R%) and &>0. By 3.5 choose feE'(X,R%) with
d(f,f) <3e. Let X' =fX; then demX =dimX <n by 3.1. Since
dim(X’ x K) < g, the map (x,y)—x — y of X’ x K to R? can be uniformly
approximated by continuous maps to R?\{0} [16, Problem 1.9.B]. Hence, [35,
Theorem 4] yields a map f’ € E(X’, R"\K) with d(f",id) < 3¢. Then g = f'fis in
E(X,RI\K), and d(g, f1) < e.

The following theorem is the main result of this section. It shows that in the

situation (1) of Theorem 2.5 the condition (2) can be strengthened to a relative
form.
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3.11. THEOREM. Let n = 2, let X be an n-dimensional locally compact separable
metric space with dim(X x X) < 2n, let M be a 2n-manifold, let X, = X be closed
and let fo: Xo = M be a 1-LCC closed embedding. Then EX(X, M; f;) forn = 3 and
E(X, M; f,) for n = 2 is dense in P(X, M; f,).

PROOF. By 3.6, the set EX(X, M; f,) is dense in E.(X, M; f,) if n = 3. Hence, it
suffices to show that E (X, M, f,) is dense in P(X, M; f,) for all n = 2. Let P, be
the set of all maps geP(X,M;f,) for which g[X\X,]nY =@, where
Y = fo X, = gX,. We first show that P, is dense in P(X, M; f;). We may assume
that every bounded closed set in M is compact. Let the family (U;, V;, W;, U¥*);.,
and the function 6 be as in the proof of 2.5. Then the compact sets Y; = Y n W,
iel, cover Y, and §(x) < d(Y;, M\V,) for all ie I and xe U*.

Now let f € P(X, M; f). Then N = P(X, M; f,) 0 V(f, ) is an open neighbour-
hood of f in P(X,M; f;). Hence, N is a Baire space by 2.2. Let iel and
N; = {geN|g[X\Xo] N Y; = @}. Then X; = f ~'¥,is compact, and gX; = U, for
eachge N. Weclaim that N; = {ge N |g[X\X,] n ¥; = @}. Infact,ifge N, then
for each xef 'U*\X; we have d(g(x),f(x)) <d(f(x),Y), and for each
xe X\ f~'U¥wehaved(g(x), ¥;) > d(f(x), Y;) — 1 > 0;hence,g[X\X;]1n Y; = O,
and the claim follows. Choose a sequence 4; = X;\X,,j = 1, of compact sets
covering X;\X,. Then the set N;; = {ge N |gA4;n Y, = @} is open in N for each
j 2 1,and N; = ;1 N;;. Consider j = 1. Then restriction defines a map ¢; of
N to the open subspace C(4;, U;) of C(4;, M),and N;; = ¢; 'C(4;, U\ Y)). Now Y;
is 1-LCC in U;; see 3.1. If n = 3, thendim Y; £ n £ 2n — 3 and 2n = 6, whence
dem Y; = dim ¥; < nin U;; see 3.1. Hence, C(4;, U;\ Y)) is dense in C(A4;, U;) by 3.7
ifn = 2and by 3.10ifn = 3. Since ¢;is open by 2.4, this implies that N;;is dense in
N. It follows that N; is a dense G;-set in N. From this we conclude that
Py NN = iy N; is a dense G;-set in N. Hence, f ecl P,

It now suffices to show that E (X, M; f,) = Pyisdensein P,. Let f € Py, and let
g€ C(X, (0, 00)) with U(f,e) = P(X,M). We have f ![M\Y] = X\X,. Hence,
f defines a proper map f;: X\ X, = M\Y. Since X; = X\ X, is a locally compact
separable metric space such that dim X; < nand dim (X; x X,) < 2n, it follows
from 2.5 or 2.7 that there is geE.(X;,M\Y) such that d(g(x), f(x)) <
min {&(x),d(x, X,)} for each x € X;. Then the extension f*: X — M of g by f, is
a closed embedding in U(f, ¢).

3.12. ReMARK. In Theorem 3.11 with n = 3 and in its complement in 3.2 with
g=n+3 and f, 1-LCC we have that E!(X,M; f;) is a dense G;-set in
P(X, M, f,). The Gs-property follows from [15, Corollary (1), p. 96]. Since the
part of the manuscript of Edwards containing the proof of this fact has apparent-
ly never appeared (cf. [14, p. 196] and [15, p. 96]), we provide a proof as the
following theorem,; see 3.1.
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3.13. THEOREM. Let X be a o-compact metric space, let Y be a complete
separable metric space,letk = 0,let Ci(X, Y) = {fe C(X, Y)| fX isa Z*-setin Y},
and let C(X,Y) be equipped with the compact-open topology. Then Ci(X,Y) is
a Ggset in C(X,Y).

ProoF. Write X = ()2, X; with X; < X compact. Let C; = { fe C(X, Y)| fX;
isa Z*-setin Y} fori = 1. Then C,(X, Y) = N2, C; as Y is complete. Since Y is
separable, there is a sequence (¢;); >  in C(I*, Y) such that {¢;|j = j,} is dense in -
C(I%, Y) for each j; = 1. For i,j 2 1, let G;; be the set of all maps f e C(X, Y) for
which there is a map @eC(I%,Y) such that d(p,¢;) <4 and @I*n fX, =
@. Then, obviously, C; = (2 ; G;;. Thus, it suffices to show that each G;; is open
in C(X,Y). Let feG;;. Choose @eC(I%Y) such that d(o, @;) <5 and
r=d(el* fX;)>0.ThenU = {ge C(X, Y)|d(g| X;, f | X;) < r}is an open neigh-
bourhood of f in C(X,Y), and oI* ngX; = @ for each ge U implying that
Uc Gy

3.14. COROLLARY. The set of all Z*-embeddings of X to Y is a Gs-set in
(CX, Y),F).

Proor. With respect to the topology of uniform convergence, E(X,Z) is
a G-set in C(X, Z) for every metric space Z; see [4, Lemma 2.1].

Our last result together with Theorem 3.11 and its complement in 3.2 charac-
terize in a certain situation the closed embeddings which are 1-LCC. It generaliz-
es [3, Theorem 3].

3.15. THEOREM. Let g = n = 0, and let f, be a closed embedding of an at most
n-dimensional locally compact separable metric space X, to a g-manifold M.
Suppose that for every at most n-dimensional locally compact separable metric
space X containing X, as a closed subspace, E (X, M; f,) is dense in P(X, M, fo) in
the compact-open topology. Then q = 2n + 1, and f, is 1-LCC whenever n Z 2.

Analogously, if n 2 2, dim(X, x Xo) < 2n, and the density condition is only
assumed for spaces X with the additional property dim(X x X) < 2n,thenq = 2n,
and f, is 1-LCC whenever n = 3.

Proor. We first prove the claims concerning g. In the second part of the
theorem, choose a compact metric space X; with dimX; =n and
dim(X; x X,) <2n such that X, is a subset of X, if dim X, =n. Then
dim(X x X) < 2n for the free union X of X, and X;. It now easily follows that
E(X,, M)isdensein C(X,, M). Thus,q = 2nby 2.5. In the first part of the theorem,
E(I", M) is dense in C(I", M),andso g =2 2n + 1 by 2.5ifn 2 1. In the casen =0
the space X, = {i"'|i 2 1} U {0} = R! embeds to M, and so ¢ = 1.

To proving the 1-LCC-property of f, we apply the pertinent density condition
with X being the free union of X, and the closed disc B? note that
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dim(X x X) < 2n if dim(X, x X,) < 2n and n = 3. Assume, on the contrary,
that 4 = f, X, is not 1-LCC in M. Then there is a point x € A with a neighbour-
hood U in M such that for each neighbourhood V = U of x in M there is
a continuous map a: S! — ¥\ 4 which is not null-homotopic in U\ 4. Choose an
open neighbourhood V < U of x in M homeomorphic to R% and let a be the
respective map. Then « has a continuous extension f:B%— V. Now
f=fouBp:X—>M is a proper map. Hence, for each ¢> 0 there is
ge E.(X, M; f,) withd(g, f) < &. ThengB? n A = @. Choosing ¢ small enough we
have that gB? c V\A4 and that g| S! is homotopic to « in ¥\ A. This implies that
ais null-homotopicin ¥\ 4 and, thus, in U\ 4, too, contrary to the definition of a.

3.16. ReMARK. Consider the situation of the first part of 3.15 with n < 1 and
q = 2n + 1, in which case f,, always has the density property by 3.2. Now f, is
1-LCCifgq = 1 butnotifg = 2and X, + 0. More interestingly, by [1] there is for
each g > 3 an embedding f; of the Cantor set X, to R? such that R?\ f, X, is not
simply connected; then f; is not a Z2-embedding and, hence, not 1-LCC.

3.17. PrROBLEM. In the second part of Theorem 3.15 with n = 2, does it follow
that f, is 1-LCC or, if ¢ = 4, that at least dim X, < 1?

Appendix A. A necessary condition for unstable intersections.

A. N. Dranishnikov and J. West [13] have recently proved the following
theorem. The purpose of this appendix is to present a short alternative proof of it.
This proof is the outcome of the author’s conversation with H. Torunczyk during
his visit to Helsinki in September 1990.

We say that two compact metric spaces X and Y intersect unstably in a metric
space Z if for all feC(X,Z), geC(Y,Z), and ¢ > O there are f'e C(X,Z) and
g € C(Y,Z) such that d(f, ') < ¢, d(g,g) <& and ' Xg¥Y =0.

A.1. THEOREM. Let X and Y be compact metric spaces which intersect unstably
in R%, where g = 0. Then dim(X x Y) <gq.

A.2. COROLLARY. If X is a compact metric space, q > 0, and E(X, R?) is dense in
C(X,R9), then dim(X x X) < q and, thus, q = 2dim X.

The proof as also that in [13] are based on the following theorem due to
Dranishnikov [9, Theorem 1].

A.3. THEOREM. Let X < R? be compact with q = 0, let Y be a compact metric
space, and suppose that C(Y, R\ X) is dense in C(Y, R%). Then dim(X x Y) < q.

Dranishnikov assumed in his proof that g = 3. We give a proof for the case
q < 2. Wemay assume that X x Y # @;thenq = 1. Nowint X = @, and no map
g€ C(Y,R? has a stable value. Hence, dim X < g and dim Y < q. The theorem
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with g = 1 follows. Suppose that ¢ = 2 and dim Y = 1. Then Y contains a con-
nected set B with at least two points. If G = R? is a domain and x,ye G\X,
choose ge C(Y,G) with x,yegB. Then there is g’ € C(Y,G\X) with x,yeg'B.
Hence, G\X is connected. It is well-known that this implies that dimX =0
proving the case g = 2.

A.4. LEMMA. Let (X, Y, q) satisfy the assumptions of Theorem A.1. Then
K = {feC(X,R?|C(Y,R%\ fX) is dense in C(Y, R9)}
is a dense G;-set in C(X, R9).

ProoF. Choose a sequence (g;); > ; in C(Y, R?) such that {g;|j = i} is dense in
C(Y,R%)foreachi = 1. Foreachj 2 1,let K be the set of all maps f € C(X, R% for
which there is a map he C(Y, R? such that d(h,g;) < 1/j and fX NhY = Q. Let
L= N,;K;. We show that K = L. Clearly K = L. Conversely, let feL,
geC(Y,R%, and ¢>0. Choose j,=1 with 1/j, <¢/2 and j=j, with
d(g;,9) < &/2. Since f € K;, there is he C(Y, R? such that d(h,g;) < 1/j < ¢/2 and
hY = R\ fX. Now d(h,g) < &. Thus, fe K. Hence, K = L.

We show that each K ;is open in C(X, Rf). Consider f € K;. Choose he C(Y, R?)
such that d(h,g;)<1/j and fXnhY=0@. Then, if f'eC(X,R%) and
d(f', f) < d(fX,hY),wehave that f'X " hY = (. Thus, f’ € K. This implies that
K is open.

We show that each K is dense in C(X, R%). Let f e C(X,R?) and ¢ > 0. Then
there are f'e C(X,R%) and he C(Y, R?) such that d(f", f) <, d(h,g;) < 1/j, and
f'X nhY = @. We conclude that '€ K. Hence, K is dense.

It follows that K is a dense G;s-set in C(X, RY).

A.5. LEMMA. Let X be a compact metric space and q > dim X. Then
F(X,R% = {fe C(X,R9)| f ~(x) is finite for each x € R}
contains a dense Gs-set in C(X, RY).

Lemma A.5 is due to Hurewicz [19], who showed that the set
R(X, R% < F(X, R9) of all regularly branched maps of X to R?in the sense of [10]
is a dense G;-set in C(X, R%). In [10, Theorem 3.1] a simpler proof is given for the
weaker result that R(X, RY) contains a dense G;-set in C(X, RY).

A.6. PROOF OF THEOREM A.1. We may assume that dimX <dimY. If
g < dim X, there are f € C(X,R? and g e C(Y, R%) with a common stable value,
which leads to a contradiction. Thus, g > dim X. Hence, by A.4 and A.S there is
feC(X,R9) such that C(Y,R%\ fX) is dense in C(Y, R and such that f ~'(x) is
finite for each xefX. Then dim(fX xY)<gq by A.J3. Define
h:X x Y- fX x Y by h(x,y) =(f(x),y). Then h™'(z) is finite for each
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ze fX x Y.Hence,dim(X x Y) < dim(fX x Y)by[16, Theorem 1.12.4]. Thus,
dim(X x Y) <gq.

Appendix B. Localness of the disjoint n-cube property.

A metric space Y has the disjoint n-cube property for an integer n = 0 if every
continuous map of I" x {1,2} to Y is uniformly approximable by continuous
maps sending I" x {1} and I" x {2} onto disjoint sets. The following theorem is
due to H. Torunczyk [37, Lemma]; cf. Remark 2.7.

B.1. THEOREM. Let Y be an ANR, and let U be an open cover of Y consisting of
sets having the disjoint n-cube property. Then Y has the disjoint n-cube property.

The original proof of this result in [37] is not quite satisfying as was observed
by the author in [24, p. 63], but in a letter to him, in 1980, Torunczyk gave
a correction. The purpose of this appendix is to present a slightly modified form
of this corrected proof.

We use the following well-known property of ANR’s (see, e.g., [24, Lemma
3.5)).

B.2. LEMMA. Let X be a compact metric space, let Y be an ANR, let f: X — Y be
continuous, and let ¢ > Q. Then there is 6 > 0 such that for each closed set A = X,
every continuous map g: A — Y with d(g, f| A) < § has a continuous extension
g X - Ywithdlg, f) <e.

B.3. ProoF oF THEOREM B.1. For p,q€{0,1,...,n} consider the following
condition:

(%)p.q If X = K U L is a compact polyhedron with K and L disjoint closed
subpolyhedra such that either dimK < p and dimL < n or dimK = p and
dim L £ gq, then every continuous map of X to Y is uniformly approximable by
continuous maps sending K and L onto disjoint sets.

It is easy to see that (%), is satisfied. We show that (x), , implies (), ;41
whenever g < n. As(x),, ,implies (x),, 1, o Whenever p < n, we theninductively get
(*)n,n» Which completes the proof.

To this end, assume (), ,, let X = K U Lbe a compact polyhedron with K and
L disjoint closed subpolyhedra such that dimK = p and dimL = q + 1, let
f:X > Y be a continuous map, and let ¢ > 0. Choose de(0,¢) such that if
g: X — Yisacontinuous map with d(f,g) < d and C = gX is a set with d(C) < 99,
then C < U for some U e %. Choose triangulations S of K and T of L such that
d(fo) <6 for each 6eSUT Let A be the (p — 1)-skeleton of S and B the
g-skeleton of T. Then by (), , and B.2, there is a continuous map f,: X — Y with
d(f.fo) < 36 such that fobA N fuL =0 = f,K n foB. Choose n > 0 with

r’§ %m‘n {5’ d(fOA, fOL)a d(f0K9 fOB)}
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Letay,..., 0, be the (¢ + 1)-simplices of . We construct inductively continu-
ous maps fi,..., fi: X = Y such that if 1 £ i <k, then

) fiKn filo,u...ua6] =0,
(2 d(fi, fi-1) <n/k.

Note that for each i, since d(fy, f;) < 1, we have that ;AN f,L=0 = f,K N f.B
and d(f, f;) < 6. Thus, fi,K N fiL = @ and d(f, f;) < ¢, implying ()p, g+ 1-

Suppose that 1 < i < kand that f, f,..., fi- ; have already been constructed.
Let X, denote the set of all p-simplices ceS with f,_jon fi_,0; % @, let
X =3,uU{o;} and let F = |J,cz fi-10. Since d(f;_,0) < 36 for each 6eSU T
and, hence, d(F) < 99, there is U e % with F < U. Choose g €(0, /k) such that
¢ £d(fi-,0, fi-10;)forallee X and j < iand such that ¢ < d(f;_,0, f;-0;) for
each p-simplex o€ S\X,. We construct a continuous map f;: X - Y such that
fi(x) = fi—1(x)for each x € X\(|,z int 0), such that d(f;, f;— ;) < g, and such that
fio ~ fio; = @ for each o € Z,. Then f; satisfies (1); and (2);.

For that purpose, denote for A€ (0, 1) and o € £ by ¢* the image of ¢ under the
(1 — A)-homothety of ¢ with respect to the barycentre of ¢. Since U has the
disjoint n-cube property, for each fixed Ae€(0,1) there are continuous maps
¢4: 6* = U for o € T with disjoint images such that d(¢,, f;— , | 6*) < Aif 6 € Z. By
B.2,foreach k > Othereis Ay € (0, 1)such thatif 1e(0, ,), then ¢, U (f; -, | 00) has
acontinuous extension y,: 0 — Y with d(iy,, f;_ ;| 6) < k whenever o € Z. Now, if
k and A are small enough, letting f;| o = y,, for 0 € X we get the desired map f;.
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