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Dedicated to Professor Kurt Schiitte on the occasion of his 80th birthday

(I) Introduction.

It is well known that nonstandard analysis benefits from the fact that the
cardinality of the set of open sets in a topological space is small enough to apply
saturation arguments. We always have this advantage, when the topological
space is inside the standard model and we are working with a polysaturated
nonstandard model.

On the other hand, in important applications of nonstandard analysis,
topological spaces appear, which don’t belong to the standard model; for
example: the nonstandard hulls of topological vector spaces or the spaces of
integrable functions on Loeb spaces. We want to apply dual space theory to the
Banach space of square integrable martingales on an adapted Loeb space. Since
the cardinality of the neighbourhoods in the weak topology of this space is too
big, saturation arguments seem not to work.

This situation provides the background of this paper.

In the first part we will prove in a quite general setting a theorem about
conversions of internal vector measures to g-additive measures so that the most
important property of the Loeb spaces remains valid: The measurable sets are
exactly those sets which can be approximated by internal sets.

The general idea behind it comes from Loeb’s functional approach to non-
standard measure theory [15]. In this conception, also the scalar valued Loeb
measures can be obtained in a very simple way.

In the second part we will give some examples, one of them is the construction
of g-additive measures with values in the space of square integrable martingales
on an adapted Loeb space.
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In the last section we will prove lifting theorems for Lewis integrable functions
with respect to the constructed measures, which make the notion of the Lewis
integral more explicit. These results are applied to obtain a convergence theorem
for uniformly Lewis integrable functions and the stochastic integral as a special
case of the Lewis integral.

ACKNOWLEDGEMENT. I would like to thank Peter Imkeller for helpful dis-
cussions and suggestions. I am also grateful to Michael Reeken and Manfred
Wolff for the suggestion to understand the stochastic integral on Loeb spaces as
Lewis integral.

(I) Vector valued Loeb measures.

In the whole paper we will work in a k-saturated nonstandard model, where k is
an uncountable cardinal number. For undefined notions and notations and for
the foundation of nonstandard analysis we refer to the book of S. Albeverio, J. E.
Fenstad, R. Heegh Krohn, T. L. Lindstrem [1],

Assume that E is a locally convex topological vector space over the set C of
complex numbers or over the set R of real numbers. E does not necessarily belong
to the standard space. Let E’ denote the topological dual of E.

Let L be an internal vector space over *C or *R and let SL be an S-subvector
space of L, i.e., whenever a, be SL and «, § are finite elements of *C or *R, then
aa + pbeSL. Of course, SL is then a subvector space of L.

We assume that there exists a linear mapping

<. SL - E.

This mapping % may be understood as “standard part map”.
Moreover, let U be an internal algebra over Q. If v:i=v; + iv,: U - *C s an
internal measure, then v, denotes the internal total variation of v, i.e.,

vii=vy + v +v5 + v,
where forj=1,2and all Ae U

v/ (A):=sup {vj(C)|C = 4 and Ce U}
vj (A):= —inf{v/C)|C = A and Ce U}

Notice that with v also v, is an internal measure and that v is finite if and only if v,
is finite.

The total variation v, of a standard scalar valued measure v is defined in
a similar way.
Let

uwU - SL
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be an internal finitely additive measure such that ¥ ou: U — E is of bounded
semivariation, i.e. (po L ou),(2) < oo for all peE'.
An internal finite measure

v: U - *Ry
is called absolutely continuous with respect to y, if for all AeU:
(poFou),(A4) = 0for all ¢ €E' implies v(4) ~ 0.
v is called a control measure for a finitely additive set function
p:U-C
if for all standard ¢ > O there exists a standard é > 0 such that for all 4e:
v(A4) < 6 implies p,(A4) < &.

Of course, if v is a control measure for p, then v(A4) =~ 0 implies p,(A4) = 0. A set
€ of internal finite measures v: W — *R{ is called a control set for p, if

(1) every ve€ is absolutely continuous w.r.t. u and

(2) for every ¢ € E’ there exists a control measure ve € for po Lo u.

The notion “control set” is an extension of the notion “control measure” used
in [18]. Let

M:= U {E|E is a control set for u}.

Sometimes, it is possible to obtain control sets by &-liftings of pe E'. An
internal linear function

&. L - *C(*R)
is called an &-lifing of p e E', if
®(F) ~ (S (F)) for all FeSL.

Notice that, if @ is an -lifting of ¢, then (#oy), is a control measure for
@ o ¥ o pu, which is absolutely continuous w.r.t. u. But, unfortunately, &-liftings
don’t exist in general. A class of examples, where &-liftings don’t exist, is given
later in the examples () and (y).

Let v: A — *C be an internal finite measure. An internal or external subset
N < Qis called a v-nullset, if for all standard ¢ > 0 there exists Ae U with N = A
and v, (A4) <.

Lemma 1. The set of v-nullsets is closed under countable unions.
PRrOOF. By a simple saturation argument.

LEMMA 2. Let € be a control set for p of cardinality less than k. Then N c Q is
a v-nullset for all ve M if and only if N is a A-nullset for all A€ €.
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Proor. The “only if” part is clear. Let N be a A-nullset for all A€ €. Then for
every A€ € there exists a decreasing sequence 4} > ... o 4} o ...in Usuch that

N < N{A* neN} and lim °A(4%) = 0.

Let D:= {B;|i < card (€ x N)} be the set of all finite intersection of elements of
{A}|neNand Ae ®}. Assume that N is not a v-nullset for some v € M. Then there
exists a standard ¢ > 0 such that v(B) > ¢ for all Be D. By x-saturation, there
exists a set A€l such that 4 = A? for all neN and all 1e€ and such that
v(A) > &. But, since A(4) ~ Oforall A€ €, (po L op),(A) = 0for all p€ E’; thus,
since v is absolutely continuous with respect to u, v(4) ~ 0. Contradiction!

Let & be a set of internal finite measures v: W — *C, let Ae U and let B < Q be
internal or external. A4 is called an §-approximation of B, if

AA B:=(A\B)U(B\ A)is a v-nullset for all ve §.
Define
Lg(M):= {B = Q| B has an F-approximation}.
Define
L,0):= Ly(W),
and for all Be L,(Y) and all M-approximations AU of B
A(B):= & o u(A).
LEMMA 3. fi is well defined, if there exists a control set for .

PRrROOF. Let A, A’ be M-approximations of B. Since AN A' < (AA B)U
(A’ A B), by lemma 1:

v(AA A')~ 0for all ve M.

Hence, (po L ou),(AA A') = 0for all peE'. We obtain for all pe E’
9o ouA) = ‘
poFLou(AN(ANANUA'\ 4) =
poF ouA).

Hence, & o u(A) = & o u(A').

PROPOSITION 1. Assume that there exists a control set € for u of cardinality less
than k. Then

(1) L,Q0) = Lg(2).

(2) f is o-additive on the o-algebra L, ().

Proor. (1) follows from lemma 2. “ad (2)”: It is easy to see that L, () is an
algebra. In order to show that L (1) is a g-algebra, fix an increasing sequence
B, c...c B,c...in L,(). There exist M-approximations A, of B, for all
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neN. We may assume that the A4, are also increasing. Since card (€) < «, by
K-saturation, there exists A € U such that

UA, = Aand lim°A(4\ A4,) = Ofor all AeE.

Hence, A4 is an E-approximation of (JA,. By lemma 1, 4 is also an G-approxi-
mation of UB,. Thus, UB, € Lg(2). By (1), UB, € L, (). This proves that L,(!) is
a g-algebra.

It is easy to see that /i is finitely additive. To show that /i is weakly o-additive, fix
@€ E'and B,, 4, and A4 as above. Let ¢ > 0 be standard and let v e € be a control
measure for ¢ 0 & o u. There exists a standard 6 > 0 such that

(po L ow,(C) < ¢forall Cel with v(C) < 4.

By the first part of this proof, there exists no € N such that v(4 \ A4,) < ¢ for all
n > ngy. So we obtain for all n > n,

looi(UB)\ Byl =
leoFL oA\ 4.l =

(poFo.(A\ 4,) <e

So, ji is weakly g-additive.

To show that jiis also o-additive in the original topology of E, we apply a result
of Grothendieck [7], which says that the weakly o-additive measure with values
in a locally convex topological vector space is also g-additive in every topology
consistent with the duality between E’ and E.

(R, L), 4) is called the vector valued Loeb space over (2,U, u) under the
assumption that there exists a control set for u of cardinality less than .

REMARK. If Qis a *finite set, then, for technical reasons, it is sometimes more
convenient to start the theory with the notion of a weak nullset, which we will
explain now.

Let u: W — SL be as before, but let 2 be *finite. The atom of w e Q is denoted by
[@]. Recall that

[w]:= N{Ael|we A} and [w] €.

Then the measure u is given by an U-measurable weighted counting measure c,,.
Define

(@)= p([w]):|[w]]~* for all we Q.
where |[w]| denotes the internal (*finite) cardinality of [w]. Notice that

u(d) = Y c,(w)forall Aell.

weA
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(If ¢, is constant, then u is called a uniform or fair counting measure.) u can be
extended to an internal measure i on *P(Q):= {4 = 2| 4 is internal}:

fi(A):= Y c,(w)for all internal 4 = Q.
weAd
Let v: U — *C be an internal finite measure. N = Qis now called a weak v-nullset,
iffor all standard ¢ > O there exists an internal A = Q (not necessarily A € 1) such
that

NcAand v, (A) <e.

We obtain a very similar theory with the same proofs. In the examples () and (¢)
we will use the notion of weak nullsets. There we will identify i and pu.

(III) Examples.

(¢) Scalar valued Loeb measures.
Let
E:=C,s0 E' = {¢: C - C|¢is linear},
L *C,
= {xe*C|a is finite},
.Y := the standard part map. So & is a mapping from SL onto E.

The *-image *¢ of ¢ € E’' is an &-lifting of ¢. If y: U — SL is an internal measure,
then {u, } is a control set for u. Hence

L) ={BcQ|3A€U(AA Bis a p-nullset)},

so (2, L, (), 4) is the scalar valued finite Loeb space as developed in [14].
It can be easily seen, using the definition of a y-nullset, that Be L, () if and
only if for all standard ¢ > 0 there exist 4, C € U such that

AcBcCandy,(C\ 4) <e

This result is due to Loeb [14].

The next results perhaps show that the notion of “4-lifting” is interesting. Let
(€, L,(W), f) be ascalar valued Loeb space as given above. Define for all p e R with
1<p<oo:

E,:=I(Q L), A):={f Q- C|| f||?is p-integrable}.
Eo:=L*(Q, L), j):={f: Q> C|| f| is ji-essentially bounded}.

:= {F: Q —» *C| F is internal and U-measurable with a *finite range}.
SI?:= {FeL|||F|?is S,integrable}.

Recall from Anderson [2] that a function G € L is called S,-integrable, if for all
infinite He *N and all Ae U *B({w| |G(w)| = H})
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[14-Gdu=~0.
Moreover, define
SL®:= {FeL|F is bounded by a standard real number}
and for all pe R with 1 £ p £ o0 and for all FeSI?:
F(F):=°F.
Notice that &(F) is -up to a u-nullset- well defined.

PROPOSITION 2. (1) Whenever 1's p < 00, every 9 € E, has an &-lifting. (2)
@€ E_ has an &-lifting if and only if € E,.
(Here we identify ¢ € E; with the canonical image of ¢ in E," = E_'.

The proofs, some extensions to the spaces of p-integrable martingales and
applications to the stochastic integral will be given in a paper, which is in
preparation.

(B) Measures with values in vector spaces E inside the standard model.
Let

L:=*E,
SL:= {xe*E|a is nearstandard in the weak topology},
& := the standard part map with respect to the weak topology,

so again & is a mapping from SL onto E.
Since *¢ is an &-lifting of ¢ for all p e E', we can choose the number « of
saturation so large that {(*¢opu),|@eE'} is a control set for u: U — SL of
cardinality less than k.
The following result perhaps shows that this notion of a vector valued Loeb
measure is an appropriate and natural conception in the locally convex case. (For
non locally convex spaces some results about nonstandard vector valued
measures can be found in [16]. There we studied locally solid vector lattices.)
D. R. Lewis [12] defined a vector measure v on an algebra containing the open
sets of a Hausdorff space to be weakly tight, if (p ov), istightforall p e E'. In[19]
it was shown that every weakly tight vector measure can be parametrized by
a hyperfinite vector valued Loeb measure. This result is a vector valued version of
Anderson’s work [3]. More precisely, we have

PROPOSITION 3. Let 9 be an algebra, which contains the open sets of a Hausdor/f
space X, and let m: 9 — E be a weakly regular measure with relatively weakly
compact range. Then there exists an internal *finite subset Q — *X and an internal
measure pu: *P(Q) — *E such that for all Be D

st™'[B1 Qe L,(*B(Q)) and m(B) = ji(st™'[B]1 Q).
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Define

L,):={B < X|st"'[B](\QeL,(*B(Q))} and
m: B (st [B] N Q) for all Be L,,().

Then i is o-additive on the o-algebra L,,(H).

If X is a Ty-space, then m is weakly tight.

This result, see [19], can be extended to measures with values in the weak
nonstandard hull of E. A simple consequence of proposition 3 is the well known
result that every such measure m can be extended to a s-additive measure on
a g-algebra containing D.

(y) Measures with values in the nonstandard hull of a Banach space.
Let (D, || ||) be a Banach space inside the standard model. Let
L:=*D,

SL:= {xe*D|u is finite},

E:= D:= the nonstandard hull of D,

& :ar—>daekE forall e SL, where d:= {feL||a — B|| =~ 0}.
The next result is due to Y. Sun in [18].

PROPOSITION 4. For every internal measure u: I — SL
SouwU-E

can be extended to a o-additive measure on a o-algebra over W if and only if there
exists a control set for u with one single element.

Here are again examples, where &-liftings don’t exist:
PROPOSITION 5: Every @ € E' has an -lifting if and only if E is reflexive.

Proor. First notice that
i: P> (¢p: a— °®(a)) for all finite @ € ! and all finite ae *D

is an embedding from I into E' = D' and that every #-lifting of some ¢ € E' is
*continuous. Moreover, notice that @ is an #-lifting of i(®) for all finite de L.
Thus, every ¢ € E' has an &-lifting if and only if the mapping i is surjective. By
theorem 8.5 in Henson and Moore [8], this mapping i is surjective if and only if
E is reflexive.

(0) Measures with values in the space of square integrable martingales.

Recall that we will now work with the conception of weak nullsets described at
the end of section (II).

First we recall the main notions which lead to the conception of adapted
hyperfinite Loeb probability spaces

(Aa Lv(A): 09 (bl)te[O, 1])'
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(See for example Lindstrem II [13].)
The set function
v: *P(4) - *[0,1]

is an internal measure with v(4) & 1, where A is an internal hyperfinite set.
Let

T:={0,4t,24¢,...,1}

be a hyperfinite time line such that Q () [0, 1] = T and At~ e *N. Define for all s,
teT

[s,t[r:={reT|s<r<t}
Let
(ut):= (ul)teT

be an internal filtration on A4, i.e. U, = U, for all 5, te T with s < t. Suppose that
U; = *P(A). Define for all te[0, 1]

b:=a(U{U,|teT and t ~ t} UR),

where R is the set of all (weak) v-nullsets. Recall that (b,):= (b,),c0.1; is right
continuous. (b,) is called the standard part of the internal filtration (I,).
Let

E:= {m: A x [0,1] - R|m is a square integrable (b,}-martingale}
Notice that E, equipped with the norm
lImll:= (E(m(-, 1)*)%,

isa Banach space over R. We identify every m e E with its equivalence class. Since
every me E has a cadlag version, we may assume that for all me E m(w, ) is right
continuous for almost all we A.

In order to avoid difficulties at 0, we let the internal martingales start not at
time 0 but a little bit later at some time point @€ T infinitely close to 0. Let

To:={seT|® < s}
L:=Lg:= {M: A x Ty — *R| M is an internal (!,),» o-martingale},

In the following, suppose that M € L and M(-,t)? is S,-integrable for all t = &.
By a result of Lindstrem ([13] I Theorem 9) there exists a set U = 4 of
v-measure 1 such that for all we U and all te[0,1]

M(w, s) is nearstandard for all se Ty and



256 HORST OSSWALD

°M*(w,t):= lim °M(w, s) exists for all t < 1;

°s|t
seT

define

°M™*(w,1):= °M(w, 1), if M(w, 1) is nearstandard.
Moreover, Lindstrem proved (Proposition 9 II [13]) that °M* €E.
M is called S-right continuous at @, if °M *(-,0) = °M(-, ®) $-almost sure.
Let

SL:=SLg:= {MeLgy| M(-,t)* is S,-integrable for all te Tp}.
Define the standard part mapping &: SL — E by
S M- (w,")—°M* (")) for almost all we A.

We give a simple proof of the next result, essentially due to Lindstrem ([13] ITI
Theorem 10), which says that & is a mapping onto E.

PROPOSITION 6. For everyme E there exists @ € T with® ~ 0and M € SLy such
that

M is right continuous at @
and such that for almost all we A
m(w,) = °M™* (w,")
PrOOF. By Loeb theory, there exists a lifting Y: A4 — *R of m(-, 1) such that Y?
is S,-integrable. Define
N(,t):= E(Y|U)forall te T.

(Notice that, since A can be handled as a finite set, E(Y | U,)(w) is defined for all
we A.) By the hyperfinite version of Jensen’s inequality, N(-,t)? is S,-integrable
for all te T. Hence °N * (w, *) exists for almost all we A.

By a saturation argument, see Lindstrem ([13] III Lemma 8), there exists ®€ T,
& =~ 0, such that °N *(w, 0) = °N(w, ®) for almost all w e A.

Hence

M := N restricted to A x T,

belongs to SLg and is right continuous at @.
It remains to show that m(w,-) for almost all we A.
Let te Q) [0, 1] and let (s,).n be a sequence in Ty such that

t < °s,forall neN and lim °s, = t.

Then there exists a set U, of ¥-measure 1 such that for all we U,
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‘M*(w,t) =

lim °M(w, s,,) =

lim °E(Y|U; )(w) = (by Loeb theory)

lim E(m(-, 1)| o1, U R))(w) =
(by Theorem 4.3 in Doob [5] and since b, = () a(U,, U R))

E(m(-, 1)|b)(w) =

m(w, t).
So, we obtain for all we () {U,| te Q () [0, 1]} and such that m(w,-) and °M * (w, *)
are right continuous and m(w, ") = °M * (w, ).

The algebra U is defined to be the set of all nonantipicating subsets of Q. Recall
that an internal subset

Ac A x T@ =: Q
is called nonanticipating, see [1], if
V(w,t)e Q((w, t) € A implies [w], x {t} = A),

where [w], denotes the atom of w in U,.

Before we will give the definition of the internal measure, we need some more
notations and well known results.
Suppose that M € SLg.

(A) The total variation [M] of M is defined by

[Ml(w,t):= Y, AM(w,s)*for all (w,t)eA x Tp.

se(®@,tlT

where

AM(w, s):= M(w,s + 4t) — M(w, ), if s < t,
AM(w, 1):= 0.

By Proposition 17 in Lindstrem I [13] and since the expectation of the internal
stochastic integral is 0, we have for all te T,

E(CMI(,1)) = E(M(-,1)* — M(-, P)*.
(B) The internal Dolean’s measure 4,.: *PB(A x Tp) — *Rg of M is defined by
Au(A):= ), (AM(,5)* V(@)

(w,s)eA

By (A) and because of the S,-integrability of M(:,t)* for all te T
Ap(4) € E[M](-,1) < oo for all internal 4 < Q.

(C) Let F: Q > *R be internal and U-measurable. The internal stochastic
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integral
[FAM: Q> *R
is defined by

[FAM: (w,t)— Y. F(w,s)4AM(w, s).

s<t

By Proposition 3 in Lindstrem II [13] we have:
If F? is S, -integrable, then [F AM(-,t)? is S,-integrable for all t e T.

(D) We obtain for all A el and all t € T, by internal complete induction:
E(([1,AM)*(-,0)) = E(Y, (1,AM?(:,5)), thus, E((f1,AM)*(-, 1)) = Ap(A).
(E) (Keisler [10]) If sl; te b,, then there exist se Ty, s & 5, and A € U such that
A AB is a v-nullset.
For the proof of Proposition 9 we need
LEMMA 4. If N < A is a v-nullset, then N x Ty is a Ay-nullset.

ProoF. Fix a standard ¢ > 0. We must show that there exists an internal set
B = A x Tg such that

N x Ty < Band Ay(B) < .

Since M(-,t)? is S,-integrable for all te T, by Theorem 2 in Lindstrem II [13]
[M](:,1) is S,-integrable. Hence, there exists a standard é > 0 such that

Y. [M](w,1)-v(w) < ¢ for all internal 4 = A with v(4) < 6.
weA
Choose an internal A = A such that N = 4 and v(4) < §
and define B:= A x T,. Then
A(A x To) = 3, [M](:,1) v(0) <e.

weA

Now we define the measure u:= u, where M € SLy:
pi=pipy: A [1,4M for all Aell.
By (C), u: U — SLg.
PROPOSITION 7. Every @ € E' has an &-lifting * ¢.

Proor. Fix ¢ € E'. By the Riesz representation theorem, there exists a function
g,€ I? such that

@(f)=Ef-g,forall fel?
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By Loeb theory, there exists a v-lifting G,: 4 - *R of g, such that G2 is
S,-intgrable. Define for all Me L

*o(M):= [ G, M(-,1)dv.
A
Of course, "¢ is linear. Fix M e SL. By Holder’s inequality, G, M(-, 1) is an
S,-integrable v-lifting of g,,- & (M)(-, 1). Hence, by Loeb theory,
P(F M) = HFM)(-,1) = [ g, M), )db = [ G, M(:, 1)dv = *o(M).
A A

With the same notation as in the proof of proposition 7 we define for all p € B’
Il := (] G;dv)*.
A

I * @l is finite, since G is S,-integrable.
LEMMA 5. Forall peB and all AeU
(Fpowi(4) =417 0l*- Au(A).
PrOOF. Let D = A and Dell. Then
(* @ o u(D))? £ (by Holder inequality)

I* @l (f 1p4AM)*(-, 1) dv = (by (D))
I* @l A (D).

Hence, ("popi(4) 4|7 ol* An(4).
PROPOSITION 8. {1y} is a control set for .

ProOF. From lemma 5 follows that A, is a control measure for every
poFou peE. Let po S opu(A) = 0forall pe E'. Then & o u(A) = 0. Hence,
for almost all we A4: [1,4M(w, 1) ~ 0. Since ([1,4M(-, 1))* is S,-integrable by
(C), we obtain by (D)

Am(4) = E([1,4M)*(-,1)) = 0.

REMARK. Using methods due to Dunford and Schwartz [6], one can show that
there exists a countable subset {@;|ie N} < E’ such that {(*@;ou) |ie N} is
a control set for .

These measures can be put together to a single control measure. The proof is
similar to the proof of lemma 3.3. in [18]. We omit the proof, because we don’t
use this result.

From proposition 8 follows:

CoroLLARY 1. L, (M) =L, ).
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So, we can apply the second part of proposition 1 to obtain a measure Ji;; on
the g-algebra L, (1) on A x T, with values in the space E of square integrable
martingales.

Now we want to compare this nonstandard theory with the standard theory of
measures on the g-algebra of predictable sets with values in E.

Recall that the set B, of predictable rectangles on A x [0, 1] contains exactly
the sets of the form

B x Js,t] with Beb,, te[0,1],s <t,

B x {0} with Beb,.

Let me E. Recall that the vector valued set function u,,: Bo — E is defined by
pm(B X Js,t]):= (0, 7)— 1p(0) - (m(w, ¢ A 7) — m(w,s A 1))
Um(B x {0})= 0.
Choose @ and M as in Proposition 6 and define for all C = A x [0, 1]
St '[C]:= {(w,)e A x Tp|(w,t)eC}.

The proof of the next result is similar to the proof of Theorem 4.4.5in [ 1]. We will
prove this result, because it is a vector valued version of 4.4.5.

PROPOSITION 9. For all Ce B,

St™'[CleL,, ()
and
1m(C) = Tpg (St~ [C]).

ProoF. Let C:= B x Js,t] be a predictable rectangle. Choose s and 4 as in (E)
and te T with t ~ t. Then

St™'[B x Is,t]]1 = {J ) B x |'_s+%,§+*;—[

keP leN

1 1 1
So, A x [s+ T t+ —;~[ is a Ap-approximation of B x [s + T t+ T[ by
Lemma 4. Hence, St™'[B x Js,t]]1€L,,, (1) = L,,, (20). So, we obtain for almost
allweAand all re[0,1]:

Tm(St™'[B x 15,61 =

1 1
lim lim yoyM<A x[s+-—t+ _[T> =
k= = o k l

lim lim (@,7) = m °Y LixgsLes L (0,0) AM (@, 0)) =

1
lr
k=0 = °plr a<p
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lim lim ((w,r)+~>1lim°1 A(w)(M <w,<§ + l) A p) —-M (w,(g + —1—) A p))) =
k=00 =00 plr l k

lim lim N,

k= l-©

with N, ;:= ((@,r)—lim1 B(w)(DM (co, (; + —]l~) A p> —°M (w, (5 + %) A p))>
plir

Define
N:= (w,r)— 1p(@): (m(w,t A 1) — m(w,s A 7).
We have to show that
lim lim E(N, (-, 1) — N(-,1))> = 0.

k= l—=0
This can be done, using the following facts:

1
lim lim °M <w, s+ ——) — m(w,s) =0,

k—w I=o k

lim lim °M (w, t+ %) — m(w,t) =0

k- I

follows from proposition 6

and Doob’s inequality in order to apply the dominated convergence theorem. In
a similar way it can be shown that for Be b,

St '[B x {0}]1€L,,, (1) and 7i;(St ! [B x {0}]) = 0.

We can use Proposition 9 to obtain a simple proof of the well known fact that
the set function u,, can be extended to a o-additive vector measure i, on o(Bo):
Define

P:={Cc 4 x [0,1]|5t7[C]eL,, (WD}
and

Bn(C):= fn(St™'[C]).

Then ¢(B,) < B, and since L, () is a o-algebra and fi,; is o-additive, the same
holds for P and 7,,.

(&) Measures with values in the Banach space of continuous martingales.
Here

E:= {m|is a square integrable a.e. continuous (b,)-martingale}.

The norm on E and L:= L;:= L, is defined as in (9). Set
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SLr:={MeL|M is a.e. S-continuous and M(-,)* is S,-integrable for all te T},
&:SL;y - E
M (w,°t)— °M(w, t)) for almost all w and all te T

We can proceed as in (), since by Panetta’s result [20], for every m € E there exists
a hyperfinite time line T and M e SL; such that M is a uniform lifting of m in
Keisler’s sense [10], i.e. for almost all we A and all te T M(w, t) = m(w, °t).

(IV) The Lewis integral.

First we will give a lifting theorem for scalar valued L,(})-measurable functions.
We are in the general situation of section (II), and we assume that 4 has a control set
€ of cardinality less than «.

An internal U-measurable function F: Q — *C with *finite range is called
a p-lifting of f: Q - C, if

{w|F(w) # f(w)} is a v-nullset for all ve M.

Notice that, if F is a p-lifting of f; then the internal integral | Fdu of F w.r.t. the
A
internal vector measure u is well defined, since F is a simple function.

ProposITION 10. f: Q = C is L,(0)-measurable if and only if f has a p-lifting F:
Q- *C.

ProoOF. Similar to the proof of the Loeb-Anderson lifting theorem. See Keisler
[10].

R. D. Lewis [12] defined an L,())-measurable function f: Q — C to be integr-
able w.r.t. the vector measure fi, if

(1) fis integrable w.r.t. o i for all p e E' and

(2) for all Be L, (U) there exists a vector age E such that for all o€ E’

plag) = [ fdgoji.
B
Then ap is called the Lewis integral of f over B, denoted by L-{ f dj.
B

PROPOSITION 11. Suppose that every @ € E' has an &-lifting * ¢ and that there
exists a p-lifting F: Q = *C of f: Q — C such that
(1) Fis S, e -integrable for all p € E' and
(2) [ FdueSL forall AeW.
A

Then f is ji-integrable, and for all B e L, () and all M-approximations A of B
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L- gfdﬁ = ([ Fdy).

ProoF. Fix ¢ € E'. Notice that for all Be L, () and all M-approximations A of B
9 o(4) = poA(B)

Since {w| F(w) # f(w)}isa *¢ o u-nullset and because of (1), by Loeb theory, f is
@ o j1 integrable. We obtain for all Be L,(2) and all M-approximations 4 of B

poS(|Fdy~ *o([Fdp)= [Fd*pou~(fdoop
A A A B

Hence, (| Fdy) = L — [ fdj.
A B
ExaMPLES. ad (x): We have the well established integration theory on Loeb
spaces developed by Loeb [14] and Anderson [2].

ad (f) < k. Then the condition in proposition 11 for f to be ji-integrable is not
only sufficient but also necessary:

PROPOSITION 12. f:Q — Cis ji-integrableif and only iff has a p-lifting F: Q — *C
such that
(1) Fis S, -integrable for all p € E' and

(2) [ Fdpu is nearstandard in the weak topology for all A€,
A
in which case for all Be L, (1) and all M-approximations A of B
L-{ fdji = °[ F dy (in the weak topology).
B A
ProOF. By proposition 11, we must only show the “only if” part. Suppose that
f is ji-integrable. Since f is then L,()-measurable, by proposition 10, f has

a p-lifting G: Q — *C. By (1) and Loeb theory, for every ¢ €E’ there exists
H,e*N\ N such that G A H, is S, °,-integrable, where for all e Q

._ JG(),if |G(w)| = H,
- G A Ho():= {O, otherwise.

By k-saturation, there exists He*N\ N with H < H, for all peE’. Hence,
F:=G A His S, -integrable for all p € E'. We obtain for all Aell

o(L—[fdi)=[fdpop~ [Fd*pou=*¢(| Fdy)forall peE.
A A A A

Thus, L-{ f dji is the standard part of | F du in the weak topology.
A A
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COROLLARY. (1) {L-[ fdj|BeL,Q)} is weakly compact.
A

(2) (Lewis [12]) & B L-{ f dji for all Be L, (M) is o-additive, if f: @ — C is
B
a [i-integrable function.

Proor. (1) follows immediately from proposition 12 and Luxemburg’s result
[17] that the weak standard part of an internal set of weak nearstandard points is
weakly compact.

“ad (2)”. According to proposition 12, let F: Q — *C be a p-lifting of f such
that (1) and (2) of proposition 12 are true and define

v: A [ Fdufor all Ae U
A

Then v: U — SL is finitely additive and for all p € E’ every *¢ o u-nullset is also
a*@ ov-nullset, thus, L, (0) = L ). Because & = ¥ restricted to L,(X) and 7 is
o-additive, & is also g-additive.

Lewis showed that this integral, although it is defined by the weak topology, is
not a weak integral. In [12] he proved a dominated convergence theorem under
the assumption that E is weakly sequentially complete.

We extend Lewis’ result to uniformly Lewis integrable functions combining
the lifting result of proposition 12 and methods known in nonstandard analysis
to handle uniformly integrable functions. See for example, Hoover Perkins [9] or
Cutland [4].

A sequence (f,) of ji-integrable functions is called uniformly fi-integrable, if for
all pe E', (f,) is uniformly ¢ o ji-integrable, i. e.

lim | || £l d(¢ 0 4), = O uniform for all ie N,

k- o0 B,f(

where B}:= {o| |fill@) 2 k}.
We say that a sequence (f,) of L,(i)-measurable functions convergens to f:
Q — C in fi-measure, if (f,) converges to f in (¢ o fi), -measure for all pe E'.

LEMMA 6: A function f: Q — C is ji-integrable, if there exists a sequence (f,) of
[i-integrable functions f, such that (f,) converges to f in fi-measure and such that

| f.dix converges in the weak topology for all Be L, (!).
B

Proor. Obvious

PROPOSITION 13. Suppose that E is weakly sequentially complete. If (f;,) is
uniformly ji-integrable and converges to f in i-measure, then f is ji-integrable and
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L-§ fdj =limL-{ f, dji in the weak topology.
B B

PrOOF. By proposition 10, there exists a u-lifting G of f. By proposition 12, for
allne N there exists a u-lifting F, of f, such that (1) of proposition 12 is true. Thus,
by hypothesis, there exists a standard function g: E' x N — N such that for all
@peE,neNand k = g(p,n), keN

(*¢ou. ({wlllFi—Glzn™'}) <n"'and
VieN([ |Flld(*¢op), < n™'), where 4;:= {o| | Fi(w)| = k}.

X
By k-saturation, one can extend the sequence (F,),°y to an internal sequence
(F,)nesn such that for all e E', ne N and k = g(@,n), ke *N,

(*pow ({w|Fc—Gllzn"'}))<n"!and
Vie*N(| [Flld(*pou),) <n'.

4
It follows that for all infinite ke *N, F, is a u-lifting of f and that F; is

S4,°,-integrable for all ie *N and all ¢ € E'. Hence, for all infinite i, je *N and all
@p€eFE

(+) [ |F; — Fj| d(*pop), ~ 0.
(9]

Now we will prove that (L-_[ f»di1) is a weak Cauchy sequence for all Be L, ().
B

By hypothesis and lemma 6, then f is ji-integrable. Assume that (L-I [ di)fails to
B

be a weak Cauchy sequence. Then there exist 9 € E', Ae W and a standard ¢ > 0
such that

VneN3ijzn([|F;, — Fjlld(*¢op, 2 &
4

By k-saturation, there are i, je *N\ N such that
[ IIF; — F;ll d(*¢ o ), = &, which contradicts (+).
A
ad (y): Since in general ®-liftings don’t exist, I have no results on Lewis’
integration theory using the weak topology. So, I refer to the work of Y. Sun [21],

who developed integration theory with respect to measures with values in the
nonstandard hulls of Banach spaces, using the norm topology.

ad (8): Fix meE and let M be as in proposition 6. We will first show that the
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Lewis integral of f w. r. to [, is the “standard part” of an internal integral w. r. t.
up- Assume that f: A x [0,1] - R is B-measurable and f? is 1,-integrable,
where

fiA x Ty > R: (0, )~ f(,°).

By Loeb theory, there exists an 2-measurable A,-lifting F: 4 x T — *Rof fsuch
that F2 is S, ,-integrable. We obtain

PROPOSITION 14. For all Pe B and all Ay-approximations A of St™*[P]
L-{ fd, = S(J14Fduy) = L([1,F AM).
P
Proor. In order to apply proposition 11, we will show two facts:
claim 1: Fis §+,,,, -integrable for all pe E'.

ProoF. Let He*N\ Nandlet 4 = {weA||F(w)| = H} with A e U. The set A
can be written as a disjoint union A = [w,,t;] U ... U [wy,t,] of atoms [w;,t;] = A
in U. Then we have for all p€ E".

IfFd*popuml®=
4
k

I'Y, Flent) *oom(lw tD)I? =

i=1

k
I Zl F(w,t) | Gy pu([@i D, D dv)|? =
i= A
k
” Zl F(wb ti)' I G(p'(zl I[mi‘,‘,](',S)AM(‘,S)> dV“Z =
i= A s<

1Y, X Gyl Flw,s) AM(w,s) v(w)|* <

i=1 (w,s)elwi,ti]

ll+¢llz'( > F(w,S)z'AM(w,S)Z‘V(w)>=

(w,5)ed
I *@lI2-(f F*dAy) =~ 0, since F? is S, -integrable.
A
This proves claim 1.

claim?2: [ Fduy = [1,F AM for all Aell.
A

PrROOF. Let A = [wy,t;] V... U[wy, ] as in the proof of claim 1 and let
(w,)e Q.
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Then
A

F(oi, t;) pm([o, t:])(w, t) =

-

]
-

M=

F(w;, ti)~<z Lo, ea(@,5) AM (o, s)) =

i=1 s<t

i Y Lo (@,9) F(w,s)- AM(w,s) =

i=1s<t

Y 14(w,s)  F(w,s): AM(w, s) =

s<t
{14 F - AM (w, 1).
This proves claim 2.

Hence, by (C), | F d € SL. By proposition 11, f is Ty -integrable and
A
L-{Jdfig = S ([ Fii) = S(J 14 F- AM)
B A A
for all Be L,, () and all M-approximations A € U of B. Hence, we obtain for all
Pe P and all M-approximations A4 of St~ ![P]
L-[ f dp,, = (by the transformation rule for scalar valued integrals)
P

L- [ fdmy=

St—1{P]
&L([ 14+ F dpy) = (by claim 2)
([ 14+ F AM).
By Theorem 17 in Lindstrem II [13] we obtain the

COROLLARY. The Lewis integral of f w.r.t. Tim is exactly the stochastic integral
of fw.r. t.m.

ad (¢): We obtain similar results as in () for continuous martingales.
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