MATH. SCAND. 69 (1991), 57-80

ON RATIONAL SOLUTIONS OF YANG-BAXTER
EQUATION FOR si(n)

A. STOLIN

Abstract.

In 1984 Drinfeld conjecturcd that any rational solution X(u, v) of the classical Yang-Baxter equation
(CYBE)' with X taking values in a simple complex Lie algebra g is equivalent to one of the form
X(u,v) = C,/(u — v) + r(u,v), where C, is the quadratic Casimir element, r is a polynmial in u, v, and
deg,r = deg,r < 1. In this paper I will prove this conjecture for g = sl(n) and reduce the problem of
listing “nontrivial” (i.e. nonequivalent to C,/(u — v) + const) solutions of CYBE to classification of
certain quasi-Frobenius subalgebras of g. There are given all “nontrivial” rational solutions for sl(2),
sl(3), sl(4) and several series of examples in general case.

Introduction.

In what follows let g be a simple finite-dimensional Lie algebra over the field C of
complex numbers, X:C—->g® g a function. Solutions of the classical
Yang-Baxter equation

CYBE [X"%(u; — ), X 3(uy — u3)] + [X"2(uy — ta), X*(u — uy)] +
+ [X3(uy — u3), X3y —u3)] =0

wherefor X =Y a,@ heg®@gweset X2 =X®1, X3 =Y a,®1® b, etc.
are considered modulo equivalence relations

1) X ~ cX, for ce C\{0};

2) X(u — v) ~ (¢(u) ® ()X (u — v), where $(u) € Aut(g).

A solution X is called nondegenerate if it satisfies any of the following equival-
ent (as proved in [BD1]) conditions

A) the determinant of the matrix formed by the coordinates of the tensor X (u)
does not vanish identically;

B) X(u)has at least one pole and there is no proper subalgebra h) c g such that
Xu)eh®h for all u;

C) X(u)hasa 1st order pole atu = 0 and Res X(u) = C,, the quadratic Casimir
element.
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Belavin and Drinfeld [BD1] proved that the poles of a nondegenerate solution
of CYBE form a discrete subgroup I' = C and listed all solution for rk I' = 2
(elliptic) and rk I" = 1 (trigonometric). For rk I' = 0 (rational solution) they gave
several series of examples associated with Frobenius subalgebras of g and
provided with arguments in favour of that there are too many rational solutions
to try to list them, see also a more detailed and physicists-oriented exposition
[BD2].

About a year later, however, Drinfeld has found all solutions for sI(2) and made
the following.

CoNJECTURE. (Drinfeld, 1984). If X(u,v) is a rational solution of CYBE' (see
below), i.e.

X(u,v) = C,/(u —v) + r(u,v), where r is a polynomial in u, v then
deg,r = deg,r < 1.

It seemed that there was some hope after all.

In this paper I will prove this conjecture and reduce the problem of listing
“nontrivial”, i.e. nonequivalent to C,/(u — v) + const, solutions of CYBE’ to
classification of so-called isotropic orders of g = sl(n). They, in turn, are related
with quasi-Frobenius subalgebras in sl(n).

The problem of finding rational solutions has been raised in [BD1]. The
problem we will solve here looks somewhat different: we will consider functions
X: C? - g ® g such that

(CYBE) [ X'2%(uy,u5), X 3(uy,u3)] + [ X Huy, uz), X?3(uz, u3)] +
+ [ X3y, us), XP3uzu3)] =0 X'%(u,0) = —X*'(v,u)
and a solution will be called rational if it is of the form (here g[u] = g ® C[u]):
X = +C,/(u —v) + r(u,v), where r(u,v)eg[u] ® g[v]

Asisshownin [BD3], any solution X(u, v) of (CYBE')is gauge equivalent to a one
which depends on u — v and it is subject to a direct verification that the gauge
transformation does not lead out of the class of rational solutions.

CONVENTION. In the main text we list all solutions up to “trivial”, constant,
one without specifically mentioning this anymore.

The constant solutions, however, are of independent interest as demonstrated
for example by Gurevich [G1], [G2] and therefore we list and discuss them in
Chapter 2.

REMARKS. 1) As has been verified by V. Drinfeld and A. Panov (unpublished)
for simple compact Lie algebras over R there exists only the trivial maximal
order, hence there are no nonconstant solutions.
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2) The results of this paper and its approach seem to be of interest from
superalgebra point of view when the solutions of CYBE are only trigonometric
(listed in [LS]) and rational ([L]). Here, one more reason for interest from
supermanifold point of view is provided by Sauvage Lemma. It describes
bunddles over P! in superizable terms, whereas there is no explicit description of
bundles over P*:" even for n = 1.

3) The results of this paper were announced in [S1]-[S4].

ACKNOWLEDGEMENTS. I am thankful to V. Drinfeld who posed the problem
and to D. Leites for their help. This paper would have never been written if
Drinfeld and Leites had not helped me.

1. Rational solutions of CYBE « isotropic orders.

We need some notations. Denote by g*) = g® C[u~*,u] the loop algebra
(indeed, set u = exp(i¢), where ¢ is the angle parameter on the circle, then g¥’ is
the space of loops — maps of the circle to g —expandable into finite Fourier series)
with the nondegenerate ad-invariant inner product (x, y) = Res tr(adx ady).

Set © = C[[u']], the ring of formal power series in u~!, K = C((u~?)), the
field of quotients of D.

Set g[u] = g ® C[ul, g[[u 11 =g ® D, g(u™ ") =g ®K.

The inner product on g'*) is naturally extended to g((u~')).

1.1. THEOREM. There is a natural one-to-one correspondence between rational
solutions of CYBE' and subspaces W < g((u~!)) such that

1) W is an subalgebra in g((u~*)) such that W > u~Ng[[u~']] for some N > 0;

2) W®glul =g@™ )

3) W is Lagrangian subspace with respect to the inner product of g((u™ ")), i.e.,
W=w-

A C-subalgebra W < g((u~')) such that u¥g[[u~*]] > W > u~Ng[[u~']] for

some K, N is called an order in g((u~?)). It follows from 1) and 3) that W from
Theorem 1.1 is an order.

REMARK. The term “order” is suggested by Drinfeld due to the likeness of
valuation fields K and Q, and because for Q, similar objects are called orders, cf.
[BSh]. An order in a finite dimensional algebra over Q, is a Z,-subalgebra which
is open and compact.

1.2. THEOREM. Let X, and X, be rational solutions of CYBE', W; and W, the
corresponding orders in g((u~*)). Then for a polynomial o(u): C — Aut g:

Xy = (o(w) ® o(v))(Xz) = W1 = o)W,
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2. Description of orders in sl(n).

2.1. THEOREM. Any order in sl(n;K) is contained in g~ 'sl(n;D)g for some
g€ GL(n; K).

REMARK. Thus, any maximal order in sl(n, K) is an order g ~ !sl(n; D)g for some
of the form g € GL(n; K).

2.2 SAUVAGE LEMMA ([AI]). The diagonal matrices diag(u™,...,u™), where
m;eZ for all i, my < ... < my, represent all double cosets GL (u; D)\GL (n; K)/
GL(n; C[u]).

REMARK. An equivalent formulation: any vector bundle of rank n on P! is of
the form D(m,) ® ... ® D(m,).

2.3. COROLLARY. Let W = g~ sl(n; D)g correspond to arational solution of the
CYBE'. Then up to a gauge equivalence g = dy, where d,, = diag((1,...,1,u,...,u)
(k-many 1’s), 1 < k < n/2.

If W < d; 'sl(n; D)d, then the order W will be said to be of class k.

2.4. THEOREM. 1) A rational solution of CYBE' is gauge equivalent to a ra-
tional solution

X(u,v) = u_c—z_v + r(u,v), where deg,r = deg,r < 1

2) If an order W corresponds to a rational solution and W < sl(n; D) then the
corresponding solution is a constant one.

3. Orders « pairs = (Lie algebra of a group locally transitively acting on
a Grassmanian, its quasi-Frobenius subalgebra).

A Lie algebra F is called a Frobenius one if the skew-symmetric bilinear form B,
on it given by the formula B(x,y) = f([x,y]) for fe F* and x,yeF is non-
degenerate for some f & 0.

A Lie algebra F is called a quasi-Frobenius one if there is a nondegenerate
2-cocycle Be C*(F). Since every By is a 2-cocycle, a Frobenius Lie algebra is
quasi-Frobenius.

Let P, be the parabolic subalgebra of sl(n) corresponding to the kth simple
root, i.e., is generated by all root vectors corresponding to simple roots
o,...,0,—; and their opposite except —a; let p; be the parabolic subalgebra
generated by all the roots except o;.

3.1. THEOREM. Let W be an order of class k corresponding to a rational solution
of CYBE'. Then there is a one-to-one correspondence W < (L, B), where L c sl(n)
is a subalgebra such that
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™ L + P, = sl(n) (note that this is not a direct sum) and B is a 2-cocycle on
L nondegenerate on L N P, (therefore L N P, is quasi Frobenius).

Let us reformulate the condition L + P, = sl(n) from Therem 3.1 in a some-
times more convenient form. Let Lbe Lie algebra, G(L) be the group generated by
exp(ad x) for x € L. Clearly, G(L) is connected.

3.2. THEOREM. L + P, = sl(n) iff

G(L) acts locally transitively on the Grassmann manifold G;, and the plane
(*) | generated by the first k of basis vectors of C" is a generic point whose
stationary subgroup is G(L N P,).

Still another reformulation is as follows.
THEOREM 3.3. L + P, = sl(n) iff

L@ gl(k) acts transitively (i.e. there is a vector x,€C" ® C* such that
*") | (L@ gl(k)(xo) =C"®C*) on C"® C* and ), <, &; ® e, is a generic point
whose stationary subgroup’s Lie algebra is isomorphic to LN P,.

Now, let L, ,, » = P,

-, NP,

3.4. COROLLARY. 1) L, ,, ,is Frobenius < (ry +ry,n) = 1.

2) gl(r,) @ sl(r,) @ gl(k) acts locally transitively on C"**"> ® C* and the Lie
algebra of the stationary subgroup of a generic point is Frobenius
< (ry +rk) = 1.

4. Gauge equivalence and cohomology.

4.1. LEMMA. Let (Ly, B,) and (L,, B,) determine solutions of the class k. Let
(AdX)L, = L, and B,(Ad X(a,), Ad X(a,)) = By(ay,a;) for all a;,a,€L, and
some X € G(Py).

Then the corresponding solutions are gauge equivalent.

4.2. LEMMA. Let N be a Lie algebra, L, L,, P its subalgebras such that
Li+P=L,+P=NandL, = XL, for some X € Ad G(N). Then Ly = RL, for
some R € G(P).

ProposiTION. 1) Let (L, B) and (L, B,) determine solutions from the same class
and B, be cohomologic to B,. Then the solutions are gauge equivalent.

2) Let N(L) < SL(n) be the normalizer of L and B,(Ad X(a,),Ad X(a,)) =
B(ay,a,) for all a,, a, € L and some X € Ad N(L). Let (L, By) and (L, B;) determine
solutions from the same class. Then the solutions are gauge equivalent.

REMARK. G(L) acts trivially on H*(L) (see [F]).
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4.3. LEMMA. Let L + P, = sl(n), L n P, a Frobenius Lie algebra. Then in each
class from H*(L) there exists a cocycle nondegenerate on LN P,.

PROPOSITION. Let L satisfy conditions of Lemma and H*(L) = 0. Then there is
precisely 1 solution of class k with given L.

4.4. LEeMMA. Let (L, B) determine a solution of class k in sl(n) and there exists an
L-invariant r-dimensional subspace in C". Then the solution is gauge equivalent to
a -solution of class |k+r—n| if [k+r—n <n/2 and to that of class
n—lk+r—nlif k+r—nl >n/2

PROPOSITION. Let L be solvable. Then the corresponding solution, if any, is
gauge equivalent to a constant one.

5. Constructing solutions.
5.1. Preliminaries (cf. [E1], [E2], [Sp]).

5.1.1. LemMA (Duality principle or “castling”). If for an L @ sl(W)-action on
V ® W there exists a generic point with stationary subalgebra Yy then for the
L @ sl(W')-action on V* ® W', where dim W’ = dim V — dim W, there exists
a generic point with stationary subalgebra Yy isomorphic to b.

We will say that a triple (L,, V}, ¢,) and (L,, V5, ¢,), where ¢; is a representa-
tion of L; in the space ¥}, are obtained from each other by castling if there exists
a triple (L, ¥V, ¢) and ne N, n < dim V = m, such that

(L1, V1,01) =L Dsl(n),V®C",0 ® 4,)
(LZ’ VZa (Pz) = (L@ sl(m - n)’ V* ® Cm—-n’ (P* ® Al)
A triple (L, V, @) will be called reduced if there is no triple (L, V', ¢') with
dim V' < dim V obtained by castling from (L, ¥, ¢) (in notations [E2]).

5.1.2. LeMMA ([E2]). Let L be reductive, ¢ its locally transitive representation
and either ¢ is irreducible or [L, L] is simple. Let in either case the stationary
algebra, i.e. the Lie algebra of the stationary group of a generic point be Frobenius.
Then all such reduced triples are given in Table 1, where T™ is the Lie algebra of
m-dimensional torus which in cases 2, 3, 6, 7 acts in each direct summand with scalar
operators.

5.2. Results.

Let (L, B) satisfy conditions of Theorem 3.1 and L be an irreducible subalgebra.
Then L is semisimple and H%(L) = 0. Thus, L n P, is a Frobenius algebra.
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TABLE 1
L \' [7) Additional conditions
1] gl n.c A®D...® A4, n is divisible by m
2| T"®sln) er,c 4,@...04, m>2,
n — 1is divisible by m
3| T @sl(n) | @riC e A4,
4| simedeglm) | C"®C" 4,4, mn=1m2z2n=2
50 gl c* 34,
6| T>@sl(2) CleC? 24, @ A4
7| T*®sl(3) CecCopCoC A4, DA, DA, & A
8| si3)dgl(2) | C°®C? 24, ® 44
9| si9)@degl2) | C*@C? A, @4,
10| siS)@gld | C°®C* A, @4,

THEOREM. The reduced triples 1 (m = 1).4.5.8.9.10 from Lemma 5.1.2 and those
obtained from them by castling exhaust all irreducible subalgebras L ® gl(k)
satisfying the following conditions:

1) L@ gl(k) acts transitively on C" ® C¥;

2) the stationary subalgebra of generic point is a Frobenius one.

REMARK. Now we can use Theorem 3.3 to find “irreducible” solutions.

PROPOSITION. The following Tables 2-1 list all nonconstant solutions X (u,v) =
C2

+ r(u,v) of CYBE' for sl(n), n = 2,3,4.

u—v
Here “all” means “all up to gauge equivalence” and “nonconstant” means “not
equivalent to constant”.

TABLE 2
sl(2)

r L H,(L) o) r(u,v)

—1/2 1 0 1 0 0 -1/2
1|2 | o0 44 [g é/]‘g’[o _1]“—[0 —l]®[° O]v
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TABLE 3
sI(3)
r L HyL) | ¢ r(u, v)
1/3 1 00 1] [13
1 |sl2| 0 A, ®000»—000® 1/3 u+
—2/3 000 000 -2/3
(0 1 0] [o oo 000] [o10
+/0 0 0/®|0 0 1|lv—|0 0 1|®|0 O Olu+
10 0 0f] [0 00 000 00O
—1/3 000] [001] [~13
+ 2/3 ®(1 0 0|-|1 0 0l® 1/3 +
i -2/3] [0 0oof [000O ~2/3
[0 1 0] [o o 1] [o o 1] [o 1 o
+/0 o ol®@/o o o|]—[0o 0 o|l®|/0 0 O
10 0 0] [0 00 [00w0 (00O
[—1/3 00 0] [0oo0 0] [-23
1| P 0 id + 23 |®[1 0 0|-|1 0 0|® 13 |+
L 13) looof [000O 1/3
[0 0 1 1/3 1/3 001
+/0 0 ol®| 13 - 13 ®[0 0 0|+
10 0 0 -2/3 -23] 10 0 0
[1/3 000 00 o] [1/3
+| 13 ®[0 0 1lu—|0 0 1|l® 13 +
L -23] 00O 000 —2/3
TABLE 4
sl(4)
r L (L is an irreducible subalgebra) ) H,(L)
1 si(4) Ay 0
1 sl(2) 34, 0




ON RATIONAL SOLUTIONS OF YANG-BAXTER EQUATION ...

65

TABLE 5
sl(4)
L (L preserves the only 1-dimensional spase) @ H,(L)
L=sl3)®C? id 0
t a b 0
L=w@)dc= |8 ' ¢ 8 abct*cC | id 0
* * x _3
TABLE 6
sl(4)
L (L preserves the only 2-dimensional space) @ H,(L)
L =5l2) 4,04, 0
L=gl2)®sl(2) A,® A, 0
L= Pyt id 0
A 0 0100
1000 .
= -1 . =
L= T 0 x iy T: Aegl(2),T= 100 1 id 0
-x0 0010

4 o

L= X : Aegl(2) id 0
x
r |
A 0
L= T : Aegl(2), Begl(2) id 0
B -4
- -
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TABLE 7
sl(4)
r L (L preserves a (1,2)-flag) @ H,(L)
a b
c d 0
1 L= T id C
x yp O
z u 0 ¢
ab 00
c d 00 .
1 L= Xy 00 id C
z u qp
ab 0 0
2 _|c d 0 0 0,if 4 + 1/4,
Pl G=lxyap o | 2% 4| cita=1a
z u g A-1Dp
6. Proofs.

6.1. ProoF oF THEOREM 1.1. Let g be a simple Lie algebra, V = g[u]. Then
V* =u 'g[[u"']] and if fe V* aeV then

f(@) = Restraf

Now, let {I,,} be an orthonormal basis of g with respect to the inner product
(a,b) = trab, then {I,u*: ke N} is a basis of V. Denote the space of all open (with
respect to the topology of K) maps V* — V.

Hom,, (V*, V) = {f* V* > V: ker f o u~NV* for some N = 0}
a) Let us construct an isomorphism &: V ® V — Hom.,(V*, V). Set
P(x ® y)(f) = (f(y),x) for any x,ye V and feV*

The inverse map @ ~! is defined as follows:

¢‘l(F) = z F(fri) ® emi, Where epy, = Imuk’ S = Imu—kﬁl,FEHomcom(V*’ V).
b) There is a natural bijection Hom (V¥ V) > {W cg(u™!): WV =
g((u~1') and W o u~NV* for some N 2 0}. Indeed, let F e Hom,,(V*, V). Set
W(F) = {f + F(f): feV*} < g(u™")).
c) LEMMA. Let r**(u,v)e V@ V. Then r'*(u,v) = —r**(v,u) if and only if
W(®(r'?)) is Lagrangian with respect to the inner product induces on g((u~')) from
glu"YLuland W = Wt
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Proof is straightforward.

d) Now, let C,/(u — v) + r(u,v) be a rational solution of CYBE. Let us show
that W(®(r)) is a subalgebra in g((u~1)).

Denote: p = &(r). We have to show that [ f + p(f), g + p(g9)] = W for any
fgeV*.

By lemma c) it suffices to show that ([f + p(f), g + p(g)], h + p(h)) = O for
f=Lu Y g=Lu""', h=ILu* ' Indeed, the isomorphism V® V ~
Hom,,,(V*, V) implies the formula

(*)- r(u’ U) = Z p(Im“_k- l) ® Imvk
mk

Since both C,/(u — v) + r(u, v) and C,(u — v) are solutions of CYBE,

23

[r'2,r3] + [r“ + rt3, :| + (cyclic perm. of indices 1,2,3) = 0

U — U3

Formula (*) implies

[r2r®l= Y Doy ) pllml™ )] ® Iy ® It} and

i,j,m,1
23

c23
A2t 2| =S ) @ | fh @ 1+ 1@ hh,—2—
3 k,1 Uy — Uz

U, — u
As shown in [BD1][a® 1 + 1 ® a,c,] = O for any ae g and therefore
k
U3

ut —
U, —u

23
[ru + rls,_.f}____:l =Y pLu* " HQ[L ®1,c,]

Uy — Uz k.l 3

Let us calculate

h®1, c;]= Z 1] ® L, = Z (L, LLLL® L, = — Z (5, 1n1, 1) 1, ® L.

Therefore

c23 s
[rn + r13’_2__.:| = — Z p(l;ul—'_’_z) ® InuiZ
Uy — U3z Lmni+j=k—1
® Imu'é([lm Im]’ Il) = “ZP( )[I"’ I”']’ Il) ~],uil_j—2)
QL @Ity = — ¥ p(lLur" ™ Iy ® Lty @ It
m,n,i,j
Thus

[r'2,r] + [r” s, G ]= Y (o), ol ]

27— 43 i,j,l,m
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—p(Uuy L Ly T D@L @ L = Y, ([pUuy ™Y, pUauy '™ 1]

i,jk,l,m,n
= o([huy ™ Byuy 1), B LW @ Luh ® Lyuh
In the last transformation we have made use of the formula
x =Y pi(x Lu ¥ Luk
Set f =ILu "% g=1ILu7"% h=Lu * ' Having similarly written the re-
maining summands of CYBE we get

23
0= %)+ [ 2 E |+ fepce) = Tl @ h @ b,

2
2 — Uj
where

age = ([p(f), pg)] — p(LL, 9D, b) + (Lo(g), p()] — p(g, ], )

+ (Lo(h), o()] — p([h, 1), 9) = (Lf + p(f),9 + p(@)L b + p(h) = 0

Thus, W(F(r))is a subalgebra. Clearly, the proofis convertable. The remaining
statements of Theorem are obvious.

6.2. ProoF oF THEOREM 1.2. Let R be a rational solution of CYBE, W(R) the
corresponding order.
c

First, consider R = Ry = —2 = Then let

WiRo) = u~"allu" T}, s = (o0) ® o)~ 2 = 3. 2m & X0l

Let us show that W(R,) = a(u)W(R,). Let us make use of the following two
obvious identities

2

8 < = 3 et ioh
@ f= Y (LIt L™ " forany feu 'g[[u""]]
mk20

The identities imply that W(R,) is generated by
Qf = Z (j; U(v)lmvk) : a(u)lmu_k_ !

kz0,m

= Y (o) (e@lu™ " L") Lu™""!

k20,n,m,!
= Y (0L L e T ) Lu

k20,n,m,l

Set g =Y s0m©@ *f,I,0") Lyu"* . Then g is the projection of ¢~!f onto
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u~ 'g[[u~*]] with respect to the decomposition g((u ")) = g[u] ® u~'g[[u~1]]
and

Q= 12(9,0_111'4")11“_"_1 = a(g).

This proves Theorem in our particular case. The general case is quite similar.

6.3. PrOOF OF THEOREM 2.1. Let W < g((u~ 1)) be an order. We can assume
that W is an Q-module. It suffices to prove that there exists an n-dimensional
Q-module M of finite type such that WM < M.

Indeed such a module M must be free and of rank n over Q. Therefore
M = g~1Q" for some g € GL(n, K) which still prove Theorem.

It remains to construct M. Set

M=Q"+WQ"+...+W.. Q" +...

Clearly WM < M. Let us show that M < 4'Q" for some . Let x,.. ., xy be a basis
of the Q-module W. Then

M = Yoo Xl xar

ki20,1SisN
For any A € W define its norm setting
| A| = 2¢ where g = inf,(4Q" = 4*Q")

ForAi=au"+ ...+ ag + ... +...€ Kset|A] = 2". This absolute value on K can
be continued to K. The norm is well-defined since, clearly,

I 4B|| < ||All | Bll, 241l = 1A I 4]l, |4 + Bll < sup{ll 4ll, IBI}.
Thus it suffices to show that
sup |lx%t...xK| < co<ssup|x;[|* < 1 for any i.
k
The latter condition is equivalent to the fact that the absolute values of the
eigenvalues of x; € W for the action of the x; on K" are <1.
Notice, that ad x,(W) = W since W is a subalgebra.

Let 1%,..., A}, be eigenvalues of x; on K", then the set of eigenvalues of ad x;
then W acts of sl(n; K) is {4, — A}}, where

(*) Yi=0
p
Since an order W c sl(n; K) is an Q-submodule of finite type,
(*) AL — 2| < 1for all p,q.

Formulas (*) and (*+) imply |4;| < 1 for all p.
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PrOOF OF PROPOSITION 2.3. The statement of Proposition 2.3 is a corollary of
2.2 and the following almost obvious.

LEMMA. Let g = diagu™,...,u™), m<...<m, and g 'sl(n;Q)g +
sl(n; C[u]) = sl(n; K).
Thenm; — m; = —1 for alli,j.

Proor oF THEOREM 2.4. 1) Let R(u, v) be a rational solution of CYBE, W(R) the
corresponding order. Proposition 2.3 implies that there exists a gauge transform-
ation o(u) such that

o)W(R) < d; 'sl(n; Q)d,
By Theorem 1.2
o(w)W(R) = W(R,), where R, = (6 ® 6)R
The proof of Theorem 1.1 implies that
W(Ry) = {f + p(Ry)f: feu'sl(m; Q)}
Since W(R,) < d; sl(n; Q)d;,thendeg,p(R,)f < 1.Formula(1)in 6.1. implies that

4

ot T ARG ™) @ Lt
- m,k

Ry(u,v) = u

Thus,

C2
deg,| R, — <1
egu( i v) =
the remaining statements of 1) follow from skew symmetricity.
2) Proof of this is absolutely similar to that of 1).

7. Proof of Theorem 3.

The details of this proof are of independent interest; therefore we have singled them
out in a separate section.
The following statement is obvious.

7.1. LEMMA

1) slin; Q)* = u~2sl(n; Q).

2) sl(n, Q)/u"%sl(n, Q) = sl(n, C[c]), where ¢ = 0.

3) The inner product in sl(n, Q) induces one in sl(n, C[£]); explicitly the induced
inner product is given by the formula

(%1 + Y182 + y28) = tr(x1y2 + y1X2)
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ReMARK. This trace is Berezin integral over &, see [B].

7.2. PROPOSITION. There is a natural one-to-one correspondence between subal-
gebras W < d; 'sl(n, Q)d, satisfying conditions 1)-3) of Theorem 1.1 of Lagrangian
(with respect to the inner product introduced in Lemma 7.1 subalgebras Xy in
sl(n,C[e]) such that Xw @ (Pi + ePl) = sl(n,C[e]). The subalgebra Xy
sl(n, C[€]) corresponding to W is defined to be the image of d,Wd; * < sl(n,Q) in
sl(n, C[€]).

REMARK. Since P, + ¢P; is a Lagrangian subspace in sl(n, C[¢]) (i.e., it equals its
orthogonal complement) a subalgebra X satisfying the conditions of Proposmon
7.2 is also Lagrangian.

The proof of Proposition 7.2 is based on the following observation: since
dWd, ! < sl(n,Q) and W = W* we have d,Wd, ! o u"%sl(n, Q).

7.3. Let us return to the proof of Theorem 3.1. Proposition 7.2 shows that to
a rational solution of CYBE corresponds a subalgebra in sl(n,C[c]) =
sl(n, C) ® &sl(n, C).

Set g = sl(n, C). Denote by L = g the image of Xy under the projection (e — 0) to
g, then Xy < L + eg. Since Xy is Lagrangian, Xy o (L + &g)* = eL*. Clearly,
L + eg/el* = L + el*since g/L* = L* due no nondegeneracy of the inner product
ong.

Thus, Xy is determined by a Lagrangian subalgebra Xy = L + ¢L* such that
the image of X} under the projection is onto L.

Clearly, such subalgebras are in one-to-one correspondence with 2-cocycles on
L,ie. Xy = {x + &fy(x): xe L} where f: L— L* is obtained by f(x)(y) = B(x,)}.

Hence, Xy = {x + ¢fg(x) + eX*: xeL}.

7.4. LEMMA. The following three condition are equivalent
1) Xw N (P + Py) = {0}

2) Xw + P, + ePi = sl(n; C[£])

3) L + P, = g and B is nondegenerate on LN P;.

PrOOF. Obviously, 1) < 2).

3) = 1). Let x + &fy(x)* = p + ep*. Then x = pe LN P, and fy(x) + x* = p*.
Hence, p* — x* (P, n L)* and therefore fy(x)e (P, n L)*. This, clearly, contra-
dicts to nondegeneracy of Bon LN P,.

1),2) = 3). Clearly, L + P, = g. Let B be degenerate on L n P,. This means
that there exists xe L P,, x + 0, such that fa(x)e(P.e(Pin L)* = L" + Py.
Then fy(x) = p* — x* for some x* e I}, p- € P-. So x + &fp(x) + ex* = x + ep'€
Xw N (P, + eP{). So we have proved Lemma 7.4 and Theorem 3.1
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7.5. PROOF OF COROLLARY 3.4.

LEMMA. (Proof see in [E2}). Let a Lie algebra L be a semidirect sum of a Lie
algebra R and a commutative ideal N, i.e. is determined by a triple (R, N, @), where
@: R — End(N) s a Lie algebra homomorphism. Then L is Frobenius if and only if

1) (R,N*, ¢*)islocally transitive, i.e. there exists ne N* such that {Rn} = N*.

2) R, the stationary subalgebra (Lie algebra of the stationary group) of n is
Frobenius.

Clearly, L, ,, ,is not Frobenius if ; + r, = n. In the other cases we have:

Clr) @ gl(r) D gl(n —ry — 1), (C"®C?)@C" 7"
L'. - (A1®A1)®A1),ifr1 +r,<n
vt sl —r)@gln —ry) @ gl(ry + 7, —n), (C* @ C)@C 7
(Al @ A1)®A1),ifr1 +r,<n

By Lemma 7.5 we have to find out when the stationary subalgebra of a generic
point is a Frobenius one since the local transitivity of the action is clear.

Thus, sl(ry) ® gl(r,) @ gl(k) acts on (C"* @ C"*) ® C*. Denote by (ry,r,, k) the
Lie algebra obtained with the help of this action semidirect sum of the algebra
and its module considered with the trivial bracket. Let us calculate the stationary
algebras.

1) K < ry,r,. Itis easy to see that the stationary algebra of a generic points is
isomorphic to (r; — k,r, — k,k) and (r; — k,r, — k, k) is Frobenius if and only if
sois (ry — k,ry — k,k).

2) k > ry + r,. By castling pass to the case (ri,k —r, — r,,75).

3) k> ry,ry, but k <r, + r,. By castling pass to the case
(k —rary +1r3 —kk—ry).

4) r, > k > r,. The stationary subalgebra of a generic point is isomorphic to
the following subalgebra of sl(r,):

rl—k ry k—rz
ro—k * 0 0
ry * * 0
k—r, * * *

Let for definiteness sake r; — k = k — r,. Take P} , < sl(r; + r, — k); clearly,
P} . @ gl(k — r,) acts locally transitivily on C*~"2 ® C"* *"2"* and the stationary
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subalgebra of a generic point of this action is isomorphicto (k — r,, 7, + r, —2k,r,).
5) ry — k < k — r,. By castling to the case (r; — k, 2k — r; — r,,r,) it follows
from the results of [E2] that (r,7,,1) is Frobenius algebra and P, < sl(n) is
Frobenius if and only if (k,n) = 1.
Thus, 1) of our Proposition follows by induction. 2) is similarly proved.

8. Proof of statements of section 4.

8.1. Proor oF LEMMA 4.1. Let X, and X, be Lie subalgebras of sl(n, C[¢])
recovered from (L,, B;) and (L,, B,), respectively. By Proposition 7.3 we have

X, ={a + ¢fs,(a) + ea*} and X, = {{b + ¢fy, (b) + eb*}.
Then

AdX H(X)) ={X"'aX +eX 'fy (@X + eX 'a‘X}
Let X 'aX = byeL,. Then

X fp,@X) () = (X" 'fp, (@ X, y) =
= (f5,(@XyX ") = Ba(bo,y) = f3,(bo)(»)-
Hence
X" 1fp, (@)X = f3,(bo) implies (Ad X ~1)(X,) = X,.

Accordingly, the corresponding orders W; and W, from sl(n, K) are conjugate by
T = d; ' Xd, e SL (n, C([u)).

8.2. PrROOF OF LEMMA 4.2. Let X be the set of subalgebras of the Lie algebra
N of the form (Ad g)(L,), where g € G(N). Then X is a connected complex-analytic
variety. Set

X' ={LeX:L+ P=N}.

Then X\X’ is an analytic space since it is distinguished by a system of
equations corresponding to vanishing of certain minors. Since dimg X\ X' < 2,
then X\ X’ is connected. Therefore X' is also connected.

The group G(P) acts on X". Let us show that this action is transitive. It suffices
to show that the orbit Ad G(P)- L, is open. Indeed, Ad G(L,)L, = L,, hence
AdG(P)L, = Ad(G(P)- G(L;)* L,. But L, + P = N, hence G(P)-G(L,) is an
open subset in G(N). The statement of Lemma follows from the transitivity of the
Ad G(N)-action on X.

8.3. PrOOFOF PrOPOSITION 4.2. 1) Let X, and X, be Lagrangian subalgebras
1n sl(n; C[]) corresponding to (L, B;) and (L, B). Let
b(x, y) = B;(x,y) + I([x,¥])
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Let I be given by a matrix T esl(n, C) i.e.
I(x) =tr Tx

Clearly, Ad(E + ¢T)X, = X,. By Lemma 4.2 and Proposition 7.2 there exists
Y e G(P, + ¢Py)suchthat(Ad Y)(X,) = X,. Clearly, Y can be lifted to an element
from SL (n, C[u]).

2) Let X, and X, be Lagrangian subalgebras in sl(n, C[u]), corresponding to
(L, B,) and (L, B,), respectively. Similarly to proof of Lemma 4.1 we get
(Ad X)(X;) = X,. By Lemma 4.2 there exists P + ¢éP* e G(P, + ¢Pj) such that
Ad(P + ePYH)(X,) = X,.

8.4. PrOOF OF LEMMA 4.3. For each cohomology class we have to construct
a2-cocycle Bon Lnondegenerate on L N P,. Let f be a functional on L n P, such
that B,(,*) = f([,"]) is nondegenerate.

Let f be an extension of f to L. Then for |4| » 0, Ae C, we see that B(x, y) +
Af([x,y]) is a nondegenerate 2-cocycle on LN Py from the same cohomology
class as B, as required.

PROOF OF PROPOSITION 4.3. This is an easy corollary of Lemma 4.3. Indeed, to
this Lemma there exists a solution for a given L and all such solutions are gauge
equivalent.

8.5. PROOF OF LEMMA 4.4. Let V be on L-invariant r-dimensional subspace of
C". Set

0 = {Aesln): AV <V}

Clearly, L = Q and Q + P, = sl(n). Obviously, Pi_, preserves an r-dimensional
subspace in C" and therefore there exists X € SL(n, C) such that X "'QX = P! _,.
Manifestly, P;_, + P; = sl(n). Thanks to Lemma 4.2 there exists Y € G(P;) such
that Y~ !QY = P!_,. Thus, we may assume that L = P._,. Obviously

L+ u'sl(n,Q) < sl(n,Q) n d,_,sl(n,Q)d, *,

where d, _, is defined in Proposition 2.3.
Now, Propositions 2.3 and 7.2 imply that the order Wrecovered from L must
belong to

dy 'sl(n,Q)dy ~ d; 'd,_,sl(n, Q)d, . d,,

whereas it is easy to see that d, 'd,_,sl(n,Q)d,  .d, = a(u)(d,, 'sl(n, Q)d,,) for
some polynomial o(u): C - Aut g wherem = |k + r — n|if |k + r — n| < n/2and
m=n—lk+r—n|if |k +rr—n|>n/2

8.7. PROOF OF PROPOSITION 4.4 immediately follows from Lemma 4.4.
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9. Proof of statements from section 5.

9.1. LEMMA.

1) H¥P,) = 0.

2) The subalgebra P; determines the only solution of class k in sl(n) <>
(k—r,n)=1.

ProoOF. 1) is obvious from Hochschild-Serre spectral sequence, cf. [F]. 2)
follows from 1) and Propositions 3.4 and 4.3.

9.2. PROOF OF PROPOSITION 5.2. 1) Solutions for sl(2). There is only one class
which can provide with nonconstant solutions According to Proposition 4.4
Lcannot be solvable so the only possible case is L = sl(2). Proposition 4.3 implies
that there is precisely one solution corresponding to L = sl(2).

2) Solutions for sl(3). Proposition 2.3 and Theorem 2.4 imply that noncon-
stant solution is gauge equivalent to a solution of class 1. Theorem 5.2 and
Lemma 4.3 imply that the only solution with an irreducible L is for class 1 the one
with L = sl(3).

All other L’s are reducible. Proposition 4.4 implies that the semisimple part of
L must be nontrivial; furthermore Lemma 4.4, implies that L should have an
invariant 1-dimensional subspace in C* and can not have a 2-dimensional
invariant subspace.

Itisclear (with Lemma 9.1 being taken in account) that such an Lis isomorphic
either to P or to the semidirect sum sl(2) @ C? where C? is the space of the
identity (standard) representation with the trivial bracket. The latter case, how-
ever, is excluded by the following Lemma.

LeEMMA. If L satisfies conditions (*) from Theorem 3.1 then dimL =
k(n — k)mod 2.
Thus, there are two nontrivial solutions for sl(3).

3) Solutions for sl(4). Theorem 5.2 gives the following solutions of class
1 corresponding to an irreducible subalgebra:

a) L = sl(4); b) L = sl(2) and the embedding of sl(2) into sl(4) is the principal
one (R(34,))

Looking at Tables we see that there are no solutions of class 2 corresponding to
anirreducible subalgebra. Lemma 4.4 implies that all nonconstant solutions are
gauge equivalent to those of class 1 and moreover the semisimple part of L is
nontrivial. The same Lemma together with Theorem 2.4 implies that L can only
preserve a 1- or 2-dimensional subspace. Let us consider, separately, the arising
possibilities

A) Lpreserves a 1-dimensional subspace and does not preserve 2-dimensional
subspaces. By the same arguments as in the proof of Lemma 4.4 we may assume



76 A. STOLIN

that L c P{. Lemma 9.2 shows that dim L must be odd. So there are two
possibilities:

a) L = sl(3)  C? (here & stands for the semidirect sum; the ideal to the right)
with C3 being the standard sl(3)-module, i.e. C3 = R(A,). The Hochschild-Serre
spectral sequence shows that H%(L) = O and P; n Lis a Frobenius algebra. Thus,
there is exactly one solution corresponding to this case.

b) Lis the algebra of matrices

t a b 0
—a t c 0 -
b —c ¢ 0 ab,ct *eC
* * x _ 3

As follows immediately from Hochschied-Serre spectral sequence, H3(L) = 0.

Let us show that P; n Lis a Frobenius Lie algebra. Indeed, direct calculations
show that P, N Lis 4-dimensional Lie algebra isomorphic to N @ C2, where N is
an abelian 2-dimensional Lie algebra locally transitively acting on (C2)*. From
the dimension considerations the stationary subalgebra is 0 and therefore by
Lemma 1 from [E2] P; n L is a Frobenius algebra. Thus there, is a solution
corresponding to this case.

B) Lpreserves a 2-dimensional subspace and does not preserve 1-dimensional
subspaces.

As earlier we may assume that L — P;. Let us list all the possibilities.

1) Example 1 from Table 1 for n = m = 2. Then L = sl(2), H*(L) = 0 and by
Lemma 5.1.2 we get an only solution.

2) L = gl(2) @ sl(2), HX(L) = 0 and by Proposition 3.4 we get an only solution.

3) L = P and as above this subalgebra determines an only solution.

A 0 ‘]
4 L= 0 «x r J: Ae€gl(2) Then as follows from Hochschild-
— At
—-x 0

Serre spectral sequence, H%(L) = 0 and L @ gl(1) acts on C* locally transitively
with a generic point of the form, say

0
1
L
0

The stationary subalgebra of this vector is a 2-dimensional noncommutative Lie
algebra. As is known it is a Frobenius one. Thus, we have an only solution.
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A 0
_
5) L= Yy x :Aegl(2) ThenL + P, = sl(4)and H*(L) = 0 by
— A‘
X v

usual appellation to Hochschild-Serre spectral sequence. Clearly P, nL is
Frobenius since it is isomorphic to the Lie algebra of matrices

a b 0 0
0 d 0 0
0 0 —a 0
0 v —-b —d

Let Ae L~ P, be a matrix as above. The form f(4) = b + v determines a non-
degenerate bilinear form on L P;. Therefore in this case we have an only
solution.

A 0
6) L= : Aesl(2), Begl(2)
B —A
Then L + P, = sl(4) and H*}(L) = 0.

a b 00
0 —a 00
Loki="1y x —a o
0 y —b a

Since H*L) =0 this algebra should be a Frobenius one. However,
LAP, >~ N& C?, where

a b 00 0000
0 —a 00 ,_ (0000
N“oo—ao’C‘OxOO
0 0 —b a 0y 00

N does not act locally transitively on C? but N acts locally transitively on (CH*.
Therefore by Lemma 1 from [E2] L n P, is Frobenius. Hence, we have a solution
in this case.

C) L preserves a 1-dimensional subspace and a 2-dimensional subspace.
These subspces are not transversal because L does not preserve 3-dimensional
subspaces. Thus, L preserves (1,2)-flag.
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Lc < sl(4)

* ¥ X *
* * ¥
* * O O
* O O O

As above, the semisimple part of L must be nontrivial and we can assume that
L > a where

a b 00
0= ¢c —a 0 0
“ 10 0 0O
0 0 0O
Since (a, L] = Lwe have L = a + B + C where
[0 0 0 07
0 00O
B |, . 0 0 =D
%* %* 0 0
[0 0 0 0
0 00O
Cc 00 * 0 =D
0 0 * *

[a,B] < B. If B = O then there is a 3-dimensional L-invariant subspace. If B + 0
and B % D then V + BV is a 3-dimensional L-invariant subspace where V is
generated by the first two vectors of our basis. Hence, B = D. Since dim L must be
odd we have only the following possibilities:

fa b 0 0
¢c —a 0 0
h L=, y 00
lz u 00
fa b 0 0
cd 00
2) L= Xy p 0 ta+d+p+qg=0
lz u 0 ¢g
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a b 00
cd 00
3) L= xy p 0 ta+d+2p=0
Lz u 0 ¢
(a b 0 0
o c d O 0 . _
4) L=Ci= x y ip 0 ra+d+p+(A-1)p=0
Lz u g (A-1p

1) Lzsl2)®(C*@ C2)

Let N denote a noncommutative 2-dimensional algebra. Then P, n L =~
N & C? and N does not act locally transitively on (C2)*. Thus P; n L is not
Frobenius algebra but direct calculations show that H?(P; n L) = 0. Thus,
Py N L is not quasi-Frobenius algebra and there are no solutions in this case.

2) As follows from Hochschild-Serre spectral sequence, H2(L) = C. As above
L P, is Frobenius algebra. Thus, we have solutions in this case. The quotient
group of the normalizer of L modulo the inner automorphisms is Z/2Z. The
action of Z/2Z is not trivial and an element of H(L) is important up to a sign.

3) Inthis case H%(L) = C. dim L/[L, L] = 2 and a non-trivial skew-symmetric
form on L/[L, L] generates H*(L). P, n L is Frobenius algebra as above. The
quotient group of the normalizer of L modulo the inner automorphisms is
isomorphic to C*. Thus, we have two solutions.

4) Let N denote a noncommutative 2-dimensional algebra P, nL =
(N® N)® C2. N acts on (C?)* locally transitively which is evident and the
stationary algebra of a generic point is isomorphic to N iff 1 # 3/4. Let us
consider H(L). As follows from Hochschild-Serre spectral sequence, H*(L) can
be generated only by HO(K, A? {x*, y*,z*,u*}) where K is subalgebrain L = (o
such that x = y = z = u = 0. Calculations show that x* A y* is K-invariant if
A = 1/4 and other elements are not K-invariant. Thus, H*(L) = 0if A & 1/4 and
Cif A = 1/4. Therefore there are no solutions for A = 3/4, one solution for each
4 % 3/4,1/4 and two solutions if A = 1/4 (in this case the action of the normalizer
of L on H%(L) has two orbits).
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