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Introduction

A fundamental result in the theory of convex functions [1, p. 60] states that any
locally bounded above convex function on an open convex set is continuous.
Already the closed interval [0, 1] shows that this conclusion is not necessarily
valid if the convex set is not open. However, it is well-known [8, p. 84] that the
interval [0, 1], and more generally any closed convex polytope P, has the
property that any locally bounded above convex function on P is upper
semi-continuous. We came across convex sets with this property in the following
way: Let K be any non-empty convex set in a locally convex topological vector
space, let e be a point outside the linear subspace generated by the closure of K, let
K* be the convex envelope of K and e. Choose x, € K and let I1(+, x,) be the affine
projection from K* onto K which sends e to x,. We ask: Wheniis I1(-, x,) an open
map whenever x, € K? Our answer is that this is true if and only if K has the
property that any locally bounded above convex function on K is upper
semi-continuous. A convex set with this property will be called an excellent
convex set. Note, that by the preceding, every open convex set and every closed
convex polytope is an excellent set. In fact, we shall prove in section 1 that the
closed convex polytopes are the only compact convex sets that are excellent.
There is a geometric characterization of this property: A convex set K is excellent
ifand only if for any x, € K and any homothetie h,(-, x,) with center x, and factor
A€ 0, 1), the image h,(K, x,) of K is a neighborhood of x, in K (Theorem 1.13).
We discovered these two characterizations of excellent convex sets with the help
of a certain function A(', x,) defined on K by
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A(x,x0) = sup {A€[0,1): x — Axoe(1 — )K}.

This function is concave, and it turns out that the affine projection II(-, xo)
considered above is open if and only if A(+, x() is lower semi-continuous. Further-
more, K is an excellent convex set if and only if A(-, x) is lower semi-continuous
at xo whenever x, € K. This last characterization is useful. Applying it, we show
that the intersection and the cartesian product of two excellent convex sets are
convex sets of the same kind. From this we get that any open (in relative
topology) convex subset of an excellent convex set again is an excellent set. The
function A(-, x,) has another noteworthy property: If K is closed, then A(:, x,) is
upper semi-continuous. This has as a consequence, that if K is closed, then K isan
excellent set if and only if any locally bounded above and lower semi-continuous
convex function on K is continuous (Theorem 1.19). This equivalence needs,
however, not to be true if K is not closed. We exhibit a three-dimensional
example to this effect. The closed unit balls of I] and I, are polytopes, and hence
excellent sets. In the infinite dimensional case, we show that the closed unit ball of
Co is an excellent convex set, whereas the closed unit ball of [, is not. In fact, if the
closed unit ball of a normed space is an excellent set, then the closed unit ball of
any finite dimensional subspace has to be a polytope. A Banach space with this
property is by Klee [5] called a polyhedral Banach space. It is an open problem if
conversely the closed unit ball of a polyhedral Banach space is an excellent set.

It follows from the fundamental result on convex functions mentioned above,
that the shape of a convex set at non-interior points is decisive in securing
continuity of an arbitrary given convex function. To the best of our knowledge,
the most accurate condition in this respect is to be found in [ 1, Chap, §2, Ex. 29].
Described a bit vaguely, it says that a bounded above convex function admits
a limit at a “conic” point. Motivated by this result, we shall say that a convex set
K is conic at a non-interior point x, if there are an open, punctured convex cone
C with x, as vertex, and an open convex neighborhood V of xo suchthat VN C =
V nint K. We show in section 2 that if K is closed and has a non-empty interior,
then K is an excellent set if and only if K is conic at every non-interior point.

In section 3 we study polyhedral convex sets. By definition, these are convex
sets that are the intersection of an affine manifold with the intersection of a finite
number of closed half spaces. Our main result in this section is that a polyhedral
convex set is conic at every non-interior point.

The subject matter in section 4 is to investigate when a closed locally compact
convex set K will be an excellent set. We show, for instance, that K will have this
property if and only if K is a strictly (in a topological sense) increasing denumer-
able union of polyhedral convex sets. (Theorem 4.3). As a corollary, we get as an
extension of a classical theorem on topological vector spaces, that every closed
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locally compact excellent convex set is finite dimensional. Another corollary is
that on such a set every convex function is upper semi-continuous. At this point it
should be remarked that it follows from [4, Prop. 5.11] and Theorem 4.3 in the
present paper, that if K is a finite dimensional closed convex set, then K is
excellent if and only if K is what Klee calls boundedly polyhedral, which means
that the intersection of K with any polytope is again a polytope. This result is also
a consequence of [2, Theorem 2].

In section 5 we take up some aspects of the following problem: If K is an
excellent convex set and Q is another convex set, when is it true that an affine
continuous surjection ¢ : K — @ is an open map? Our main tool in investigating
this problem is a theorem essentially found in [6, v. 2, p. 63]. It says that if K and
Q are metric spaces, then a correspondence ¢: Q — 2¥ is lower semi-continuous
if and only if the function

0:K x @+ [0,00):5(x,q) = dist(x, p(q))

is upper semi-continuous. If we assume that K is contained in a normed vector
space and that ¢ is convex (see (5.2)), we can show that ¢ is a convex function.
Now, if K and Q are excellent sets, it was mentioned above that K x Q is an
excellent set as well. Hence, in this case J is upper semi-continuous if and only
if 0 is locally bounded above. This gives a criterion for ¢ to be lower semi-
continuous. In particular, we get a criterion for ¢ to be open. A consequence of
this is that ¢ is always open if K is a bounded set (and K and Q are excellent sets).
The same is true if we assume that K and Q are closed locally excellent sets.
Finally, we show with the same method, that if K is an excellent set, then K is
a stable convex set [7], which means that the middle point map (a, b) — i(a + b)
is open.

Terminology and notations. A convex setis always assumed to be a non-empty
subset of a real locally convex Hausdorff topological vector space, and equipped
with the induced topology. More specifically, we let E and F denote real locally
convex Hausdorff topological vector spaces and we shall let K « Eand Q = F
denote non-empty convex subsets. An affine manifold in E is a translate of a linear
subspace. If a,be E, then [a,b] denotes the closed line segment and <{a,b) the
open line segment between a and b. If A and B are subsets of a topological space,
and B c A, then int, B denotes the interior of B in the relative topology of A.
Furthermore, if a € 4, then ¥ ,(a) denotes the family of all neighborhoods of a in
the relative topology of A. Note that a convex function is always assumed to take
real values. A convex combination is a finite sum of the form a = " 4;x;, where
Aty... A, 20and Y 4; = 1. Finally, a map ¢:K +— Q is called affine provided
o(Ax + (1 — A)x") = Ap(x) + (1 — Y)o(x') whenever x,x € K and A€[0, 1].
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1. The utility of the function A.

We establish in the present section the general results on excellent convex sets
described in the introduction.

Let K < E be a non-empty convex set, and let e be a point outside the linear
subspace generated by the closure of K in E. If necessary, we can consider E as
embedded in E x R, and choose ¢ = (0,1)e E x R. We denote with K* the
convex envelope of K and e. Thus

(1.1 K*={le+ (1 — A)x:1€[0,1], xe K}

Notice, that the number 1 in the convex combination y = Ae + (1 — A)x, where
x €K, is uniquely determined. In fact, if we more generally consider a convex
combination of the form

(1.2) a=1loe+ Y 4;xj,
1

where x4, .. ., x, belong to the closure of K, an easy calculation shows that if A, is
not uniquely determined, then e belongs to the affine manifold generated by the
closure of K, thereby contradicting the choice of e.

We now fix xo€K, and denote with II(-,x,), or for short IT, the affine
projection from K* to K which maps e into x, and fixes every element of K. In
other words

(1.3) II=1(,x0): K* = K:2e + (1 — )x — x + A(xo — X).

Let a be any element in K. We define

(1.9) I(a) = {A€[0,1]:a — Axpe(l — H)K}

Note that always 0 e I(a), and that 1€ I(a) if and only if a = x,.
LEMMA 1.1. Let ae K. Then

(1.5) I~ '(a) = a + I(a)(e — xo).

PrOOF. Let y = Ae + (1 — A)xeIT~(a). Hence a = I1(y) = Axo + (1 — A)x.
Since x € K, we get A € I(a). Furthermore, since (1 — A)x = a — Ax,, it follows that

y=4le+a—Axg=a+ Me — xo)ea + I(a)e — xo).

Assume conversely that AeI(a) and put y = a + A(e — x,). Then a — Ax, =
(1 — A)x, where xe K. Hence y = a — Axo + de = e + (1 — A)x. This shows
that ye K*, and since

Hy)=Axg+ (1 —-Ax=Axg+a—Axo=a
the relation (1.5) is established.
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LEMMA 1.2. LetaeK. Ifa = xq, then I(a) = [0,1],and ifa % x,, then I(a) is an
interval contained in[0, 1>. Furthermore, if K is closed, then I(a) is closed relative to

[o,1>.

PrOOF. The first statement follows immediately from the definition of I(a).

Assume therefore a # x,. Then 1¢1(a), and hence I(a) = [0,1). Consider the
map

@:[0,1> = E:@(4) = a + Ale — xo).

Obviously, ¢ is an affine injection. Furthermore, by Lemma 1.1, ¢(I(a)) =
IT~Y(a). Since II is affine, it follows that ¢(I(a)) is a convex set. Hence
I(a) = ¢ " (¢(I(a))) is a convex subset of [0,1), and is therefore an interval.
Assume now that K is closed. Let AeI(a) n[0,1). Hence A = lim 4,, where
{4,} < I(a). It follows that for every neN

a— A'nxO = (1 - 'ln)xm

where x,eK. Since A<1, we get x,=(1-—24)a—4,x,)—
(1 — A)~Ya — Axc), and the limit x belongs to K. Therefore

a—Aixg=(1-2Axe(l — K,
and thus A€ I(a).
DEFINITION 1.3. Let xo € K. The function Ag(-, x) is defined on K by
(1.6) Agla, xo) = sup {A:1€l(a)}; aeKk,

where I(a) is given by (1.4). The element x, is said to be the center of Ak(-, x,). If
context makes the meaning clear, we shall use the notation A(-, x,), or even the
notation A for this function.

We remark that it is not hard to show that A(-, x,)is an affine function on every
line segment [x,,a] = K.
Note, that since 0 € I(a) and since I(a) is an interval,

(1.7) I(a) = [0, A(@)] < I{a).
LEMMA 1.4. The function A is concave.

ProoF. Let ay,a,€K and let u,,u,€[0,1] with y; + u, = 1. We have to
prove Y u;A(a;) £ A} p;a)). Letje {1,2}. Choose 1;€[0, A(a))) (if A(a;) = O we
choose 4; = 0). It is sufficient to prove

(1.8) Zﬂjlj = A(Zl"jaj)'

It follows from (1.7) that A;€ I(a;). Hence there is x;€ K such that a; = 4;x, +
(1 — 4;)x;. Therefore
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(1.9) Zﬂjaj = (Zﬂjj.j)xo + Zﬂj(l — ij)xj
Note, that since 4,,4, < 1,

12l —24)=1—3 pd; >0.

Consequently, if we let A=) Aju;, then the element x defined by x =
(1 —=A"'Y uf1 — Aj)x; belongs to K. Since (1.9) can be written
Y pja; = Axo + (1 — A)x, we conclude that

2 Ay = Al pa;).
By the definition of A, this verifies the inequality (1.8).

LEMMA 1.5. Assume that the convex set K is closed. Then the function A is upper
semi-continuous.

ProOOF. We have to prove that for any aeR, the set A~ !([a, 00)) is closed.
Obviously, we need only consider the case 0 < a < 1. Let a belong to the closure
of the set 4~ !([«, c0)). Hence there is a net {a;}, converging to a and satisfying
A(@;)) =2 a, i€l Choose0 < f < a. By (1.7) we get e I(a;). Hence there is x; € K
such that a; = fx, + (1 — f)x;. It follows that

x; = (1 = B~ '@ — Bxo) > (1 — B)~(a — Bxo),

and where the limit belongs to K. Therefore a — fix, €(1 — B)K. This means that
Bel(a). Hence f < A(a). Since < a was arbitrarily chosen, we get o < A(a), as
desired.

The following example shows that the conclusion of Lemma 1.5 need not be
valid if K is not a closed set.

ExaMPLE 1.6. Let K = R? be the closed unit square [0, 1]2, except that we
have removed the interval <},1] x {0}. Choose x, = (0,0) and let A = A(:, x,).

Then A((3,0)) = 0, whereas
. 11 1
ma(34)-3

Hence A is not upper semi-continuous at (3, 0).

In the proof of the next proposition, we shall make use of the following
well-known fact (see e.g. [6, vol. 1, p. 117]):

If X and Y are topological spaces, and f: X +— Yis a given map, then f is open
if and only if for any subset B of Y

(1.10) ' B)=f7(B).
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PROPOSITION 1.7. Let xy € K. Then the affine projection
I =1T1I(,x¢): K* — K
is open if and only if the function
A= A(,x0): K — [0,1]
is lower semi-continuous.

PROOF. Assume that IT is open. We have to show that the inverse image
A1 ({—o0,a])is closed whenever a € [0, 1]. Let a belong to the closure of this set.
Applying Lemma 1.1 and (1.10), we get

(1.11) a + I(a)e — xo) = " Y(a) = [T~ Y(A™1({ — 00, ])).
We claim that
(1.12) I YA '({—0,a]) € A Y —00,a]) + [0,a](e — xo).

In fact, let xe A~ !({—o0,a]). Then A(x) £ a, and therefore I(x) = [0,a]. By
Lemma 1.1 this implies

M7 (x) = x + [0,a](e — xo) = A~ ({—00,a]) + [0,x](e — Xo).

This proves (1.12). Let A€ I(a). By (1.11) and (1.12) there is a net {y;}; converging
to a + Ale — xo) and where each y; is of the form

(1.13) Vi = X; + Aile — Xo),

where 4;€[0, a], x;€ K and A(x;) £ a. By compactness of [0, ] we can assume, if
necessary by considering a subnet, that the limit lim 4; = A’ € [0, «] exists. Since
x; = yi(e — x,), it follows that x = lim x; exists, and that xe K. Applying (1.13)
we get

a+ AMe— xq) =limy; = x + A(e — xo)
By our choice of e, we conclude that A = 1'e[0,«]. Hence
A(a) =sup{i:iel(a)} S a

This proves that A~ }({ — o0, «]) is closed.
We now assume that A is lower semi-continuous. Let B < K be given. Accord-
ing to (1.10), the map IT will be open if we can show that

(1.14) M-1(B) = T-(B).
Let ae B. We claim that
(1.15) a + I(a)e — xo) = IT" (B).
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Infact, let A € I(a). Assume first that A = 0. Let {a;}, be a net on B converging to a.
Hence {a;}; is contained in IT~'(B), and so a belongs to the closure of this set.
Assume next that 4 > 0. Hence

(1.16) 0 < 1 £ A(a) £ liminf A(x) £ .

Choose ¢€<0, 1). By definition of « there is a neighborhood U(e) of a such that
(1.17) O<il—eSa—e<Ax); xeU(e).

Let U be any neighborhood of a and choose xye U n U(g) n B. Applying (1.17)
we get A — eeI(xy), and hence xy + (A — &)(e — xo)e T~ Y(xy) = I~ Y(B). Since
a = lim xy, we conclude that a + (A — g)(e — xo)e T |(B). Letting ¢ — 0, we
obtain the inclusion (1.15). Applying Lemma 1.1, we have therefore proved
(1.14).

DEerFINITION 1.8. Let 4 > Oand x, € K. We define the map h,(+, x,) on the affine
manifold generated by K by the formula

hj(x,x0) = Ax + (1 — A)xo.

We shall call this map the homothetie with center x, and coefficient A.
Observe that if Ae (0, 1], then

(1.18) h(K, xo) < K.

LEMMA 1.9. The function A(+, x,) is continuous at x if and only if the homothetic
image h,(K, x,) of K is a neighborhood of x, in K whenever 1€ {0,1).

PrOOF. By the definition of A(-, x,), we get that this function is continuous at
xoif and only iffor any A € {0, 1) thereis a neighborhood U of x, such that A e I(x)
whenever xe U. Putting u = (1 — 1)~ !, we observe that 1€ I(x) if and only if
h,(x,x0)€ K. Hence the property *A€(x) whenever x € U’ is true if and only if
h,(U,x,) = K. But this inclusion is valid ifand only if U = h, _ ;(h,(U, xo), x0) <
hy - A(K, xo).

ComMmENT 1.10. Since A(, x,) takes values in [0, 1], we have

(1.14) lim sup A(x, xo) £ 1 = A(xq, Xo).

X—*X0

Hence A(:, x,) is always upper semi-continuous at x,. Therefore Lemma 1.9
expresses exactly when A(-, x,) is lower semi-continuous at x,.

We repeat from the introduction the definition of the main concept of the
present paper.
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DEFINITION 1.11. The non-empty convex set K < E is said to be excellent
provided every locally bounded above convex function on K is upper semi-
continuous.

It was remarked in the introduction that every non-empty open convex set will

be excellent. In particular, the locally convex vector space E itself is an excellent
convex set.

The property of being an excellent convex set is preserved by open continuous
affine maps. In fact, we have the following

PROPOSITION 1.12. Let K and Q be convex sets, let ¢:K +— Q be an open
continuous affine surjection. If K is an excellent set, then so is Q.

PROOF. Let g be alocally bounded above convex function on Q. Choose a € R.
We have to prove that g~ *({ — o0, a))is an open setin Q. Put f = go ¢. Then fis
alocally bounded above convex function on K. Hence f ~'({ — o0, a)) is an open
set in K. Since ¢ is a surjection, we get o(f ~1({ — 0, a))) = g~ ({— 0, a)) and
since, by assumption, the left hand side of this equation is open in Q, we are
through.

THEOREM 1.13. Let K be a non-empty convex set. Then the following four:
properties are equivalent.
(i) K is an excellent set.
(ii) The function A(-,x,) is lower semi-continuous whenever xq € K.
(iti) The function A(:, x,) is lower semi-continuous at x, whenever x,€ K.
(iv) The homothetic image h,(K, x,) of K is a neighborhood of xo in K whenever
xo€ K and A€ (0,1).

For the proof we need the following

LemMMA 1.14. Let K, and K, be convex sets with a non-empty intersection
KiNnK,. Let x,oe Ky " K,. Then

(1.20) Ag, i, (X, Xo) = min {Ag (x, Xo), Ag,(x, X0)}; x€ Ky N K.

ProOF. Let xe K, n K. Since (1.20) is trivially true when x = x,, we shall
assume x + x,. Let

I(x) = {Ae[0,1):x — Axpe(l — )K,; " K,)}
and
Iix) = {A€[0,1):x — Axoe(1 — HK;}; j=1,2.
Hence

(1.21) I(x) = I(x) " L(x).
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By definition A, ~, (X, Xo) = sup {4: A€ I(x)} and Ak (x, Xo) = sup {1: 1€ [;(x)};
j = 1,2. Hence we get from (1.21)
0= Ax,nxl(X, Xo) < min {Axl(X, Xo), sz(x, xo)}~

Assume that the right hand side is positive, and let 4 be a positive number less
than this minimum. By (1.21) we get 1€l (x) n I,(x) = I(x), and therefore
A £ Ak, nk,(%, Xo). It follows that

min {AK|(x9 xO)’ AK;(xa xO)} .—<:. AK‘nKz(x, xO)'
We have thus proved (1.20).

PROOF OF THEOREM 1.13. (i) = (ii). This is clear, since by Lemma 1.4, A(-, x,)
is a concave function taking values in [0, 1]. (ii) = (iii). Obvious. (iv) <> (iii). This
follows from Lemma 1.9 and Comment 1.10. (iii) = (i). Let f be a locally
bounded above convex function on K. Choose x, €K, and let V be an open
convex neighborhood of x, in E such that f is bounded above on K n V, say

(1.22) f(x)£d<o0; xeKnV.

Since limsup f(x) = limsup f(x), we have to prove that

x—+x0,xeKnV x-+x0,xeK

(1.23) limsup f(x) = f(xo)

x—+x0,xeKnV

Let xe KN V. By Lemma 1.14
(1.24) Agv(X,X0) = min {Ag(x, xo), Ay(x, Xo)}.

Since V is open, Ay (-, xo) is continuous. Furthermore, since we assume A(*, Xo)
to be lower semi-continuous at x,, we get from (1.19) and (1.24)

(1.25) lim Agnv (X, Xo) = Agqv(xo,Xo) = 1.

x—=x0,xeKnV

Therefore, if 1€<0,1), there is a neighborhood U of x, in E such that 1 <
Agav(x,x0)for xe K n V n U. This implies thatif xe K n ¥V n U, then there is an
x*e K n V such that x = Ax, + (1 — A)x*. By applying (1.22), we therefore get

Sx) = A (x0) + (1 — ) f(x*) £ Af (x0) + (1 — A)é.

Hence

limsup f(x) < Af(xo) + (1 — A)o.

x—-x0,xeKnV

Letting A — 1, we obtain (1.23).



UPPER SEMI-CONTINUITY OF CONVEX FUNCTIONS . .. 53
COROLLARY 1. A non-empty convex set K is excellent if and only if the projection
map I1(-, x,): K* — K is open whenever x, € K.
PrOOF. An immediate consequence of Proposition 1.7 and Theorem 1.13(ii).

We denote with ext K the set of extreme points of K. In addition, we denote with
ext (K, x,) the set of all points x € K that are extremal relative to x,, which means
that x is not an interior point of any segment [a, xo] < K. Thus

ext(K. xo) = {xeK:pux + (1 — u)xo ¢ K whenever pu > 1}
We note that
(1.26) ext(K, xo) = {xe K: A(x, xo) = 0}

COROLLARY 2. If K is an excellent set, then ext K is a subset of K without
accumulation points, and ext(K, x,) is closed relative to K whenever x,€ K.

PRrOOF. If xo€ K is an accumulation point of ext K, then there is a net {a;}, in
ext K\{xo} converging to x,. Since A(a;,xo) =0 whenever iel, we get
0 = liminf A(x, x¢) < 1 = A(xq,X,). Thus, the property (ii) of Theorem 1.13 is

X—*Xx0

contradicted. Furthermore, since for any x,€ K
{xeK:A(x,x¢) < 0} = {xeK:A(x,x,) = 0},
it follows from (1.26) and Theorem 1.13(ii) that ext(K, x,) is closed for any x, € K.
COROLLARY 3. If K is an excellent compact convex set, then K is a polytope.

ProOF. The set ext K has to be finite, and hence, by the Krein-Milman
theorem, K is a polytope.

The proof of the next lemma is very simular to the proof of Lemma 1.14, and is
therefore omitted.

LEMMA 1.15. Assume that K, and K, are non-empty convex sets. If
(aj,a;)e Ky x K, and if the center of A, xx, is (ay,a,) and the center of Ay is a;
where j = 1,2, then

Ag, xx,((X1,%2)) = min {Ag (x,), Ak,(x2)}; (x1,x2) €Ky x K.

PROPOSITION 1.16. Let K, = E and K, = F be two excellent convex sets. Then
the cartesian product K, x K, is an excellent set. Furthermore, if E = F and the
intersection Ky n K, is non-empty, then this set is an excellent set as well.

Proor. This is an immediate consequence of Lemma 1.14, Lemma 1.15 and
Theorem 1.13(ii).
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ProrosITION 1.17. If K < E is an excellent set, and if P = K is an open (in
relative topology) non-empty convex subset of K, then P is an excellent set.

PRrOOF. Let f be a locally bounded above convex function on P,and letae P.
It will suffice to show that there is an open convex neighborhood V of ain E such
that P n V is an excellent set. Because, in that case

limsup f(x) = limsup f(x) £ f(a).

x—a,xeP x—a,xePnV
By assumption, there is an open O in E such that P = O n K. Hence we can find
an open convex neighborhood V of a in E such that V = 0. Consequently
VAK=VnOnK =Vn P. By Proposition 1.16, the set V' n K is excellent.
Hence V N P is excellent, as required.

Let a,be E with a + b be given. We denote with s(a, b) the open ray starting in
aand passing through b. Hence s(a, b) = {a + u(b — a): pn > 0}. Furthermore, let
B < E be a non-empty convex set. We denote with cone(a, B) the cone generated
by B and with vertex a. Hence, by definition

cone(a, B) = u{a + u(B — a): u > 0}.

We note that cone(a, B) is a convex cone containing B, and that cone(a, B) is
punctured at a if and only if a ¢ B. In addition, we remark that if 4 is an affine
manifold containing a and B, then cone (a, B) is open relative to A provided B has
this property.

LEmMMA 1.18. Let K # @ be a closed convex set, let acK and let V < E be
a convex set with 0€ V. Assume that (a + V) next(K,a) = 0. If Ae {0, 1), then
(1.27) (a+ AV)nK < hy(K,a).

Furthermore, if A is the affine manifold generated by K and int,K + 0, and if
ae K\int, K, then

(1.28) (a + V)cone(a,int,K) < int K.

ProOF. We start with the following observation: If b is an element outside
a + V, then

(1.29) (a+ V)ns(a,b) < {a,b).

In fact, let ye(a + V) s(a,b). Hence a + v = a + u(b — a), where ve V and
u>0.Thereforeb=a+ pu 'o.lfu ' < L, thenpy o =(1—u )0 + pu tveV.
Since bé¢a + V, we conclude that u~' > 1. Hence 0 <pu <1, and thus
y=a+ ub — a)e{a,b).

To prove (1.27), let xe(a + AV) n K. We can and shall assume x # a. Hence



UPPER SEMI-CONTINUITY OF CONVEX FUNCTIONS ... 55

there exists ve V\{0} such that x =a + Av = hy(a + v,a). We are therefore
through if we can show that a + ve K. Now

(1.30) a+v=a+ A Yx—a)e(@a+ V)nsa,x).

Consequently, we need only consider the case s(a, x) ¢ K. It then follows, since
K is closed and x € K, that s(a, x) n K = <a, b], where be ext(K, a). In particular
s(a, x) = s(a,b), and thus we get from (1.30) that a + ve(a + V) ns(a,b). By
hypothesis, b¢a + V. Applying (1.29), it follows that a + ve (a,b) < K.

We shall now prove (1.28). Let xe(a + V) cone(a,int, K). Hence a + v =
x =a + u(xo — a), where ve V,xo€ int, K and u > 0. Since adint, K, we get
Xo *+ a. Thus x es(a, xy). Now, if s(a,xo) = K, then in fact s(a, x,) < int, K,
because xpeint, K. Assume therefore s(a,x,) ¢ K. As above, we get
s(a,xo) N K = {a,b], where beext(K, a). Applying (1.29), it follows that

x€e(a+ V)ns(a,xo) =(a + V)ns(a,b) = {a,b).

On the other hand x, € s(a, x¢) N int, K = {a,b] nint, K. Therefore, xe {a,b) =
int, K.

THEOREM 1.19. Let K # @ be closed and convex. Then the following five proper-

ties are equivalent.
(i) K is an excellent set.

(ii) Every locally bounded above and lower semi-continuous convex function on
K is continuous.

(i) The function A(-,x,) is continuous whenever xq,€ K.

(iv) The set ext (K, x;) is closed whenever xy€ K.

(v) If xo€K, then xq ¢ext (K, xo).

ProOF. It is an immediate consequence of Lemma 1.5 and Theorem 1.13 that
the first three properties are equivalent. Furthermore, applying Corollary 2 of
Theorem 1.13, we get that (i) implies (iv). And since x, is not a member of
ext (K, x), it is trivial that (v) follows from (iv). Finally, applying Lemma 1.18, we
get that (v) implies that h,(K, x,) is a neighborhood of x, in K whenever x,€ K,
and hence, by Theorem 1.13, the property (i) is true.

The following example shows that if K is not closed, then the property (iv) of
Theorem 1.19 does not necessarily imply the property (i) of that theorem.

ExaMPLE 1.20. Let K be the open unit disc in the plane and with the point

= (1,0)added. If xo € K\ {a}, thenext (K, x,) = {a},and since ext (K, a) = 0, the
property (iv) of Theorem 1.19 is true. The set K is, however, not excellent.
Consider for instance h,5(K,a) = K + }a. This set is the open disc with radius
+and center $a and added the point a. Hence this set is not a neighborhood of ain
K. By Theorem 1.13, it follows that K is not an excellent set.
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We shall not exhibit a 3-dimensional example to show that if K is not closed,
then the property (ii) of Theorem 1.19 does not necessarily imply that K is an
excellent set.

EXAMPLE 1.21. Let K consist of all the points (x, y, z) of the unit cube [0, 1]3,
except that the “font face” 1 x [0, 1] only contains the points in the closed disc
with center (1,0,3) and radius 4, that is points of the form (1, y, z) where

y=rcos<p,z=%+%rsin(p; O_S_rgé, ——125§<p§%.
K is convex, and we note that any point of the form (1,4 cos ¢, % + }sin ) is an
extreme point of K Hence these points are accumulation points of ext K, and
therefore, by Corollary 2 of Theorem 1.13, K is not excellent. However, we shall
show in the next section, as a consequence of a rather general result, that K is
“conic at non-interior points”, and therefore, as we shall show, satisfies the
property (ii) of Theorem 1.19.

The next lemma will be of use in section 4.

LEMMA 1.22. Let K = E be convex and let M < E be an affine manifold. If the
set ext(K n M) admits an accumulation point xo€ K N M, then A(:, x,) is discon-
tinuous at x.

PrOOF. Let aeext(K n M)\{x,}. We are through if we can show that
A(a,xo) = 0. Let A€[0,1) and assume that a — Ax, = (1 — A)x, where xe K.
Then x + x,, and since a, xo € M it follows that xe K n M. Therefore, A = 0, and
hence A(a, x¢) = 0.

PROPOSITION 1.23. The closed unit ball of ¢, is an excellent convex set.
PROOF. Let K be the closed unit ball of cy. Hence
K ={a = (x,):lima, =0 and |a| <1}

where ||a| = ||(a,)|| = sup {|a,|:ne N}. According to Theorem 1.13, we have to
provethatifb = (8,)e K and A € (0, 1), then the homothetic image h;(K, b) of K is
a neigborhood of b in K. Hence we have to find an ¢ > 0, such that

(1.31) K N B(b,¢) = hy(K, b),

where B(b,¢) = {x€cy: ||x — b| < &}. Note that if aecy, then ae hy(K, b) if and
only if a=Ax+ (1 —A)b, where xeK. This means, however, that
lla — b + Ab|| < A. Hence to prove (1.31) we have to find an ¢ > 0 such that
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(1.32) sup {[a, — Bn + ABul} = 4

whenever sup {[o,|} < 1 and sup {la, — B,|} < &. At this point we observe that if
B=+1and 0 < ¢ < A, then

(1.33) [-L1]n[B—&eB+elc[B—AB—AB—AB+ 4]
We note, furthermore, that if o] £ 1 and || < § and |a — | < ¢ < 34, then
(1.34) e — B+ ABI Sla— Bl +3A5 A

We are now ready to determine &: There is an ny € N such that |8,| < § whenever
n = no. Pute = min {34, A(1 — |B,)):n < noand |B,| + 1}. We claim that (1.31)is
valid with this ¢. Infact, let sup {|a,|} < 1 and sup {|o, — B,|} < &. Choose ne N. If
n = ny, then it follows from (1.34) that |a, — B, + A8, £ 4, and if n < ny and
|Bs = 1, then the same inequality follows from (1.33). Assume therefore that
n < ng and |B,| # 1. Then we get, by the definition of ¢,

oty — B + ABal < & + 1Bl < A1 — |Bal + AUBal = A
Hence (1.32) is valid and thus (1.31) is proved.

CoMMENT 1.24. It is well-known and easy to prove that if K is the unit ball of
co, then ext K = @. In particular, the set ext K is without accumulation points in
K. That this condition is not sufficient to secure that the unit ball of a normed
space is an excellent set, is shown by the next example.

ExaMPLE 1.25. The unit ball of /; is not an excellent set.

PROOF. Let K be the unit ball of /;. Hence K = {a = (,): llall; = Y. x| < 1}.
Choose a = (¢,) € K with ) |a,| = 1 and a, % 0 for all ne N. By Corollary 2 of
Theorem 1.13, we are through if we can prove that ext (K, a) is not closed. Let, as
usual, e, = (0,...,0,1,0,...), and put x, = a — 2a,e,. Then ||x,||; = |la]j, = 1.
Furthermore, let u > 1. Then

lux, + (1 — pwal, = ; lojl + 2p — Dlon| =1 + 2o (e — 1) > 1.
Jj¥n

Hence x,eext(K,a). Since x, — a and since a ¢ext(K,a), we have proved that
ext(K, a) is not closed.

At this point we remark that is follows from Proposition 1.16 and Corollary
3 of Theorem 1.13 that if E is a normed space such that the closed unit ball of E is
anexcellent set, then the closed ball of any finite dimensional subspace of E has to
be a polytope. If E is a Banach space, we do not know if the converse statement is
true, and we pose this as the following open
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ProBLEM. If E is a Banach space such that the closed unit ball of any finite
dimensional subspace of E is a polytope, is it then true that the closed unit ball of
E is an excellent set?

2. Convex sets that are conic at non-interior points.

We introduce in the present section convex sets that are conic at non-interior
points, and prove that any closed set of this kind is an excellent set. The main tool
in proving this is the property stated in the Bourbaki exercise mentioned in the
introduction. We state this property and, for the convenience of the reader, we
supply a proof.

LeEMMA 2.1. ([1,Chap. I1§2, Ex. 29]) Let A < E be an affine manifold, let x, € A
and assume that C < A is anopen (relative to A ), punctured, convex cone with xq as
vertex. Furthermore, let V = A be an open (relative to A) convex neighborhood of
Xo. If f is any bounded above convex function on C N V, then the limit

lim  f(x)
x—=x0,xeCnV

exists as a real number. Furthermore, if f admits a convex extension to
{x0} U(C N V), then this limit is less or equal f(x,).

Proor. By applying a translation, we can and shall assume that x, = 0. Hence
A is a linear subspace of E. Define

o= liminf f(x), f= limsup f(x).

x—0,xeCnV x—=0,xeCnV

Thus f < oo, since f is bounded above. We have to show that « = . Assume that
this is not the case. Let e = (B — a)ifa > — oo, otherwise let ¢ = 1. We note that
in the first case o + ¢ = f — ¢. Hence, by the definition of «, for any U e ¥ ,(0)
thereis a ye U n V n C such that

@1 f)<B-e

Claim: Given 6 > 0 there is an ae C N V such that

(2.2) f(Aa) = B -9, 1e(0,1]

In fact, there exists a convex U € ¥ 4(0) such that

2.3 BSsup{f(x):xeUnVnC}<B+}0

Define U, = $(U n V). Hence Uy = U n V. Thus we can find an ae U, n C such
that



UPPER SEMI-CONTINUITY OF CONVEX FUNCTIONS ... 59

24 B— 36 < fla)
Since 2ae U n V N C, we get from (2.3)
(2.5) fQRa)< B + 36

Let ue[0,1). Thena = (1 + p)~ (1 — wa + (1 + )~ ' u2a, and where (1 — p)a
and 2a belong to V'n C. Hence

f@ =1+ (1 - wa) + u(l + 07" f(2a).
Applying (2.4) and (2.5) we get
(1 + (B - 30) < f((1 — wa) + u(B + 39)

By a simple computation, we thus obtain f — § < f((1 — p)a), thereby proving
2.2).

We now choose & = 3¢ in the inequality (2.2).Since ae C NV, there exists
a symmetric and convex U, € ¥ 4(0) such that

(2.6) a+U,cCnV
Let k > 1 be given and define

1
T k-1

.7 U U,.

Choose +a + ye U n C n V according to (2.1), and let I be the line through the

two points +a and y. Hence I(t) = %a + (1 — t)y for teR. In particular

2.8) I(k)y =a+ (1 —k)y.

It follows from (2.6) and (2.7) that I(k)e Cn V. Now (2.8) can be written
ta = (1 — }y + tl(k). Hence we get from (2.2) and (2.1)

p-25s(10) s (1= )+ prawr < (1 - Lo -9 + s

Accordingly, we obtain B + e(3k — 1) < f(I(k)). Since l(k)e Cn V,and k > 1 can
be chosen arbitrarily large, this inequality contradicts the boundedness from
above of f on C n V. This proves the first statement in the lemma. As for the
second one, we choose an element be C n V. By assumption, the restriction of
S to [0, b] is convex, and is therefore, as mentioned in the introduction, an upper
semi-continuous function. Hence

lim f(x) = limsup f(x) =< f(0).

x—=0,xeCnV x-0,xe(0,b]
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LEMMA 2.2. Let K be a convex set contained in the affine manifold A. Assume
thatint K + 0. Let f be a lower semi-continuous convex function on K. Then, for
any xo€K,

2.9 limsup f(x) = limsup f(x).
x—xg,xeK x—*xo,xeint 4K

ProoF. Since the left hand side of (2.9) is greater or equal the right hand side,
we have to prove the opposite inequality. Let U be an open (relative to 4) convex
neighborhood of x, and let ae K n U. Choose b e int , K. Exactly the same proof
asin [1,p. 54] shows that <a,b] < int, K. Since U is open and convex, we can
find an element ce {a,b] n U. Hence {a,c] = U nint, K. The restriction of f to
[a,c] is, as mentioned in the introduction, upper semi-continuous, and hence, by
assumption, continuous. It follows that

fl@= lim f(x)<sup{f(x):xeUnint,K}.

x—a,xe{a,c]

Hence
sup{f(@):aeUnK} <sup{f(x):xeU nint,K}.

Since the family of open convex neighborhoods of x, constitutes a base of
7 4(x,), this proves (2.9).

CoMMENT 2.3. Without the assumption that f is lower semi-continuous, the
above Lemma 2.2 is not necessarily true. A simple example is given by the
function on [0, 1] with the value one at the point 1 and zero otherwise.

CoMMENT 2.4. It is easy to prove that if the convex set K is contained in the
affine manifold 4 and int, K # @, then 4 is in fact the affine manifold generated
by K. This comment is relevant for the next definition.

DEFINITION 2.5. Let A be the affine manifold generated by the convex set K.
Assume that int, K % 0, and let x, € K\ int, K. We say that K is conic at x, if
there are an open (relative to 4) punctured convex cone C = A with x as vertex
and an open (relative to A) convex neighborhod Ve¥,(x,) such that
Vn C = Vnint, K. If Kisconic at x, whenever x, € K \ int, K, then K is said to
be conic at every non-interior point.

PROPOSITION 2.6. Assume that the convex set K is conic at every non-interior
point. If f is a locally bounded above lower semi-continuous convex function on K,
then f is continuous.

Proor. We have to prove that f is upper semi-continuous at every point
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xo€ K. If xo €int 4 K, this follows from [ 1, Prop. 21, p. 60]. Assume therefore that
xo€ K \int, K. Choose C and V according to Definition 2.5. Hence
(2.10) VAnC=Vnint K.

By assumption, there is a convex open neighborhood U of x, such that f is
bounded above on U n K. Applying Lemma 2.2 and Lemma 2.1 and (2.10) we
get

limsup f(x) = limsup f(x)= lim sup f(x) =
x—+x0,xeK x—xgp,xeint 4K x—=+x0,xeUNnV nint 4K
= limsup f(x)=  lim  f(x) = f(xo).
x—x0,xeUnVnC x—=xg,xeUn¥VnC

THEOREM 2.7. Let K be a closed convex set withint, K + 0, where A is the affine

manifold generated by K. Then K is an excellent set if and only if K is conic at every
non-interior point.

ProoF. The if-part is an immediate consequence of Theorem 1.19 and Prop-
Position 2.6. Assume therefore that K is an excellent set. Choose ae K \ int 4 K.
By Theorem 1.19, there exists an open convex set V with 0e V such that
(@ + V)next(K,a) = 0. Applying Lemma 1.18, it follows that

(a + V)ncone(a,int, K) = (a + V)nint, K.

Since the opposite inclusion is obvious, we get that (@ + V) n cone(q,int, K) =
(a + v) nint, K. By the remarks preceding Lemma 1.18, the set cone (a, int , K) is
an open (relative to A) punctured convex cone with a as vertex. Hence the
equation above says that K is conic at a.

PROPOSITION 2.8. Assume that K is conic at every non-interior point . Let P — K

be a non-empty open (relative to K) convex subset of K. Then P is conic at every
non-interior point.

ProoF. Let A be the affine manifold generated by K. By a simple argument, we
get

(2.11) int,P=Pnint, K.

This set is, however, non-empty. In fact, choose xo € Pand beint, K, and let U be
a convex neighborhood of x,, open relative to A and such that

2.12) UnKcP.

As in the proof of Lemma 2.2, we have (xq,b] < int, K. Since (xo,b]n U is
non-empty, we get
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0+ {(xp,b)]nUcUnint,K <« Pnint,K = int, P.

It follows, as remarked in Comment 2.4, that A is the affine manifold generated by
P. Let xoeP\int, P, and choose U as above. Applying (2.11) we have
xo€ P\ int, K. But K is conic at every non-interior point. So we can choose
C and V as in Definition 2.5. Hence

VAUnNnC=VAnUnintu,K=VnU~NPnint,K=VnnUnint,P.
Since ¥V n U is an open neighborhood of x,, we are through.

LEMMA 2.9. Let P < K be a subset such that inty P 0. Then the affine
manifold A generated by K equals the affine manifold M generated by P.

Proor. Clearly M = A. To prove the converse, it suffices to prove K < M.
Choose aeintg P. Hence there is V e ¥¢(0) such that (@ + V)" K < P.

Let xe K. We want to show that xe M, and therefore we can assume x # a.
There is a 4y€<0,1) satisfying Ag(x —a)eV. Let xo=a+ Ao(x — a) =
(1 — Ag)a + Agx. Then xpe(a+ V)~ K < P. Since x + a and 0 < 4, < 1, the
point x belongs to the line through x, and a. Since this line is contained in M, we
get xe M. Therefore K = M.

We referred to the next poposition in the Example 1.21.

PROPOSITION 2.10. Let K be a convex set withint, K + @, and let P be a convex
subset of K such thatint, P = int, K. If K is conic at every non-interior point, then
so is P.

Proor. Applying Lemma 2.9, we get that A is the affine manifold generated by
P. Let xo€ P\ int, P. By assumption, xo€ K \ int, K. Choose C and V as in
Definition 2.4. Hence VN C = V nint, K = V nint, P. This shows that P is
conic at every non-interior point.

The next proposition will be of use in section 4, in our study of locally compact
excellent sets.

PROPOSITION 2.11. Ifthe convex set K is the union of a sequence {K,} of convex
sets K, such that every K, is conic at non-interior points and satisfies

(2.13) K,cintgK,,;; neN,
then K is conic at non-interior points.

ProOOF. Let A be the affine manifold generated by K. We first want to show
(2.14) int, K =u{int,K,:neN}.

Obviously, the relation o is true. To prove the opposite inclusion, let xeint 4 K.
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Choose ne N such that x € K,,. There exists an open set U in A with the property
(2.15) intKK,,.H = UﬂK CK”+1.

Applying (2.13), it follows that xeUnint,K « UnK < K, ,,. Therefore
xeUnint, K cint,K,,,. Thus (2.14) is proved. We now observe that it
follows from (2.13) and Lemma 2.9 that the affine manifold generated by K, ;
equals 4. Hence, by assumption, int, K,,; + 0. By (2.14), we conclude that
int, K % 0.

Let xoe K \ int, K. Applying (2.14) once more, there is ne N such that

xOEKn\intA Kn+l < Kn+l \intA Kn+1'

Since K, . ; is conic at x, there are an open convex cone C = A, punctured at x,,
and an open neighborhood V of x,, with V < A, such that

(2.16) VAC=Vnint, K, ;.
With U as in (2.15) we claim that
(2.17) Unint,K,+; = Unint, K.

Indeed, U nint, K « UK = intg K, ., = K, ;. Since the set on the left hand
side is open in A, it follows that

UnintyKcUnint,K,,, =« Unint K,

as claimed. Now xo€ K, < intx K, ., = U n K. Hence U n V is an open neigh-
borhood of x,. By (2.16) and (2.17) we get

UnVnC=UnVnint,K,;,; =UnVnint K.

This proves that K is conic at x.

3. Polyhedral convex sets.

The main goal of the present section is to prove that a polyhedral convex set is
conic at every non-interior point.

We shall first fix some notations. If n is a natural number, we put N(n) =
{ieN:1 <j < n}, whereas N(0) denotes the empty set. A closed half space H (in
the given topological vector space E) is a subset of the form H = f ~!([a, o)),
where f # 0is a continuous linear functional on E and a € R.

In the finite dimensional case, a polyhedral convex set is defined to be the
intersection of a finite number of closed half spaces (see for instance [Ro]).
However, in the finite dimensional case, such an intersection has to be of infinite
dimension. Hence a polytope, which by definition is the convex hull of finitely
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many points, would not be a polyhedral convex set according to this definition.
In order to remedy this, we have chosen the following

DEFINITION 3.1. A convex set K < Eiscalled a polyhedral convex set if there is
an affine manifold 4 < E and a finite family of closed half spaces {H;:je N(n)}
with n = 0 such that

3.1 K=An(){H;:jeN(n)}

Note, that by choosing n = 0, we get in particular that every affine manifold is
a polyhedral set.

PROPOSITION 3.2. Let K < E be a polytope and let M < E be an affine manifold.
Then M + K is a polyhedral convex set.

ProoF. It is evident that the translate of a polyhedral convex set is a set of the
same kind. Therefore, we can and shall assume that M is a linear subspace of E.

(i) We first assume M = {0}. Let 4 be the affine manifold generated by K.
Since K is a polytope, A is finite dimensional. Choose ae A andlet L= A4 — a.
Then K — a is a polytope in the finite dimensional linear space L. Referring for
instance to [8], we can find finitely many non-zero linear functionals ¢,,...,®,
on L and real numbers f,,..., B, such that

K —a={e; ' ([B), 0>):jeN®)}.

Now, by the Hahn-Banach theorem, there exists a linear continuous extension f;
of pjto E. Put a; = f; + fi(a). By an easy argument it follows that

K=An{fi " ([a;, 0):jeN(n)}.

This proves that K is a polyhedral set.

(i) We now consider the general case. Consider the quotient map
n:E — E/M, where E/M is equipped with the quotient topology. Hence E/M is
a locally convex space. It is not hard to prove that n(K) is also a polytope. From
(i) we therefore get

n(K)= An () {H;:jeN(n)}
where A is an affine manifold and Hy,. . ., H, are closed half spaces in E/M. Hence
n='m(K) =n" (A {n"(H):jeNm)}

where n~1(A4) is an affine manifold and #~'(H,),...,n"*(H,) are closed half
spaces in E. Since n~!(7(K)) = M + K, we conclude that M + K is a polyhedral
set.

LEMMA 3.3. Let J + D be afinite set, let {A;:je J} be afamily of affine manifolds
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in E. If K is convex and K = U{A;:jeJ}, then there exists a keJ such that
K < Ak‘

Proor. Define for any xe K the set J(x) = {jeJ:x € A4;}. By assumption,
J(x) % 0. The proof will obviously be finished if we can prove that the intersec-
tion N {J(x): x € K} is non-empty. Equip J with the discrete topology. Then J is
a compact Hausdorff space and every J(x) is a closed subset of J. Hence it is
sufficient to prove that the family {J(x):x e K} has the finite intersection prop-
erty. We thus have to prove that if me N and x,,...,x, €K, then

(3.2) N {J(x;):ieN@m)} + .

To prove this, we use induction on m. Since J(x) % @ for any x € K, the relation
(3.2) is true when m = 1. Assume therefore that meN is given and that the
relation (3.2) is true whenever x,,...,x,€K.

Let xy,...,xn+1 € K be given. By the induction hypothesis, we can and shall
assume that these elements are all different. Choose i € N(m), and let [; be the line
between x; and x,,, 4+ ;. Thus [;(t) = tx,,+; + (1 — t)x; for teR. Choose A0, 1.
Then {I,(4),...,l.(4)} = K. Therefore, by the induction hypothesis, there exists
an element

k(A)e () {J(1(A)):ie N(m)}.
Since J is finite, we can find two different 4, '€ 0, 1) such that k(1) = k(1'). We
call this element k. Then [;(1) + [;(A’)and [;(A), [;(A') € A, for i e N(m). Hence the line
I; is contained in A,. In particular
Xi,Xm+1 €Ay, i€eN(m).

But this means that ke () {J(x;):ieN(m + 1)}. The induction step is thus
proven.

Let K be a polyhedral convex set as given by (3.1). We want to determine
int, K. If H ; denotes the interior of H; in E, one might believe that int, K will be
the set A N () {H;:ie N(n)}. However, if we choose n = 1 and 4 = H, \ H,, then
K = A, whereas the set above is empty. Motivated by this example, we introduce
the set

(3.3) I={jeN®n):A4c H;\ H;}.

We then have the following

LeEMMA 3.4. If the polyhedral convex set K is given by
K=An(){H;:jeN(n)},

then
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(3.4) {(i) K=An () {H;:jeNm\I}
: (i) int, K = An () {H;:jeNm)\I}

where I is given by (3.3).

CoMMENT 3.5. In the formulas (3.4) and in what follows, we use the convention
that the intersection of a family of subsets of E with an empty set of indices, is the
set E itself.

Proor. The first formula in(3.4) follows immediately from the definition of the
set I. As for the second formula we have to prove that the left hand side of (3.4)(ii)
is contained in the right hand side. Assume that this is not true. Hence there exist
an xgeint, K and an index je N(n)\I such that x, € H;\ H ;. We can find a con-
tinuous linear functional f; and a real number «; such that

3.5) Hj = f; ([, 0)).
Furthermore

(3.6) H; = f;7' oy, ),

and hence

(3.7) xo€ H\H;= ') -~

Let U = 4 be an open (relative to 4) convex neighborhood of x, such that
U < K. Weshall show that if we assume that f;is constant on U, then we shall get

(3.8) Ac H)\H,

a contradiction since j¢ I. So let ae A. Assume first that a # x,. Let | be the line
between x, and a. Then U1 is an open interval containing x,. Choose
x; € U nlwith x; % x,. Any xel can be written x = (1 — t)xo + tx, for teR.
Since we assume f; constant on U, we get

Jix) = (1 = fj(xo) + tfi(x1) = filxo) = &},

where we used (3.7) in the last equation. In particular, fj(a) = fi(x,) = a;. By(3.7),
we have thus proved the contradiction (3.8). It follows that there exists anae U
such that fi(a) # fj(xo). Let again I be the line between a and x,. Since U N lis an
open interval around x,, there exists an ¢ > O such that

3.9) x=(1-t)xo+tacUnNnIcK; |tj<e

Since fi(xo) = a;, we get fi(x) = a; + t(fj(a) — fij(xo)). But we know that
fi@ # fi(xo). By (3.9) we therefore get that for some x € K, fi(x) < ;. This is the
desired contradiction, since
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xeH; = ;! ([aj, 00)).

We shall now study the case where int , K = @. For that purpose the following
lemma is useful.

LEMMA 3.6. Let K be given as in Lemma 3.4. Thenint, K = @ if and only if the
set

(3.10) JL {jeNm\I:K < H)\ H}
is non-empty.

PROOF. Assume that int, K = @. It follows from Lemma 3.4 that for any xe K
there exists je N(n) \ I such that xe H;\ ﬁj. Hence K < | ) {Hj\ﬁj:je Nn)\I}.
Since H; \ H ;is a hyperplane in E, we get from Lemma 3.3 the existence of je N\ I
such that K = H;\ H;. This means that J 4 §. Assume conversely that jeJ.
Hence K = (H,-\I-?j) N A. Since je N(n) \ I, we have (H;\ ﬁj) N A S A Itfollows
that the affine manifold generated by K is a proper subset of A. By Comment 2.4,
we conclude that int, K = 0.

Applying Lemma 3.6 we define the reduction r(A) of A by the formula

{4 ~(H;\ Hj):jeJ}; whenint,K =0

(3.11) r(4) = {A; whenint, K % 0.

We note that r(A) is an affine manifold with K < r(4) = A. Furthermore, we get
by a straightforward argument that

(3.12) K=rA)n(\{Hj:jeNm\U vJ)}.
LEMMA 3.7. With K as above, the following formula is valid
(3.13) int, 4y K = r(4) 0 () {H;:jeNm\ (I v J)}.

Proor. IfI uJ = N(n), then (3.12) shows that K = r(A), and so (3.13) is valid.
We can therefore assume @ + N(n)\ (I U J). Let je N(n) and suppose r(4)
Hj\ﬁj. Then jel U J. In fact, if je N(n)\ I, the inclusion K < r(A4) implies
K < H;\ Hj,and hence je J. Consequently, ifje N(n) \ (I U J), thenr(4) ¢ H,\ H;.
Therefore, if we use Lemma 3.4 with K represented as in (3.12), we get that the
corresponding I-set is empty. Hence (3.13) follows from the formula (3.4)(ii).

LEMMA 3.8. With r(A) defined by (3.11) we always have int, 4, K # 0.
PROOF. Assume contrarily that int, 4 K = 0. It follows from Lemma 3.7 that
for any x € K there exists je N(n) \ (I U J) such that xe H;\ ﬁ,—. Hence

K < (J{H;\H;:jeNm)\ (I v J)}
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Applying Lemma 3.3 we conclude that there exists an element ke N(n)\ (I U J)
such that K « H,\ H,. Since ke N(n) \ I, this implies that k € J, a contradiction.

PrOPOSITION 3.9. If K is a polyhedral convex set, then K is conic at every
non-interior point.

PROOF. By the formula (3.12), Lemma 3.7 and Lemma 3.8, we can assume, with
a slight change of notation, that

(3.14) K=An(\{H;:jeN®n)},
and
(3.15) int,K=An " {H;:jeNm)} + 0.

It follows, as in Comment 2.4, that 4 has to be the affine manifold generated by K.
Let xoeK\int, K. Hence there exists je N(n) such that x,e H;\ H ;. Let
J(xo) £ {je N(n): xo€ H;\ H;} + @, and define

(3.16) C(xo) = An ({H;:jeJ(xo)}

Then C(x,) is a convex relatively open subset of A. Furthermore, since int , K is
contained in C(x,), we get C(x,) + 0. We claim that C(x,) is a punctured convex
cone with x, as vertex. In fact, since J(xo) % @, xo¢ C(x,). Furthermore, let
xeC(xo)andlet I* be the open half-line through x, and x with start in x,. Hence
1*() = (1 — )xo + tx for t > 0. We have to show that I* = C(x,). Of course,
I* c A. Therefore, let j € J(xo). There exist an f; % 0 and a real number «; such
that

H; = f; '(Ka;,00)) and H;\ H; = £, ().
Lett > 0. Then
ST @) = (1 — ) filxo) + tfix) =

= o + t(fi(x) — a) > &;

Hence I* c H;. This proves the claim. Define V(xo)= 4N N {H;:je
N(n)\ J(xo)}. Thus V(x,) is a convex set, open relative to 4, and xq € V(x,). By
(3.15) and the definitions of C(x,) and V(x,) we get

V(x0) N C(xo) = An () {H;:jeN(n)} =
=int, K = V(x¢) nint, K.
This proves that K is conic at x,.

Combining Proposition 3.9 with Theorem 2.7, we get the following

CoROLLARY 3.10. A4 closed polyhedral convex set is an excellent convex set.
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In the next section we shall need the following extension of Proposition 3.9.

PROPOSITION 3.11. Let K be a convex set such that K = | ) {K,:ne N}, where
{K,} is a sequence of polyhedral convex sets with the property

K,cintyK,,,; neN.
Then K is conic at non-interior points.

Proor. Use Proposition 3.9 and Proposition 2.11.

4. Locally compact excellent convex sets.

We have proved in the preceding section that if the convex set K is the union of
a strictly increasing family of polyhedral convex sets, as in Proposition 3.11, then
K is conic at non-interior points. Furthermore, it was shown in section 2 that any
closed convex set of the latter kind is an excellent set. The main objective of the
present section is to prove that if K is closed and locally compact, then these three
properties are indeed equivalent. A corollary of this characterization is that every
closed locally compact excellent set is finite dimensional. This is an extension of
the classical theorem that every locally compact topological vector space is finite
dimensional, a theorem we shall make use of in the proof. Otherwise, our main
analytical tool will be a theorem of V. L. Klee [3] stating that if K is a closed
locally compact convex set containing no line, then there is a closed half space
H such that K n H is compact.
Recall that ext K denotes the set of extreme points of K.

LeMMA 4.1. IfK c E is convex and if f % 0 is a continuous linear functional on
E and o €R, then

ext[Kn f 1 ({=o0,a])] = (ext K) uext(K N f ().

PROOF. Let ¢ be an extreme point of K N f ~({ — 00, a]). If f(c) = a, then cis
an extreme point of K N (). Assume therefore f(c) < a. If c is not an extreme
point of K, then 2c = a + b, where a,be K and a + b. Hence

4.1 f(a@) + f(b) = 2f(c) < 2a.

We must have min { f(a), f(b)} < «, say f(a) < a. Since c is an extreme point of
K N f~Y{{~o0,a]), it follows that f(b) > «. Define 1, = (f(b) — 2)(f(b) — f(a) .
Then Ao >0 and using (4.1) we get f(a) — f(b) = f(a) + f(b) — 2f (b)) <
2(a — f(b)). Hence 0 < Ao < 4. Letao = Aoa + (1 — Ag)b. Then f(ag) = aand cis
an interior point of [a,aq]. Since

4.2) a,ap,e K f~1({—o0,a])

we have got the desired contradiction.
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We now assume that the convex set K is closed. Let ae K. We shall follow
Bourbaki [1, Chap. II, §2, Ex. 14] and call Cx = [ {A(K — a):4 > 0} the
asymptotic cone of K. Then Cg is a closed convex cone with zero as vertex, and Cg
isindependent of the choice of a. Furthermore, Cx + ais the union of all halflines
with start in a and contained in K. Let L = Cx n(—Ck) < E. Then L is a closed
linear subspace of E, and it is easy to see that L is the union of {0} and of all lines
through zero contained in K. Let N < E be a linear subspace supplementary to
L in E. If we assume O € K, then as in [3] we have

4.3) K=L+NnK,

where N n K contains no line. We now assume that K is locally compact as well.
Hence L is a locally compact space, and is therefore finite dimensional. By
a well-known result Ladmits a closed supplementary linear subspace N such that
the projection

4.4 T:E=L+N—-—N:x=u+vHv

is continuous. If we choose this N in (4.3), we get in particular that NN K is
a closed locally compact convex set containing no line.

LEMMA 4.2. Let L and N be supplementary linear subspaces in E such that
4.5) K=L+NnK.

Choose xo€ N N K. Then Ay x(*, xo) is equal to the restriction of A(-, x,) to the set
NnK.

PrROOF. Let ae N n K, and let as in section 1 I(a) = {A€[0,1]:a — Axp€
(1 — )K}. We are finished if we can prove

4.6) I(a) = {Ae[0,1]:a — Axoe(l — )N N K}.

Of couse, the relation o is valid. Therefore, let A€ I(a). If A = 1, then a = x, and
the right hand side of (4.6) equals [0, 1]. We shall therefore assume A4 # 1. Thereis
xeK such that a = Ax, + (1 — A)x. By (4.5), x =u + v, where ueL and
ve N n K. Hence

(1—-Au=a—Axg— (1 —ApveLn N = {0}.

Therefore,u = 0 and consequently x = ve N n K. This proves the inclusion < in
4.6).

A continuous affine function f on E is by definition of the formf = a + g, where
o€ R and where g is a continuous linear functional on E.

THEOREM 4.3. Let K < E be a closed convex set. Consider the following five
properties P(1),. .., P(5).
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P(1) There is a continuous affine function f on E such that

Knf='((~oo,n))
is a polyhedral convex set whenever ne N.

P(2) There are afinite dimensional affine manifold M and a sequence of polytopes
{P,} such that

K=J{M + P,,neN}
and
M + P, cintgy(M + P,.); neN.
P(3) There is a sequence of polyhedral convex sets {K,} such that
K =) {K,neN}
and
K,cintyK,,,; nel.

P(4) K is conic at non-interior points.
P(5) K is an excellent set.

Then P(1) = P(3), P(2) = P(3), P(3) = P(4) and P(4) = P(5). Furthermore, if
K in addition is locally compact, then all five properties are equivalent.

ProOF. P(1) = P(3). Putting K, = K n f ~1({ — o0, n]), we get
KycKnf '({(=0o,n+ 1D) c Kpsy,
and since the middle term is an open subset of K, P(3) follows.

P(2) = P(3). Use Proposition 3.2
P(3) = P(4). Use Proposition 3.11.
P(4) = P(5). Use Theorem 2.7.

It remains to prove, that if K is locally compact, then P(5) implies both P(1) and
P(2). Assume therefore that K is a closed locally compact excellent set. Hence, by
Theorem 1.19, the function A(-, x,) is continuous for all x,€ K. Let us first
assume O e K. It then follows from (4.3) that

4.7 K=L+NnK

where we have remarked that L is finite dimensional and that N n K is a closed
locally compact convex containing no line. It follows from [3, p. 236] that there is
a continuous linear functional g on N such that if we define

4.8) P,=NnKng }({—o,n]); neN,
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then P, is compact whenever ne N. We claim that P, is a convex polytope. In fact,
applying Lemma 4.2, we get that Ay x(-, Xo) is continuous whenever xo e N N K.
Now, by Lemma 4.1,

4.9) extP,c [P,next(KnN)]uext(KnNng n).

Since P, and K n N n g~ !(n) are compact subsets of K n N, it follows from
Lemma 1.22 that both of the sets on the righthand side of (4.9) are finite. Hence P,
is a polytope. Let t be the continuous projection as given in (4.4). Let f = go.
Then f is a continuous linear functional on E. Without difficulty we get

4.10) L+ P,=Kn f!((—o0,n)).

It follows from Proposition 3.2 that the left hand side of (4.10) is a polyhedral
convex set. This proves P(1). Furthermore, as in the proof of P(1) = (P(3), we get
(4.11) L+ P, cintg(L + P, ).

Finally, using (4.10), it follows that K = | ) {L + P,:ne N}. This proves P(2). In
the general case, choose aoeK and let K' = K — ao. Thus 0€K’, and K’ is
a closed locally compact excellent convex set. By the first part of the proof there
are a finite dimensional linear space L, a continuous linear functional f, on E and
a sequence {P,} of polytopes such that

L+ P,=(K —ag)n fo *({(—0,n]); neN.
Hence
4.12) L+ay+ P,=Kn(fy H<{—00,n]) + ag)

Let f = fo — folap) and M = L + a,. Then f is an affine continuous function,
and M is a finite dimensional affine manifold. Furthermore, from (4.12) we get
without difficulty

M+ P,=Kn f }({(—oo,n]); neN.
As in the preceding part of the proof, it follows that P(1) and P(2) are satisfied.

COROLLARY 4.4. IfK is a closed, locally compact excellent convex set, then K is
finite dimensional.

Proor. By P(2) and Lemma 2.9, the affine manifold generated by K is equal to
the affine manifold generated by M + P,. Since M is finite dimensional and P, is
a polytope, this manifold is finite dimensional.

PROPOSITION 4.5. If K is a closed locally compact excellent convex set, then any
convex function on K is upper semi-continuous.



UPPER SEMI-CONTINUITY OF CONVEX FUNCTIONS ... 73

ProOOF. We know, by Corollary 4.4, that K < E is a finite dimensional linear
space. Hence we can and shall equip E with a norm || - || such that the closed ball
B, = {x:||x|| £ r} is a polytope whenever r > 0. We now make use of the
property P(3) of Theorem 4.3. Hence

4.13) K =J{K,:neN},
where every K, is a polyhedral convex set such that
4.14) K, cintg K, ..

Let f be a convex function on K. We have to show that f is locally upper
bounded on K. Assume first that K itself is a polyhedral convex set. Let r > 0 be
given. Then K n B, is a bounded polyhedral convex set. It follows, for instance
by [8, pp. 170-171], that K n B, itself is a polytope. Let e,,. .., e, be the extreme
points of this set. Hence any x in K N B, can be written as a convex combination
x =Y Ajej. Therefore

fx) £ X A4f(e)) < max {f(e;):1 £j < m}.

This shows that f is bounded above on K n B,. In particular, if xo€ K, and
r = ||xoll + 1,then K n B, is a neighborhood of x, on which f is bounded above.
We now consider the general case. Let x, € K. According to (4.13), thereis annso
that xo € K,,. Choose r = ||xo| + 1. By the first part of the proof, the function f is
bounded above on B, N K, ., and therefore on the set B, nintx K, . But this
set is, by (4.14), a neighborhood of x, relative to K.

5. Openness of affine maps between excellent convex sets.

We study in the present section the problem when a continuous affine surjection
¢: K — Q between excellent convex sets K and Q will be open. As is well known,
the map ¢ is open if and only if the correspondence ¢~ ':Q +—2X is lower
semi-continuous. Now a theorem in Kuratowski [6, vol. 2] asserts that if K and
Q are contained in metric spaces, then a correspondence ¢:Q — 2K is lower
semi-continuous if and only if the function

6:K x Q — [0,00):8(x,q) = dist(x, $(q))

is upper semi-continuous. We prove that if K is contained in a normed space and
the correspondence ¢ is convex, then d is a convex function on K x Q. Since we
have proved in section 1 that K x Q is excellent if K and Q are excellent, the
function & is upper semi-continuous if and only if it is locally bounded above. We
thus obtain a general criterion for ¢ to be lower semi-continuous. As corollaries
we get that if K is bounded, then any ¢:K +— Q is open, and that the same
conclusion is valid if K and Q are locally compact closed excellent sets. A third
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consequence of this criterion is that if P is any convex set, and ¢:K + P is
a closed continuous affine surjection, then ¢ is open. Finally, we prove that any
excellent convex set K contained in a normed space is a stable convex [7], which
means that the middle-point map (a, b) — 3(a + b) is open.

Throughout this section we assume that the convex set K is contained in
a normed linear space (E, || - ||). Furthermore, we shall assume that Q is a convex
set contained in a metrizable locally convex vector space F.

We recall that a correspondence ¢ : Y +— 2*, where X and Y are topological
spaces, is called lower semi-continuous provided the set {ye Y:¢(y) n U % 0} is
open in Y whenever U is open in X.

The next lemma can be found in [6, v. 2, p. 63, Th. 3]. Actually, it is assumed in
this theorem that the metric spaces are compact, but the proof works without this
assumption.

LeMMA 5.1. Let (X, p) and (Y, 6) be metric spaces, let
D:Y 2%

be a correspondence (by definition we require that every ¢(y) % 0). Then ¢ is lower
semi-continuous if and only if the function

5.1 0:X x Y [0,00):8(x, y) = dist(x, p(y))
is upper semi-continuous.

If X and Y are convex sets, then a correspondence ¢: Y +— 2% is said to be
convex provided

(5-2) Aid(y1) + 2,0(y2) = ¢(A1y1 + A2y)
whenever y;,y,€Y and 4,,4, =2 O0with 4, + 4, = 1.
LEMMA 5.2. Let ¢:Q +— 2X be a convex correspondence. Then the function
(5.3) 0:K x Q1 [0,00):6(x,q) = dist(x, $(q))
is convex.

PrOOF. Let j=1,2 and let a;eK, q;€Q, x;ed(q;) and 1;20 with
Ay + A3 = 1. By convexity of ¢, 4;x; + A,x,€¢d(4;4; + 4,4,). Hence

0(A1(ay, q1) + 42(a2,92)) S Allay — x4l + 4;llaz — x2||.
From this inequality we immediately get

0(A1(ay, q1) + 22(a2,92)) < 2,6((a1,41)) + 4:6((a2,92)).
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LEMMA 5.3. Let (X, p), (Y,0) and 6 be as in Lemma 5.1. Then the function ¢ is
locally bounded above if and only if whenever {y,} is a convergent sequence on
Y there is a bounded sequence {x,} on X such that x, € ¢(y,) for any ne N.

ProOF. We first note that it follows by a straightforward argument that ¢ is
locally bounded above if and only if

(5.4) sup 8(x,, y,) < oo,
neN
whenever {(x,, y,)} is a convergent sequence on X x Y.

Assume that ¢ is locally bounded above. Let y, — y, on Y. Choose xq € ¢(yo).
There are a neighborhood V of (x, o) and an R < oo such that §(x,y) < R
whenever (x, y)e V. Furthermore, there is an noe N such that if n = n,, then
(x0,¥yn) € V. Hence d(xy, y,) < R whever n = ny. This implies, by the definition of
d, that there is x, € ¢(y,) such that p(xq, x,) < R whenever n = n,. It follows that
if we choose an arbitrary x,€ ¢(y,) when n < n,, then the sequence {x,} is
bounded and x, € ¢(y,) for any ne N.

To prove the converse implication, let (x,, y,) = (xo, o) on X x Y. Since
Ya = Yo, there is, by assumption, a bounded sequence {x,} on X with x, € ¢(y,)
whenever ne N. Hence

5(xm yn) é p(xm x:l) .S_ p(xm xO) + P(xo» x:n)
Since x, — xo, and the sequence {x,} is bounded, it follows that (5.4) is valid.

THEOREM 5.4. Assume that K and Q are excellent convex sets, and that
¢:Q 2K

is a convex correspondence. Then ¢ is lower semi-continuous if and only if the
following condition (#) is satisfied

Whenever {q,} is a convergent sequence on Q, there is
(#) a bounded sequence {x,} in K such that x, € ¢(q,) for
any neN.

Proor. The correspondence ¢ is, by Lemma 5.1, lower semi-continuous if and
only if the function § is upper semi-continuous. Applying Lemma 5.2, we get that
dis a convex function on K x Q. Since, by Proposition 1.16, the product K x Q
is excellent, it follows that & is upper semi-continuous if and only if ¢ is locally
bounded above. However, by Lemma 5.3, this occurs if and only if the condition
(#) is satisfied.

COMMENT. It is known that in the situation of Lemma 5.1, the correspondence
¢ is lower semi-continuous if and only if whenever y, — y, on Y and x, € ¢(y,),
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there is x, € ¢(y,) such that x, - x,. The condition (#) of Theorem 5.4 is thus
a considerable weakening of this general criterion.

COROLLARY 5.5. Let ¢:K +— Q be a continuous affine surjection. Then ¢ is
open if and only if the following condition (*) is fulfilled.

Whenever {q,} is a convergent sequence on Q, there is
&) a bounded sequence {x,} on K such that ¢(x,) = g, for
any neN.

Proor. By general topology, the map ¢ is open if and only if the correspon-
dence ¢ " !:Q — 2X is lower semi-continuous. Since it is immediate that this
correspondence is convex, the conclusion follows.

COROLLARY 5.6. If K is a bounded excellent convex set, then any continuous
affine surjection ¢ : K — Q is open.

Proor. The condition (*) is in this case fulfilled.

COROLLARY 5.7. If K and Q are closed compact excellent sets, then any
continuous affine surjection ¢ : K — Q is open.

PrROOF. As was noted in the proof if the theorem, the product K x Q is an
excellent convex set. Since this set is also closed and locally compact, it follows
from Proposition 4.5 that the function é in Lemma 5.2 is locally bounded above.
This means, by Lemma 5.3, that the condition (*) is fulfilled.

CoMMENT 5.8. Since any normed linear space is an excellent convex set, the
Corollary 5.5 above gives in particular a necessary and sufficient condition for
a continuous and linear surjection beween two normed spaces to be open. Let us
look at the following example:

Define

T:C[0,1] — C[0,1]: Tf(s) = jsf(t)dt; se[0,1].
0

Then T'is linear, continuous and injective. Hence it follows, by general functional
analysis, that T'is not open onto its image. Hence the condition (*) cannot be true.
Itis easy to show this directly. In fact, define for any n € N the continuous function

. . 1 -
/, on [0, 1] by requiring that f, is zero on [0,1 - 7] , and that f;, is linear on

[1 - n_lz, 1] with f;,(l) = n. Then ”ﬁl"ao = n whereas ” Tf;l”<Jo = zl_n Hence the

condition (*) is violated.

PROPOSITION 5.9. Let P be any non-empty convex set in a locally convex
Hausdorff topological vector space, let K be an excellent convex set, and assume
that the continuous affine surjection ¢ : K — P is closed (that is ¢(A) is closed in
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P whenever A is closed in K). Then ¢ is open, and hence P itself is an excellent
convex set.

Proor. It follows by general topology that ¢ is open if and only if the
correspondence

¢:K 25 ¢0(x) = 0" H(p(x)); xeK

is lower semi-continuous. It is easy to see that ¢ is convex. Furthermore, since
x e @(x) whenever xe K, it follows immediately that the condition (#) of
Theorem 5.4 is fulfilled. Finally, applying Proposition 1.12, we get that P is an
excellent convex set.

PROPOSITION 5.10. Any excellent convex set K contained in a normed vector
space is a stable convex set.

ProOF. We have to prove that the middle point map

a+b
2

is open. Since m is a continuous affine surjection, and K x K is excellent, it
suffices to show that the condition (*) of Corollary 5.5 is satisfied. But this is easy.
In fact, let x, —» xo on K. Hence (x,, x,) = (xo, Xo), and therefore the sequence
{(x4, x,)} is bounded. Since m(x,, x,) = x,, we are through.

m:K x K+ K:(a,b) —

REFEREE’S REMARK. In addition to [7] several authors have considered open
affine maps. For a recent update of the references, see Wislas article in Arch.
Math. 56 (1991), 482—490. Although not mentioned explicitly by Hustad, several
of the known results in this area can be deduced from Hustad’s more general and
penetrating analysis in the present paper.
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