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INDECOMPOSABLE MODULES OVER
MULTICOIL ALGEBRAS

IBRAHIM ASSEM and ANDRZEJ SKOWRONSKI

§0. Introduction.

Let k be an algebraically closed field, and A4 be a finite dimensional k-algebra
(associative, with an identity). We are interested in the description of the category
mod A of finitely generated right A-modules, thus of the indecomposable objects
inmod A. All the recent investigations about tame algebras [ 13] point out to the
importance of those indecomposable modules which lie in tubes [21]. For
instance, it is shown in [12] that, if A is tame, then all but finitely many
non-isomorphic indecomposable A-modules which have the same dimension as
k-vector spaces lie in homogeneous tubes.

In the study of the simply connected algebras of polynomial growth [22]
appeared a natural generalisation of the notion of tube, called a coil ([4], observe
that the use of the term “coil” in the present paper and in [4] deviates from its use
in an earlier publication [3]). A multicoil consists, roughly speaking, of a finite
number of coils glued together by some directed parts, and a multicoil algebra is
an algebra having the property that each cycle of non-zero non-isomorphisms
lies in one standard coil of a multicoil. In particular, multicoil algebras are
cycle-finite [3] and hence tame. They generalise the coil algebras as defined in [3]
and contain all the best understood examples of algebras of polynomial growth
and finite global dimension. We shall prove here that, if a multicoil algebra has
a sincere indecomposable module lying in a stable tube, then this algebra is either
tame concealed or tubular [21].

THEOREM (A). Let A be a finite dimensional, basic and connected algebra over an
algebraically closed field. If A is a multicoil algebra, the following conditions are
equivalent:

(i) A is either tame concealed or tubular,
(i) There exists a sincere indecomposable A-module lying in a stable tube of the
Auslander-Reiten quiver of A,
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(i) There exist infinitely many non-isomorphic sincere modules of the same
dimension lying in homogeneous tubes of the Auslander-Reiten quiver of A.

If follows from this theorem and the results of [4] that indecomposable
modules lying in a stable tube of a multicoil algebra have as their support a tame
concealed or a tubular full convex subcategory of the algebra. The structure of
such indecomposables is completely described in [21]. Also, we recall that tame
concealed algebras and tubular algebras are of polynomial growth. In fact, we
shall show:

THEOREM (B). Let A be a finite dimensional, basic and connected multicoil
algebra over an algebraically closed field. Then A is of polynomial growth.

As a consequence, a multicoil algebra is domestic [20] if and only if it does not
contain a tubular algebra as a full convex subcategory.

The paper is organised as follows. After a preliminary section (1), in which we
recall those facts about tame algebras that will be needed in this paper, section (2)
is devoted to a description of coils, multicoil algebras and components of their
Auslander-Reiten quivers. In section (3), we study enlargements of cycle-finite
algebras by successive one-point extensions and coextensions. Finally, we prove
our main results in section (4).

1. Preliminaries on tame algebras.

1.1. Notation. Throughout this paper, k will denote a fixed algebraically closed
field. By an algebra A is meant an associative finite dimensional k-algebra with an
identity, which we shall moreover assume to be basic and connected. In this case,
it is well-known that there exists a connected bound quiver (Q,, I) and an
isomorphism A 3 kQ,/I. Also, A = kQ,/I can equivalently be considered as
a k-category, of which the object class A, is the set (@ 4), of points of Q 4, and the
set of morphisms A(x, y) from x to y is the quotient of the k-vector space k Q ,(x, )
having as basis the set of paths in Q, from x to y by the subspace
I(x,y) = I nkQ4(x,y), see [11].

By an A-module is meant throughout a finitely generated right A-module. We
shall denote by mod A the category of A-modules, by rad*(mod A) the infinite
power of the radical of mod A and by ind 4 a full subcategory of mod A4 consisting
of a set of representatives of isomorphism classes of indecomposable objects in
mod A. We shall use freely properties of the Auslander-Reiten translations
1= DTrandt~! = Tr D and the Auslander-Reiten quiver I', of 4, for which we
refer to [6, 21]. We shall agree to identify the points in I' with the corresponding
indecomposable A-modules. A component I' of I' is called standard if the full
subcategory of mod A4 which consists of the modules which belong to I' is
equivalent to the mesh category k(I") of I',see [11,21]. A path xy = x; = ... = X,
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in I', is called sectional if x;_; % 7x;, for0 < i < m, and a connected subquiver
2 of I'y is a subsection if each path in X is sectional. Finally, a subsection is
maximal if it is not properly contained in another subsection [7]. Thus, if x is
a point of a component of I'; without oriented cycles, then x determines a unique
maximal subsection, by taking all the sectional paths with source x. It follows
from [9] that the composition of morphisms lying on a sectional path is
non-zero.

For each point i of Q 4, we denote by S(i) the corresponding simple A-module
and by P(i) (respectively, I(i)) the projective cover (respectively, the injective
envelope) of S(i). The dimension-vector of a module M, is the vector dim M =
(dim, Hom 4(P(i), M));(0 ), in the Grothendieck group K(A4) of A. The support
Supp (d) of a vector d = (dy)(g ,), in Ko(A) is the full subcategory of A with object
class {i €(Q 4)o | d; # 0}. The support Supp (M) of a module M is the support of its
dimension-vector d = dim M. A module M, or a vector d in Ky(A), is called
sincere if its support is equal to A. The support Supp (I") of a component I' of I' 4 is
defined to be the full subcategory of A with object class {i € (Q 4)o | dim M); % 0for
some Mel,}. Let C be a full subcategory of A4, the restriction to C of an
A-module M will be denoted by M|c. The subcategory C is called convex (in A) if
any path in 4 with source and target in C lies entirely in C. It is called triangular if
Q¢ contains no oriented cycle.

A path in mod A is a sequence of non-zero non-isomorphisms
My, > M, —» ... > M,, where the M; are indecomposable. Such a path is called
acycle if My = M,. A module M is called directing if it lies on no cycle in mod A.

1.2. Tame algebras. Following [13], we say that an algebra A is tame f, for any
de Ko(A), there exists a finite family of functors F;: mod k[X] — mod 4,
1 £i < n(d), where k[ X] is the polynomial algebra in one variable, satisfying the
following conditions:

(i) For each i, F; = — ®yx; M; is a k[ X]-A-bimodule, finitely generated and
free as a k[ X]-module.

(i) All but at most finitely many isomorphism classes of indecomposable
A-modules of dimension-vector d are of the form F;(S), for some 1 < i < n(d), and
some simple k[ X ]-module S.

For a tame algebra A, and a vector d € Ky(4), we denote by u,(d) the least
number of functors F; satisfying (i) and (ii). The algebra A4 is said to be of
polynomial growth [22] if there exists m e N such that, for every vector d € Ky(A)
with non-negative coordinates, we have

m(d)é( ) di)m

ie(Q.4)o
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It is said to be domestic [20] if there exist finitely many functors F;:
mod k[X] - mod 4, 1 £ i < n, satisfying (i) above and:

(ii") For every de Ky(A), all but at most finitely many isomorphism classes of
indecomposable modules of dimension-vector d are of the form F;(M), for some
1 £i < n, and some indecomposable k[ X ]-module M.

Domestic algebras are of polynomial growth [23] (2.1).

A translation quiver I’ is called a tube [21] if it contains a cyclical path and its
topological realiation |I'| = S* x R* (when S! is the unit circle, and R* the set of
non-negative real numbers). Tubes containing no projective or injective modules
are called stable, and tubes consisting of t-invariant modules are called homo-
geneous. In this paper, all tubes are assumed coherent with length functions [ 14].
Itisshownin [12] that, for a tame algebra 4 and d € K o(4) such that u,(d) > 0, all
but finitely many isomorphism classes of indecomposable 4-modules of dimen-
sion-vector d lie in homogeneous tubes. We shall say that 4 has sincere tubes if
there exists a sincere vector d € K((A) such that u,(d) > 0.

1.3. Tilted algebras and tubular algebras. Let A be a finite connected quiver
without oriented cycles. An algebra C is called a tilted algebra of type A4 if there
exists a tilting module T over the path algebra k4 such that C = End (T;,), see
[15]. If 4 is an euclidean (respectively, wild) quiver, then C is said to be of
euclidean (respectively, wild) type. If 4 is a euclidean quiver, and T is a preprojec-
tive (or preinjective) k4-module, then C = End(T,,) is called a tame concealed
algebra [16,21]. It follows from [21] (4.2) that tilted algebras are characterised
by complete slices in the module category.

We shall need the notions of truncated branch extensions and coextensions of
a tame concealed algebra (tubular extensions and coextensions in the terminol-
ogy of [21] (4.7)). In particular, a truncated branch extension (respectively,
coextension) 4 of a tame concealed algebra is tame if and only if its tubular type is
domestic or tubular [21](4.9)(5.2), [5](2.3),[18](2.1). In the first case A is a tilted
algebra of euclidean type having a complete slice in its preinjective (respectively,
preprojective) component, and, conversely, every representation-infinite tilted
algebra of euclidean type is of one of these two forms [21] (4.9). In the second
case, A is a tubular algebra (respectively, cotubular). By [21] (5.2), any tubular
algebra is cotubular and conversely.

To describe the module category over a truncated branch extension or coex-
tension, we shall use the following notation inspired from [21]. Let B be
a truncated branch extension of a tame concealed algebra C, then

indB=2v I8v 28

where 2¢ denotes the preprojective component of I'c, 7¢ is a P,(k)-family of
tubes obtained from the corresponding tubes in I'c by successive ray insertions,
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and 28 denotes the remaining components of I'y. The ordering from the left to the
right indicates that there are non-zero morphisms only from any of these classes
to itself and to the classes on its right. All projective indecomposable B-modules
belong to 2§ v J¢§. Similarly, if B is a truncated branch coextension of a tame
concealed algebra C, then

indB=28 v 78 v 28

when 22 denotes the preinjective component of I'c, 7 8 is a P, (k)-family of tubes
obtained from the corresponding tubes in I'c by successive coray insertions, and
28 denotes the remaining components of I'y. All injective indecomposable
B-modules belong to 758 v 28.

If Bis a domestic truncated branch extension (respectively, coextension) of C,
then 28 (respectively, 22 ) is the preinjective (respectively, preprojective), compo-
nent of I'z and contains a complete slice [21] (4.9).

If B is a tubular truncated branch extension of C then B is also a tubular
truncated branch coextension of a tame concealed algebra C' and

Q(’,’=< v ff)vﬂ'” v 28

0
geQ*

g‘g=9’gv9'gv(v .9"’)

q
geQ*

where each 77 is a Py(k)-family of stable tubes [21] (5.2).

1.4. LEMMA. Let B be a truncated branch extension (respectively coextension)
of a tame concealed algebra C. If M is an indecomposable B-module lying on the
mouth of a tube J in Iy, then B[M] (respectively, [M]B) is a truncated branch
extension (respectively, coextension) of C.

Proor. Let X denote the maximal sectional path in J of target M. We shall
consider two cases:

(1) X does not contain projective B-modules. Then Homg(P, M) = 0 for any
indecomposable projective B-module P which is not a C-module. Therefore, M is
a C-module. Since M lies on the mouth of 7, then the Auslander-Reiten sequence
in mod B starting with M has an indecomposable middle term, and so M is not
a radical summand of a projective B-module. Also, M, is a simple regular
C-module. Therefore B[M] is a truncated branch extension of C.

(2) X contains a projective B-module. Let P(c) be the indecomposable projec-
tive B-module lying on Z such that there exists a sectional subpath
P(c) > ...— M of Z, and no other projective B-module on this subpath. So, if
adenotes the extension point of Bin B[M], we have an arrow a — cin B[M]. We
must show that, for any arrow ¢ — b such that P(b)¢ X,, the composition
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a — ¢ - bis zero, or, equivalently, that Homg(P(b), M) = 0. If M = P(c), there is
nothing to show. Otherwise, it follows from the hypothesis that P(b) is not
injective. Since M lies on the mouth, there exists a non- projective B-module Ng
on the segment of X from P(c) to M such that the Auslander-Reiten sequence
ending with N has an indecomposable middle term. This implies that
Homg(P(b), N) = 0 and consequently Homg(P(b), M) = 0. Therefore B[M] is
a truncated branch extension of C.

2. Coils, multicoils and multicoil algebras.

2.1. We shall give an inductive definition of a coil. Let (I',t) be a connected
translation quiver without multiple arrows, and assume there exists x € I'; and an
infinite sectional path

Z:X=XO‘)X1"‘))€2—>...

such that the support of k(I')(x, —) is of one of the following types:
() Suppk(I')(x,—)=2
(ii) Supp k(I')(x, —) is of the form

Ve ... e Y)Y = X=Xg> Xy > Xy ...

(in particular, x, is injective).
(iii) Supp k(I')(x, —) is of the form

Y1 =Y 2.2 0

T T T

X=Xg 2> X1 ... X1 2>X ...

(in particular, x, _, is injective).

In each case, we shall define an operation enlarging (I, 7) to a new translation
quiver (I, 7'). Each of these operations and their duals will be called admissible.
The point x will be called the pivot of the operation.

(i) Let teN be arbitrary, and I, denote the following translation quiver,
isomorphic to the Auslander-Reiten quiver of the full ¢ x ¢ lower triangular
matrix ring

Fig. 1.




INDECOMPOSABLE MODULES OVER MULTICOIL ALGEBRAS 37
We let I be the translation quiver having as points those of I', those of I,

additional points z;;and x;(wherei 2 0,j = 1), and having arrows as in the figure
shown below

Fig. 2

The translation 7' is defined as follows: t'z;; = z; .y ;_ifi 2 2,j 2 2,7z = x;—¢
ifi > 1,7'(t " 'x;) = x| provided x; is not injective in I', otherwise x; is injective in
I'". For the remaining points of I" (respectively, I',) t’ coincides with the transla-
tion 7 of I' (respectively, I).

(i) I'" is the translation quiver having as points those of I' and additional

points denoted by p, z;; and x; (where i = 1, j = 1), and having arrows as in the
figure shown below (see fig. 3).
The translation 7’ is defined as follows: p is projective-injective, 7'z;; = z;_ ;1 if
i22,j22 tzp=x;,fi21, vz =9, fj22, 'x;=2_,,if i22,
Ux}y = y,, (" x;) = x| provided x; is not injective in I', otherwise x; is injective
in I'". For the remaining points of I'"', 7’ coincides with the translation t of I.

(iii) I" is the translation quiver having as points those of I' and additional
points denoted by x, = p, z;;and x;(wherei =2 1,1 < j < i),and having arrows as
in the figure shown bclow.

Fig. 3.
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If t is odd

Fig.4

If t is even

Fig. S.

The translation 7’ is defined as follows: p is projective, t'z;; = z;_ j—; if i 2 2,
25j<Si, vz =xi-, f i1, 'xi=y f 1SiZt, t'xi=2z_,, if i>t¢
7(t7'x;) = x} if i = t provided x; is not injective in I', otherwise x; is injective in
I''. Observe that x;_, is always injective. For the remaining points of I”, 7’
coincides with the translation t of I'.

DEFINITION. A translation quiver is called a coil if there exists a sequence of
translation quivers Iy, I'y,..., I, = I' such that I'; is a stable tube and, for each
0 < 1<mT;,, is obtained from I'; by an admissible operation.

Observe that this use of the term coil deviates from its use in [3]. The present
notion of coil is clearly a natural generalisation of the notion of tube. Coils occur
frequently as Auslander-Reiten components of algebras of polynomial growth.
The following is an example of a simply connected algebra of polynomial growth
having a coil as Auslander-Reiten component. Let A be given by the quiver
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Fig. 6.

boundbyaf = y6,Au = 0,vf = 0,78 = 0,ap = 0,p{ = 0,0 =0,Ep =0ex =0,
and ¢£{ = Ykw. Indeed, the unique component I', containing all the indecom-
posables projectives which are not preprojective is the following coil (Where we
identify along the vertical dotted lines, see fig. 7)

ReEMARK. It is not hard to prove, using vector space categories methods [21],
thatif I" is a standard component of the Auslander-Reiten quiver of the algebra A4,
then to each admissible operation transforming I into I'" corresponds an oper-

ation on A which yields a new algebra A’ such that I’ is a standard component of
the Auslander-Reiten quiver of 4, see [4].

2.2. DEFINITION. Let A be an algebra, a component I' of I', is said to be
a multicoil if I' contains a full subquiver I'" such that:

(i) I is a finite disjoint union of standard coils.

(ii) every point I'\ I"" is directing in mod A.

Accordingly, we can define
DEFINITION. An algebra A is said to be a multicoil algebra if, for any cycle
M=My-M;—>...-M=M
in mod A4, the indecomposable modules M; all lie in one multicoil of I',.

This clearly implies that the M; actually lie in one (standard) coil of the
multicoil to which they belong. The following is an example of a multicoil
algebra. Let 4 be given by the quiver:
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Fig. 8. s

fal ™
™
o

bound by affy = 0, %'’y =0, Au=vn, ¢ =0,0¢ = 0,0y =0and ky = 0.

A notion of coil algebra, using the earlier definition of coil, was introduced in
[3]. It is easily seen that a coil algebra in the sense of [3] is in particular
a multicoil algebra in our present sense. Thus, all examples of coil algebras given
in [3] are also examples of multicoil algebras. In particular, iterated tilted
algebras of euclidean type, tame tilted algebras of wild type, algebras tilting-
cotilting equivalent to tubular algebras are multicoil algebras. A representation-
finite algebra is a multicoil algebra ifand only if it has a directed module category.

2.3. We shall need the following results from [4].

(a) Let A be a multicoil algebra, and B be a full convex subcategory of A. Then
B is a multicoil algebra.

(b) Let 4 be a multicoil algebra, and J be a stable tube of I',. Then the
support algebra of 7 is convex in A.

(c) Let A be a multicoil algebra. Then A is triangular.

(d) Let A be a representation-infinite multicoil algebra. Then A contains
a tame concealed full convex subcategory.

2.4. In many situations, we shall construct cycles at least one of whose
morphisms lies in the infinite power of the radical of the module category.

DEerFINITION [3]. An algebra A is said to be cycle-finite if, for any cycle
M=M, LM LMo . LsM=M
in mod A, we have f;¢rad®(mod A) forall 1 £i <t

All multicoil algebras are cycle-finite, whereas there are cycle-finite algebras
which are not multicoil algebras: indeed, any representation-finite algebra is
cycle-finite. By [3] (1.4), any cycle-finite algebra (and in particular any multicoil
algebra) is tame.

2.5. Clearly, any quotient of a cycle-finite algebra is also cycle-finite. We shall
now show that any full subcategory of a cycle-finite algebra is cycle-finite.



INDECOMPOSABLE MODULES OVER MULTICOIL ALGEBRAS 41

LEMMA. Lei A be a cycle-finite algebra, and B be a full subcategory of A. Then
B is cycle-finite.

PrOOF. Assume that B is not cycle-finite and let
M=M0L>M1—>...—> -1 -i—bM,=M

be a cycle in mod B such that f; erad® (mod B). Denote by E,: mod 4 — mod
B the restriction functor associated to the full embedding E: B — A, and by E;;
mod B —» mod A4 a left adjoint to E, such that E _E; > 1,,.45. Then, for each i,
E;(M,) is an indecomposable A-module and

EM) = E;(Mo) =L E,(My) > ... » E;(M,_ ) =22 Ex(M,) = Ey(M)

is a cycle in mod A. We claim that E,(f;)erad®(mod A). Indeed, since
f1erad® (mod B), then, for each t > 0, f; can be written as a linear combination
of compositions of ¢t non-isomorphisms in mod B. Since E; is a k-linear functor,
E,(f1) can be written as a linear combination of compositions of ¢t non-isomor-
phisms in mod A. This shows our claim, which contradicts the cycle-finiteness of
A.

2.6 LEMMA. Let A be acycle-finite algebra, and X be an indecomposable sincere
A-module lying in a stable tube of I',. Then

(i) Hom (M, X) = Hom, (M, X) for any A-module M,

(i) Hom ,(X, M) = Hom, (X, M) for any A-module M.

PROOF of (i). Suppose that f = 0 for some non-zero morphism f: M — X.
Then f factors through an injective A-module, and there exists an indecompos-
able injective A-module I such that Hom4(I, X) & 0. Thus we have a cycle of
non-zero non-isomorphisms I - X — I in mod A. Then, by our assumptions,
I and X must belong to the same component of I' 4. This however contradicts the
fact that X belongs to a stable tube.

2.7. LEeMMA Let A be a cycle-finite algebra and X be an indecomposable module
lying in a stable tube of T4 such that, for all t =2 0, 17'X is sincere. Then

(i) If P is an indecomposable projective A-module then, for any t =0,
Hom,(z™'P,77'X)+ 0

(i) If I is an indecomposable injective A-module then, for any s = 0, Hom,
(*X,7°I) £ 0.

ProoF OF (i). This is done by induction on t. By (2.6) and the sincerity of X, we
have

Hom,, (P, X) = Hom, (P, X) £ 0
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which shows the statement for ¢t = 0. Let t = 1. It follows from the argument used
in the proof of (2.6) and the fact that A is cycle-finite and has a sincere indecom-
posable lying in a stable tube of I',, that 4 has no projective-injectives. Hence P is
not injective and t~'P # 0. By the Auslander-Reiten formula, we have

Hom,(t"!P,77'X) 3 Hom,(P,X) £ 0

which implies that Hom, (1" !P,7~'X) 4 0. Assume now that the statement
holds for t. In particular, T ~'P # 0. We claim that t ~*Pis not injective. Indeed, by
(2.6) and the sincerity of t ~'X, we have

Hom, (t*P,7"'X) 5 Hom, (t 'P,7'X) % 0

thus t~'"!P 4 0. Therefore, by the induction hypothesis and the Auslan-
der-Reiten formula, we obtain

Hom, ("' 'P,v """ 'X) 3 Hom,(: "'P,7"'X) # 0
which implies that Hom, (" "'P,77'"'1X) % 0.

ReMARK. Ifastable tube I of I', contains an indecomposable sincere module
Y, then there exists X € 7 such that, for all ¢t = 0, T 7*X is sincere [21] (3.1).

2.8. LEMMA. Let I" be a multicoil in an algebra A such that there is no path of
irreducible morphisms in I' of the form

I=M0—"M1"‘)...—)M1=P

with I injective and P projective. Then I is a standard tube which may contain
projectives or injectives but not both.

ProoF. Let I' be a full subquiver of I' which is a finite disjoint union of
standard coils such that I'\I" consists of directing modules. Let also I'” ¢ a stan-
dard coilin I'". Then I'” is obtained from a stable tube by a sequence of admissible
operations. Assume that in this sequence we have used either operation (ii) or
operation (iii) or their duals. Then there results a path of irreducible morphisms
in I'" from an injective indecomposable to a projective indecomposable. More-
over, if X = I is the new injective (respectively, X = P is the new projective)
created in this process, then the support of Hom (X, —) in its component contains
a full subcategory of the form shown in fig. 9.

Thus X cannot be the pivot of the next admissible operation and so I'” contains
a path of irreducible morphisms from an injective indecomposable to a projective
indecomposable. This shows that I'” is obtained from a stable tube by a sequence
of applications of (i) and its dual. However, if in this sequence, we have used both
(i) and its dual, we again obtain a path of irreducible morphisms from an
indecomposable injective to an indecomposable projective. Thus I'” is obtained
from a stable tube by a sequence of applications of either (i) or its dual. Thatis, I'”
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Fig. 9.

is a tube which is either stable, or contains injectives or projectives, but not both.
Assume that I'” is a stable tube. Then I' = I'” because, if this is not the case, then
there exists a projective P e(I'\I'"), (respectively, an injective I € (I'\I"")o) which
has a summand of its radical (respectively, of its socle factor) in I'” and therefore is
not directing, a contradiction. Finally, assume that I'” is a tube containing only
projectives (the other case being dual). It follows from the hypothesis that no
injective I € I'y has a summand of its socle factor in I'”. But then, if I' 3 I'”, then
I'\I" must contain a projective with radical summand in I'" which is not
directing. This also yields a contradiction, because such a projective should then
belong to I'" = I'". Consequently, I' = I'".

2.9. COROLLARY. Let A be a multicoil algebra having a sincere indecomposable
lying in a stable tube, then all multicoils in I 4 are standard tubes which may contain
projectives or injectives but not both.

Proor. Let X, be a sincere indecomposable A-module lying in a stable tube
and suppose I' is a multicoil of I',. If I" does not satisfy our claim, then by (2.8),
there exists in I' a path of irreducible morphisms

I=My-M,—>...oM=P

with I injective and P projective. Since X is sincere, Hom,(X,I) # 0 and
Hom, (P, X) # 0. Consequently we have a cycle in mod A

X—->I=My-M;-»...-M=P->X.

Since X lies in a stable tube (thus not in I'), we obtain a contradiction to the fact
that the multicoil algebra A is cycle-finite.

2.10. COROLLARY. Let A be a multicoil algebra having a sincere indecomposable
module lying in a stable tube, then any component of I'  may contain projectives or
injectives, but not both.
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PrOOF. Let I' be a component of I', containing both a projective module
P and an injective module I. Let J be a stable tube of I'y containing an
indecomposable sincere module X. By (2.7), Remark, we may assume that all
modules in the t-orbit of X are sincere. In particular, since J is stable, then
g % I. By (2.9), I is not a multicoil. By definition of a multicoil algebra, this
implies that I" does not contain t-periodic modules since I" contains a projective
and, by (2.7), t°I % 0 for all s > 0, there exists a path 5] —... - P’ with P’
projective. Applying (2.7), we have a cycle

Xo.. oX->518I>... 5P >5X

again a contradiction.

3. Enlargements of cycle-finite algebras.

3.1. LEMMA. Let C be a tame concealed algebra, and M be a C-module such that
C[M] (respectively, [M]C) is tame. Then M has no non-zero preprojective (re-
spectively, preinjective) direct summand.

ProOF. Suppose that M has an indecomposable preprojective direct sum-
mand N¢. We claim that there exists an indecomposable preinjective C-module
X such that dim;, Hom¢(N, X) = m = 3. This is well-known if C is hereditary. If
not, there exist a hereditary algebra H, and a preprojective tilting module Ty such
that C = End Ty. Since N = Homy(T, N') for some indecomposable preprojec-
tive module Ny, and there exists anindecomposable preinjective module X}, such
that dim, Hom,(N', X’) =m = 3, our claim follows from the fact that if
X = Homg(T, X’), then Hom¢(N, X) = Homg(N’, X').

Since the vector space category Hom(M, mod C) contains Hom¢(N, mod C)
then mod C[ M] contains, by [20] (2.4), a full subcategory of the form mod H,
where H is a wild hereditary algebra given by m parallel arrows, with m > 3, and
this contradicts the tameness of C[M].

3.2. LEMMA. Let B a tubular algebra and

indB=9’gv.9'gv< v ff)vffov.@fo
qeQ*

be the standard decomposition of ind B. Let M be a B-module such that B[M]
(respectively, [M]B) is tame. Then all indecomposable summands of M belong to
TEB v 28 (respectively, ¢ v T2).

PrOOF. Suppose that N is an indecomposable direct summand of M which

doesnotliein 72 v 2% LetpeQ* besuchthat Ne258 v 78 v| v I8 ). Take
0 q

q<p
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a non-zero morphism f: N — I, with I indecomposable injective. Then, by [21]
(5.2),Ie 72 v 2%. Moreover, I 5 is a family (7 5(4))zcp,a Of pairwise orthog-

onal tubes separating Z¢ v I v ( v I fl’) from{ v 77 |v 72 v 22. This
q<p q<p

implies that f: N — I factors through any of the tubes 7 }(4), Therefore, the

vector space category Homg(N, mod B) contains infinitely many pairwise or-

thogonal objects of the form Homg(N, X;), with X, € .7, ,f. Hence B[N] is wild,

a contradiction to the tameness of B[ M].

3.3. LEMMA. Let B a truncated branch extension (respectively, coextension) of
a tame concealed algebra, M be a B-module whose indecomposable direct sum-
mands lie in T § (respectively, 7 B) and assume that BLM] is cycle-finite. Then M is
indecomposable and lies on the mouth of a tube in I respectively, T B).

PrOOF. Suppose that M is decomposable. It follows from the argument in
[20] (3.6) and the tameness of BfM] that M = M; ® M,, where both M; and M,
lie on the mouths of tubes in J&. Then the vector space category
Homg(M, mod B) contains a subcategory formed by the disjoint union of two
linearly ordered sets Hompg(M,M,;) > Homg(M,N) and Homg(M,L,)—~
Homg(M, L,) » Homg(M, L3) — ... where N is such that there exists an irreduc-
ible morphism M; — N,and L, L,, L3 ... lie on the sectional path starting in M,
and pointing to infinity.

By the same argument as in [2] (3.1), we obtain a contradiction to the
cycle-finiteness of B[ M]. This shows that M is indecomposable.

Assume now that M does not lie on the mouth of a tube in I's. Again, it follows
from the argument in [20] (3.6) and the tameness of B[M] that the Auslan-
der-Reiten sequence in mod B starting with M has two indecomposable middle
terms one of which lies on the mouth of a tube. Then, by [1] (3.1), we obtain
a contradiction to the cycle-finiteness of BLM]. The proof is complete.

3.4. LEMMA. Let C be a tame concealed algebra, and D be a subcategory of the
form

Fig. 10. €

where t 2 0, the full subcategory of D formed by the objects a,, b, ¢ is hereditary,
unoriented arrows may be oriented arbitrarily, and the full subcategories Dy and D,
of D consisting of all objects of D except b and c, respectively, are truncated branch
extensions (respectively, coextensions) of C. Then D is not cycle-finite.
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Proor. We may assume, by duality, that a, is an extension point of c. We shall
first show that we can assume the arrow between g, and ¢ to be oriented as ¢ — q,.
Indeed, if this is not the case, let T, be the APR-tilting module corresponding to
the sink ¢, and D’ = End Tj,. Then the full subcategories of mod D and mod D’
consisting of those modules not having S(c) as a summand are equivalent. Since
S(c)p is simple projective, while S(c),- is simple injective, they never occur in cycles
in the respective module categories. Consequently, D is cycle-finite if and only if
D’ is. This shows our claim.

Then D is a one-point extension of B = D, by an indecomposable module
M lying in a tube J of Z2, and the full subcategory of Homg(M, mod B)
consisting of all objects Homg(M, X) & 0, with X € 7, is of the form

HOmB(M, Lo) g HOmB(M,Ll) - HOmB(M, Lz) ->...

T T i
HOmB(M, M) = HOmB(M, No) e HOmB(M, Nl) - HOmB(M, N2) - ...

If then follows from [1] (3.1) that D = B[ M] is not cycle-finite.

3.5. LEMMA. Let B a domestic truncated branch extension (respectively, coex-
tension) of a tame concealed algebra C, and M be an indecomposable preinjective
(respectively, preprojective) B-module. Assume that [ M]B (respectively, B{M]) is
cycle-finite. Then [ M] B (respectively, BLM])is a truncated extension (respectively,
coextension) of C.

ProoF. Assume that B is a domestic truncated branch extension of C, M is
preinjective, and [ M]B is cycle-finite. We claim that the largest C-submodule
M|¢ of M is zero, and thus the support of M lies on a branch K of B. Indeed, if
M|c # 0, it follows from the structure of the preinjective component of B (see
[21])that M| is a preinjective C-module. But this implies, by (3.1), that [M|c]Cis
wild. Therefore [ M]B s also wild, a contradiction to the fact that it is cycle-finite.
This completes the proof of our claim.

Let 7 be the tube of 7@ containing the indecomposable projective modules
P(x), x € K. Each point of K is connected to C by a unique (non-zero) walk in K.
We may thus assume that the support of M lies within the interval in K from b, to
bar+1.

22r01

/hl\\ /Pg/zil
1, L, N Ly Lae

Flg 11. \\/ v \\/ Lare1

b, b, b2e

where r = 0, and by is closer to C than all by(j = 1). For I =i < 2r,lct L; denote
the walk in the above interval between b; _, and b;. Let a (respectively, ¢) be the
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point in Supp M whose distance to C is minimal (respectively, maximal). We may
assume that a lies on L, or Ly, and con L,, or L,,, ;.

First, suppose that either ae L{\{bo,b,} of else a = b, and is an extension
point of C (that is, rad P(a) has a simple regular C-module as an indecomposable
direct summand). If a =c and rad P(a) is indecomposable then [M]B is
a one-point coextension of B by the simple module S(a), hence is a truncated
branch extension of C and we are done. Otherwise, we have two cases to consider.
Suppose a # ¢ and rad P(a) is indecomposable. Then let [M]B have e as
a coextension point. The full subcategory of [M]B consisting of C, e together
with the walk in K from C to the neighbour a’ of a such that there exists an arrow
a’ — a, satisfies the conditions of (3.4), which gives, by (2.5), a contradiction to the
cycle-finiteness of [M]B.

Fig. 12.

If now rad P(a) is decomposable, then a is the source (in B!) of two arrows, one
of which lies on L; and the other, a — a”, outside. Then the full subcategory of
[M]B consisting of C, e together with the walk in K from C to a” (containing b,
and q) satisfies again the conditions of (3.4), hence another contradiction (see fig.
13 below).

We may assume that ae L, (indeed, the case where a = b, but is not an
extension point of C, is equivalent to the case where a = b,). Suppose thata = b;.
Weclaim that ¢ = b, and is a sink of B. Indeed, if this is not the case, then there are
two possibilities. If c ¢ L,, then there is an arrow in [M]B of the form b, — e such
that, if b, - b, is the arrow on L; with target b,, then the composition
b, - b, — eisnon-zero. Thus the full subcategory of [M]B consisting of C, e and
the walk in K from C to b, satisfies the conditions of (3.4), hence again a contra-
diction.
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Fig. 13.

Fig. 14

If ce L, and is not a sink, then, since K is truncated, there exists in B an arrow
¢ — ¢’ such that B(a, ¢') % 0. Therefore, [ M]B contains an additional arrow ¢ — e
and the full subcategory of [M]B consisting of C, e and the walk in K from C to ¢’
satisfies the conditions of (3.4), hence again a contradiction.

We have shown that c € L, and is a sink, thus ¢ = b,. But this clearly implies that
[M]Biis a truncated branch extension of C. This completes the proof in the case
where a = b,.

There remains to consider the case where ae L,\{b,}. We shall show that in
this case, M is a regular B-module, which would contradict the hypothesis. Let
Z denote the sectional path starting from P(a) and pointing to the mouth. There
are two cases to consider.

(i) IfceL,,+1\{ba},let U = 0if P(c)is uniserialand U = P(d)if K contains an
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Fig. 15.

arrow ¢ — d not on L,, , ;. Then M lies at the intersection of 2 and the sectional
path starting from P(c)/U and pointing to infinity. This follows from the structure
of the tube 4 which is obtained from a stable tube of I'c by successive ray
insertions involving the projectives corresponding to the points of K, see [14].

(ii) Ifce Ly, \{bs, -} (indeed,ifc = b,,_,then we are in a case equivalent to (i)
with ¢ = b,, 4 ), then, similarly, M lies on the intersection of X and the sectional
path starting from S(c) and pointing to infinity.

The proof of the lemma is now complete.

3.6. LEMMA. Let B be a tame truncated branch extension of a tame concealed
algebra C, and let a, b be two distinct objets of B. Let D be a triangular category of

where a,,...,a, 1 &€ By for m = 1. Then D is not cycle-finite.

Fig. 16.

ProOF. Let B,,..., B, be the set of all arrows of source a,, = b, and D be the
quotient of D by the ideal generated by «,, (1 S i < p)and a,o, (1 Sr <m).
Clearly, if D is not cycle-finite, then D is not cycle-finite either. We shall thus
construct a cycle in mod D one of whose morphisms lies in the infinite power of
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the radical. Since B is tame, it is either a representation-infinite tilted algebra of
euclidean type having a complete slice in its preinjective component, or a tubular
algebra (1.3). Hence there exists in mod B a path

Pg(a) SN No— N, —...N; - Ig(b)

where g erad®(mod B). Since mod B is fully embedded in mod D, this is also
a path in mod D, and g erad®(mod D). We shall consider three cases:
(i) Assume that m > 1. Then we have a path in mod D

Ig(b) = Ip(b) = S(am—1) = Pp(@m-2) = S(@m—2) = ... = S(a;) = Pp(a) » Pg(a)

where Ip(b) (respectively, Ig(b)) denotes the injective envelope of S(b) in mod D
(respectively, mod B), mod Pp(a;) denotes the projective cover of S(a;) in mod D,
for each 0 < i < m — 1, and Pg(a) denotes the projective cover of S(a) in mod B.
Composing with the first path, we obtain the required cycle.

(ii) Assume that m = 1 and Homg(S(b)) = 0. By construction of D, the simple
module ko, is a summand of rad Pp(a) and we have an exact §equence

& 0 S(b) —— Ppla) —2— Pya)>0

with the image of i equal to ka;. On the other hand, S(b) =3 soc Ig(b), hence
a monomorphism j: S(b) — Ig(b). Consider the exact commutative diagram

0— S(b) —— Py(a) —2— Pg(a) >0

N

0o Iyb) —— M —2— Pga)—>0

where the lower sequence is Exty,(Pg(a), j)(&). We claim that M is an indecompos-
able D-module. Observe that, by the Five Lemma, u is a monomorphism and
induces an isomorphism soc Pp(a) =¥ soc M. We shall show that, if f: Pp(a) > M
is such that wf £ 0, then f is a monomorphism and consequently
soc(Im f) = soc M. Since Pp(a) is projective, there exists an exact commutative
diagram in mod D

7] Pp(a)
Lr
I5(b) ® Ppla) 245 M -0

Since wf F 0 and wv = 0, we have h + 0. But then he End Pp(a) is an isomor-
phism (because D is triangular). Moreover Ig(b) is a B-module, and so g(a,) = 0.
This implies that f(x;) = vg(a,) + uh(x;) = uh(e;) F 0, since uh is a monomor-
phism. Now the morphisms fi, ui: S(b) - M are non-zero,and Homp(S(b), M) = k.
Thus there exists 0 3 A ek such that fi = A-ui(and hence wfi = A-wui = 1-wyj =
0). On the other hand, the triangularity of D and wf' + 0imply that wf induces an
isomorphism between the simple tops of Pp(a) and Pg(a), and therefore wf is
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surjective. The first exact commutative diagram above gives that soc
Pp(a) = i(S(b)) @ N, where N = soc Pg(a). Since wfi = 0 implies that the restric-
tion of wf to soc Pp(a) annihilates i(S(b)) and dim Pp(a) = 1 + dim Pg(a), then the
restriction of wf to N is a monomorphism. This implies that wf induces an
isomorphism between N and soc Pg(a). Let now f’ denote the restriction of f to

N. Then f'(N) € soc M = u(N) @ ui(S(b)), so [’ = I:i,], with g* N - u(N) and

K': N — ui(S(b)). Since wh'(N) < wui(S(b)) = 0 and wf” is an isomorphism, then ¢’
is a monomorphism. This implies that the restriction of f to N @ i(S(b)) =
soc Pp(a) is a monomorphism, and consequently so is f.

Finally, suppose that M = M’ @ M"” with M’, M” £ 0. Let q: Pg(a) — S(a) be
the canonical epimorphism. Then either gw(M’) & 0 or gw(M") # 0. Assume the
former. Then there exists w": Pp(a) —» M’ such that gww’ + 0. Hence ww’ #+ 0. The
above argument implies that w' is a monomorphism. In particular
dim, (soc M’) = dim,(soc Pp(a)) = dim,(soc M) and consequently soc M’ =
soc M. This contradicts the facts that M’ n M” = 0 and M” + 0. We have thus
shown that M is indecomposable and that we have a cycle in mod D

’

Pg(a) —2— Ny — N; — ... > Ng - Ig(b) —— M —=— Pygla)

where g erad® (mod D).

(i) Assume that m = 1 and Homg(S(b), Pg(a)) + 0. There is thus a non-zero
path y inside B from a to b. Moreover, since the indecomposable projective
B-modules lie in 25 v I and Homp(%42, 28 v 7F) = 0, then S(b)e 28 v T&.
Consider the Galois covering F: R — D with infinite cyclic group of the form

ali-1]) al1] ali+1)
Fig. 17. bryoyy A1) b1] af1d 4417 al142]

Bli-1] B(1] B[1+1] B(1+27

where B[i] (respectively, al i], bli], a[i]) denotes the copy of B (respectively, a, b a)
indexed by ieZ. We claim that R is not cycle-finite which will imply (upon
applying the push-down functor F;: mod R — mod D) that D is not cycle-finite
either. Let A denote the full subcategory of R consisting of all objects of B = B[0]
and a[1]. By definition of D, the restriction of Pg(a[1]) to B[0] is the simple
module S(b) = S(b[0]) at b = b[0]. Hence A = B[S(b)]. If S(b)e 2?5, then
A = B[S(b)] is wild and consequently R is not cycle-finite. Assume that S(b)
belongs to a tube 7 of 7&. If S(b) does not lie on the mouth of 7, then, by (3.3),
A is not cycle-finite and consequently neither is R. Thus let S(b) lie on the mouth
of 7. By (1.4), A is a truncated branch extension of C. Now, since, for eachie Z,
there is a non-zero path y[i] inside B[i] from a[i] to b[i], let E denote the full
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subcategory of R consisting of B = B[0], b = b[0] and all a[i], b[i] with i > 1.
This subcategory may contain double arrows (in case the full subcategory of
B consisting of a and b has as quiver a double arrow). Replacing each such double
arrow by a single arrow, E contains a subcategory L of the form

Fig 18. ¢

where the largest C-submodule of P (Cy) is simple regular. T'hen, by the argu-

ment in [2] (3.3), we conclude that L is not cycle-finite. Since L is a specialisation

of E in the sense of [207] (1.2), we infer that E is not cycle-finite, and so neither is R.
The proof of the lemma is now complete.

3.7. LEMMA. Let B be a tame truncated branch extension (respectively, coexten-
sion) of a tame concealed algebra C, M a B-module having an indecomposable
direct summand Y lying in 7 & (respectively, I B) and assume that BLM] (respect-
ively, [M]B) is cycle-finite. Then M =Y.

ProoF. Assume that Bis a tame truncated branch extensionof CM =Y @ M’
with Y € 72 and B[M] is cycle-finite. Observe first that M has no indecompos-
able direct summand lying in 22§ = Z. For, if this were the case, and M| is the
largest C-submodule of M, then, by (3.1), C[LM|c] is a wild full subcategory of
B[M], a contradiction to the cycle-finiteness of B[M]. Then M = M; ® M,,
where all indecomposable direct summands of M, liein &, and M, has no direct
summand lying in . Since the vector space category Homg(M, mod B) fully
contains the vector space category Homg(M,, mod B), it follows from (3.3) that
M, = Y and lies on the mouth of a tube in F2. Moreover, by (1.4), B[Y] is
a truncated branch extension of C and, since B[M] is tame, so is B[ Y]. Suppose
that M, # 0 and let a denote the extension point of B by Y. Then B[M] is
obtained from B[ Y] by adding finitely many arrows « = y,7,,...,7,(t 2 1)from
a to B. Let D be the specialisation of B[M] obtained by deleting the arrows
Y2, - 57 s€€ [20] (1.2). Then mod D is a full subcategory of mod B[ M]. By (2.5),
we deduce that D is cycle-finite. On the other hand, (3.6) implies that D is not
cycle-finite, a contradiction. Then M = Y.

3.8. LEMMA. Let B be a domestic truncated branch extension (respectively,
coextension) of a tame concealed algebra C, M be a B-module having a preinjective
(respectively, preprojective) indecomposable direct summand Y and assume that
[M]B (respectively, BLM]) is cycle-finite. Then M = Y.

Proor. Assume that B is a domestic truncated branch extension of C,
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M =Y @ M’, with Y indecomposable preinjective and [ M]B s cycle-finite. This
implies that [Y]B is cycle-finite. Consequently, by (3.5), [Y]B is a truncated
branch extension of C and obviously is tame. Let a be the coextension point of
[Y]B. Then [M]B is obtained from [ Y] B by adding finitely many arrows f§ = 6,,
02,...,0{s = 1) from B to a. Let D to the specialisation of [M]B obtained by
deleting the arrows d,, ..., d,, see [20] (1.2). Then mod D is a full subcategory of
mod [M]B. By (2.5), we deduce that D is cycle-finite. On the other hand, (3.6)
implies that D is not cycle-finite, a contradiction. Then M = Y.

4. Proofs of the main results.

4.1. THEOREM. Let A be a multicoil algebra. The following conditions are equival-
ent:

(i) There exists a sincere indecomposable A-module X lying in a stable tube of
r,

(ii) A has sincere tubes

(i) A is either tame concealed or tubular.

Proor. Theimplication (ii) = (i) is trivial, and (iii) = (ii) follows from [21] (4.3)
(5.2). We shall show that (i) implies (iii). The proof will be done in several steps.
Let A be a multicoil algebra having a sincere indecomposable module X lying in
a stable tube of I', (in particular, A is representation-infinite). By (2.3) (c)(d), 4 is
triangular and contains a tame concealed full convex subcategory.

4.2. Let C be a fixed tame concealed full convex subcategory of A. Let &,
(respectively, .#) dende the set of all truncated branch extensions (respectively,
coextensions) of C which are full convex subcategories of A. Since A is finite, so
are 4, and A. Let thus B, (respectively, .B) be a fixed maximal element of %,
(respectively, .#). Since A is cycle-finite, so are B, and .B. In the notation of (1.3),
we have ind B, = 28« v 78 v 9% and ind B = #0 v 7 v 2<°. Finally, let
B denote the full subcategory of 4 consisting of all objects of .B and B,.

PROPOSITION. With the above notation, the following statements hold:

(i) B is a convex subcategory of A and any path in B either lies in B, or .B or
intersects C

(i) ind B=2< v (T’ v T v T")where T consists of all tubes of T, con-
taining injective modules (if such tubes exist), " consists of all tubes of T & con-
taining projective modules (if such tubes exist) and  consists of those tubes of
T § which do not contain modules lying in I or T".

(i) For any x ¢ By, P(x)|g is either zero or a direct sum of indecomposable
modules lying in 2§¢.
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(iv) For any x& By, 1(x)|g is either zero or a direct sum of indecomposable
modules lying in 7<..

(v) If .B % C or there exists a one-point coextension of Bin A, then B, = C and
there is no one-point extension of B = B (hence C) inside A.

(vi) If B, & C or there exists a one-point extension of B in A, then .B = C and
there is no one-point coextension of B = B, (hence C) inside A.

In particular, 8, (respectively, . %) contains only one maximal element.

PrOOF. We start by showing that for any x ¢(B.)o, the restriction P(x)|, does
not contain an indecomposable direct summand lying in 2§ v 7 P<. Let first
y4¢(B.)o be a neighbour of B, such that R(y) = P(y)|s, has an indecompoable
direct summand Y € 25 v 7 8. Then y is an extension point connected to B, by
at least one arrow. The full subcategory B,[ R(y)] of 4 is clearly cycle-finite. Then,
by (3.7)(3.3), R(y) = Y and lies on the mouth of a tube of 7 <. But this implies by
(1.4) that B,[R(y)] is also a truncated branch extension of C. We shall show that
B.[R(y)] is convex in A. Suppose that this is not the case, and let E denote its
convex hull. Fix a zero path from y to B, which does not belong to B,[R(y)], and
denote by F the category obtained from E by deleting the remaining zero paths
from y to B, which do not belong to B,[R(y)]. Since 4 is cycle-finite, so are also
E and F. On the other hand, F satisfies the conditions of (3.6) and so is not
cycle-finite, a contradiction. We have shown that B,[R(y)] is a truncated branch
extension of C which is a full convex subcategory of A4, contradiction to the
maximality of B,. Let now y,,..., y, be the set of all neighbours of B, in A which
are extension points of B,, and let D be the full subcategory of 4 consisting of B,
together with the objects y 4, ..., y,. Let x be an arbitrary object of 4 notin B,, and
let R(x) = P(x)|p,. Since any path from x to B, factors through one of the y;,
1 £i £ r, there exists an epimorphism

® P(y)"lp = P(x)lp
i=1
which implies that there exists an epimorphism

® R(y)" - R(x).

i=1
But ind B, = 28 v 78 v 25 and the above discussion implies that the in-
decomposable summands of all R(y;), 1 <i <, lie in 28¢. Since we have no
non-zero morphism from modules lying in 25¢ to modules lying in 28 v &,
the existence of the above epimorphism implies that all indecomposable direct
summands of R(x) are in 2§¢. This completes the proof of our claim.

Dually, for any x ¢(.B)o, the restriction I(x)|.s does not contain an indecom-

posable direct summand lyingin 77 v 2¢..
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We now claim that, for any x & (B.)o, the restriction J(x) = I(x)|p, is zero or has
itsindecomposable summands lying in 8¢ v 72 If B, is tubular, this follows at
once from (3.2) and the tameness of [J(x)]B.. Hence assume that B, is a domestic
truncated branch extension of C. Let first z4¢(B,), be a neighbour of B, and
supose that J(z) = I(z)|5, has an indecomposable direct summand Y lying in 2§,
which is now the preinjective component of B,. By (3.8) (3.5), [J(2)]B, is again
a tame truncated branch extension of C. Applying (3.6) as above, we deduce that
[J(z)]B. is also convex in A, a contradiction to the maximality of B,. Thus J(z) is
either zero, or a direct sum of modules lyingin 258 v 93¢, Let z,,..., z, be the set
of all neighbours of B, which are coextension points of B,, and let D be the full
subcategory of A consisting of B, together with z,...,z,. Let x be an arbitrary
object of 4 which does not belong to B,. Since any path from B, to x factors
through one of the points z,,..., z,, there exists a monomorphism

I(x)lp = @ 1(z)™|p

i=1
which implies that there exists a monomorphism

t
J(x) > & J(z;)™.
i=1
But B, = 28 v 72 v 28 and the above discussion implies that the indecom-
posable summands of all J(z;), 1 < i <t, lie in 28« v 7 8. Since J(x) is a sub-
t

module of @ J(z;), then J(x) is either zero or a direct sum of modules lying in
i=1
PBe v F 2. This completes the proof of our claim.

Dually, for any x ¢(.B)o, the restriction P(x)| g is zero or has its indecompos-
able summands lying in 7<% v 22,

It follows from (2.10) that, if x¢(.B)o and P(x)| 5 has an indecomposable
summand Y in 75, then Y lies in a stable tube of 7752, and therefore P(x)| 5 is
a C-module. Similarly, if x ¢ (B, ) and I(x)|, has an indecomposable summand
Zin &, then Z lies in a stable tube of 7, and hence I(x)|p, is a C-module. This
implies that B is convex, and any path in B either lies in B, or B or intersects C,
hence statement (i).

Moreover, ind B= 25 v (7' v I v I") v 258, where J' consists of all
tubes of 72 containing injective modules (if such tubes exist), 7" consists of all
tubes of 7 ¢ containing projective modules (if such tubes exist) and 7 consists of
those tubes in 7§ which do not contain modules lyingin " and . Further, for
any x ¢ B,, P(x)|p is zero or has its indecomposable summands lying in 25¢.
Similarly, for any x ¢ By, I(x)|g is zero or has its indecomposable summands lying
in 2<8. We have thus shown (i), (iii), (iv).
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Our next claim is that, if there exists a one-point coextension of B in A, then
B, = C and there is no one-point extension of B (hence C) in A. For, if this is not
the case, then there exists an indecomposable injective 4-module I with an
indecomposable summand J of I/soc I lying in 2<8, an indecomposable sum-
mand R of rad P lying in 73 v 2% and a path in mod 4

I-J—->...-R->P.

Since, by hypothesis, A has a sincere indecomposable module X lying in a stable
tube of I',, there exists a cycle in mod A

I-J>...oR>P-L x4,

where f,gerad®(mod A), a contradiction to the cycle-finiteness of A.

Similarly, if there exists a one-point extension of Bin A4, then .B = C and there
is no one-point coextension of B (hence C) in A.

Assume now that B + C. By the above argument, there is no one-point
extension of B in A. Therefore A can be obtained from B by repeated one-point
coextensions using modules whose restrictions to B are zero or have their
indecomposable summands lying in 2<%, and extensions using modules whose
restrictions to B are zero. Then, since A has a sincere indecomposable X, we
deduce that B, = C and consequently B = .B.

Similarly, if B, + C, then .B = C, B = B, and there is no one-point coextension
of B inside A.

This proves (v) and (vi). Moreover, the previous analysis shows also that B, and
B are the unique maximal elements of 4, and .4, respectively. This completes the
proof.

4.3. LEMMA. With the notation of (4.2), assume that B, (respectively, .B) is
a tubular algebra. Then A = B, (respectively, A = .B).

Proor. By duality, we may assume that B, is tubular. By (4.2) (vi), B = C and
B = B,. From [21] (5.2), B is also cotubular, that is, is a truncated branch
coextension of a tame concealed full convex subcategory C' # C of A. Moreover

indB=22vIgv ( v .7:) v 78 v 98 . Since, by (4.2) (vi), B has no coex-
qeQ*
tensions inside 4, then B is maximal truncated branch coextension of C'. By (3.2)

and (2.10), for any x ¢ By, P(x)| is zero or has its indecomposable summands
lying in stable tubes of 72 or in 22 . By (4.2) (v) applied to C’, we infer that B has
no one-point extensions in A, and therefore 4 = B is tubular.

4.4. Itfollows from (4.3) that we may assume that 4 does not contain a tubular
algebra as a full convex subcategory. Therefore, for any tame concealed full
convex subcategory C of A, the algebra B, (respectively, .B) is a representa-
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tion-infinite tilted algebra of euclidean type with a complete slice in its preinjec-
tive) component. Theorem (4.1) is now an immediate consequence of (4.2), (4.3)
and the following proposition.

PROPOSITION. Let B be a full convex subcategory of A which is a tilted algebra
of euclidean type having a complete slice in its preinjective (respectively, preprojec-
tive) component. Assume that B has no coextensions (respectively, extensions) in
A and that, for any one-point extension B[{M] (respectively, coextension [M]B) of
B in A, M is preinjective (respectively, preprojective). Then A = B and is tame
concealed.

PrOOF. We may assume, by duality, that B has a complete slice in its preinjec-
tive component, no coextensions in 4, and for any extension BLM] of Bin 4, M is
preinjective. Then the preprojective and regular components of I'y are full
components of I',. Let ae 4y, a¢ By, be such that there exists at least one arrow
a — b, with b € B, and the restriction M = P(a)|pis non-zero and preinjective. We
may assume that M has an indecomposable summand which is minimal with
respect to the natural order of the preinjective component. Since 4 has only
finitely many indecomposable projectives, there exists a complete slice & in the
preinjective component of I'y such that, for any projective A-module P(c) with
P(c)|g non-zero and preinjective, the direct summands of P(c)|z are successors of
all modules in <.

Let I" be the component of I'y containing P(a). Then I' fully contains the
translation subquiver of the preinjective component of I's consisting of & and its
predecessors. Since this subquiver is infinite, and, by (2.9), multicoils in I', are
standard tubes, I is not a multicoil. Thus I consists of directing modules. On the
other hand, by (2.10), since P(a) € I'y, then I' contains no injective 4-modules. In
particular, for any Uel, and s = 0, we have 1 *U # 0. By [24], I has only
finitely many t-orbits. Since I' has no cycles, some projectives and no injectives, it
must contain a full translation subquiver X such that X is a set of representatives
of the t-orbits of points in I', and X, is a set of representatives of the g-orbits of
arrows in I, that is, X is a section in the sense of [8] (2.5). Let F be the support
algebra of Z. We shall show that F is a tilted algebra such that the set of all
indecomposables U € X, considered as F-modules, is a complete slice in mod F.
In order to show it, we shall first prove that I is a full component of I'r and is
convex in mod F.

Let KeTl, be a predecessor of Z. If K is not an F-module, there exists
x € Supp K such that x ¢ Fy. However, Hom 4(K, I(x)) # 0 and in fact there exists
anon-zero morphism f: K — I(x) lying in rad* (mod A). By [19] there exists, for
each ¢t > 0, a path in mod 4

K=K0L*K1—-f—z—>K2—+...—+K,_l —I‘—-»K,—g—‘—»I(x)
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with the f; irreducible and g, f,... f2f; + 0. Since there clearly exists ¢t > 0 with
K,eZ,, we obtain a contradiction to the assumption that x ¢ F,. Similarly, let
Lerl, be a successor of X. If L is not an F-module, then there exists y e Supp
L such that y ¢ F,. Since Hom 4(P(y), L) + 0, we have two cases. If any non-zero
morphism P(y) — Lbelongs to rad® (mod A), the argument dual to the one above
yields a contradiction. Otherwise, if there exists a non-zero morphism P(y) —» L
lying in a finite power of the radical of mod A, then in particular P(y)eI', and
there exists a path of irreducible morphisms from P(y) to L with non-zero
composition which certainly factors through a module in X. We have thus shown
that I consists of F-modules, and so is a full component.

We shall now show that F is convex as a full subcategory of A. If this is not the
case, then there exists a path a; —— a, —»... 2%=% g,(m = 3) in Q,, such that
aj,a,eFobuta;¢ Foforalll <i <m.Leta; = 4, f,,... B, beall the arrowsin
Q,froma,toa,anda,,_, =74,y,,...,7 beallthearrowsin Q ,froma,,_; to a,.
Denote by I' the two-sided ideal of k Q , generated by all paths of the form 9, dy;
forée(Q,);,1 £i<s,1<j <t Letldenote the definingideal of 4 and consider
A" =kQ,/(I + I'). Any indecomposable F-module is also an 4’-module. Let
P'(a,) denote the projective cover of S(a;) in mod A4’, and I'(a,) denote the
injective envelope of S(a,,) in mod A'. Let U(1 < I < m — 1) denote the uniserial
A’-module of length two having S(a;) as a top, and S(a,+) as a socle. Then we
have a path in mod 4’

I'(am) = S(@m-1) > Un-2 = S(@m-2) > ... > U, > S(a;) > P'(a,)

where the morphisms are the obvious ones. Since F is the support algebra of
2 and a, € F, then there exist an indecomposable Ve X, and a non-zero mor-
phism P'(a;) —» Vinmod A’ (and thus in mod A). Similarly, there exist W e £, and
a non-zero morphism W — I'(a,,) in mod A’ (and thus in mod 4). Both mor-
phisms actually lie in rad*(mod A). Indeed, a, € Supp P'(a,) but a, ¢ F, so that
P'(a,) is not an F-module. In particular, P'(a,)¢ F,. Similarly, I'(a,)¢I,. By
[19], there exists, for each t > 0, a path in mod A
W= Wy "o Wy 2o Wy~ Wiy o W, I'(ay)

with the g; irreducible and f,g,...g,.9; + 0. Since I has finitely many z-orbits, no
periodic 7-orbits and no injectives, then there exist s,z > 0 and a pathin I

V=Vy-V-o..-V,=W,.
We have thus constructed a cycle in mod 4
I'(a,) = S(p-1) > Up-2—>... > 8(ay) > Pay) - V=
Vo—...> V.= W, -1t I'(a,,)

where f;erad®(mod A), a contradiction to the cycle-finiteness of 4.
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We shall now deduce that X is convex in mod F.

Let Wo — W, -2 .. > W,_, "% W, be a path in mod F such that
Wo, W,,e Xy but W, ¢ X Since F is convex in A, all the W, are also 4-modules and
this path also lies in mod A4. Since X is convex in I', there exists 1 < j £ m such
that W,,... W;_ eI, but W;¢T,. Then h;erad®(mod 4) and there exists, for
each t > 0, a path in mod F

Wiy =Uy 25U 25 Uy»...U_, 25U, Low,
with the g;irreducible, f,erad*(mod A)and f;g,...g,9; # 0. Since I" has finitely
many t-orbits, no periodic t-orbits and no injectives, there exist s,t = 0 and
apathin I

Wm = Vo—* Vl ... l/s= Ut‘
We have thus constructed a cycle in mod A

Wo=VooVio...oV.=U Low 2 LW,

J

with f;erad®(mod A), a contradiction.

This completes the proof that X is convex in mod F. Since it clearly satisfies the
remaining conditions for a complete slice, F is a tilted algebra. Since F is a full
convex subcategory of 4, it is a tame tilted algebra having a complete slice in
a component I" having finitely many t-orbits, no periodic t-orbits and no
injectives. It then follows from [17] (4.1) (4.2) that the right end algebra of F is
connected and is a tilted algebra of euclidean type with a complete slice isomor-
phic to X in the preprojective component. However, since 2 properly contains
a full connected subquiver with the same underlying graph as the slice & of the
preinjective component of I'g, then X is a wild slice.

This contradiction shows that 4 = B. Since A4 has a sincere indecomposable
lying in a stable tube, and Bis a tilted algebra of euclidean type having a complete
slice in its preinjective component, then B = A is tame concealed (by [21] (4.9)).

4.5. COROLLARY. Let A be a multicoil algebra, and I be a stable tube of T ,.
Then the support algebra of T is a full convex subcategory of A which is tame
concealed or tubular, and has  as a full component.

ProoF. The support algebra B of 7 is a full subcategory of A which is, by (2.3)
(b), also convex. By (2.3) (a), B is a multicoil algebra and obviously has the tube
J as a full component, and a sincere indecomposable module in . By (4.1), Bis
tame concealed or tubular.

4.6. THEOREM. Let A be a multicoil algebra. Then A is of polynomial growth.

Proor. We may obviously assume that A is representation-infinite. Since A is
a multicoil algebra, it is tame. Let d € Ko(A) be such that u(d) > 0 and B denote
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the support algebra of d. By [12], B has a homogeneous tube containing a sincere
indecomposable module. By (4.5), B is a full convex subcategory of 4 which is

mp
tame concealed or tubular. In particular, u,(d) = us(d) < (Z d,-) for some
ieBo
mg > 0. Thus, let m denote the maximum of mgz when B ranges over all tame
concealed or tubular full convex subcategories of A. Since A4, is finite, so is the set

of all such mg. Then, for any de Ky(A4), we have p,(d) < ( ¥y di> .

icAo

4.7. COROLLARY. A multicoil algebra A is domestic if and only if it does not
contain a tubular algebra as a full convex subcategory.

Proor. If 4 contains a tubular algebra as full convex subcategory, it is not
domestic (by [21] (5.2) or [23] (3.6)). Conversely, if A does not contain a tubular
algebra as a full convex subcategory, then all full convex subcategories of A with
sincere tubes are tame concealed algebras. It then follows from the proof of (4.6)
that A is domestic.
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