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HA-PLITZ OPERATORS BETWEEN
MOEBIUS INVARIANT SUBSPACES

GENKAI ZHANG

§0. Introduction.

Let D be the unit disk in the complex plane equipped with the Lebesgue measure
dm. For a« > —1, denote by du, the weighted measure (1 — |z|%)* dm(z). The
Moebius group SU(1, 1) acts unitarily on the Hilbert space I?(D, du,) via

0.1) USHD: f(2) » f($2) ¢/ ()T, peSU(L,1).

This gives a (projective) representation of the group SU(1, 1) (for « not integer,
a genuine representation of the universal covering group of SU(1, 1)). For a not
an odd integer, the corresponding irreducible decomposition of the representa-
tion and Plancherel formula were given in [10]. It is proved that there are

[a -; ! ] + 1 discrete irreducible components of the group action. We denoted
o+ 1
2
Bergman space A*?(D). The group action (0.1) on A*?(D) is equivalent to
U®*2-2) on A4*~242(D). These spaces are eigenspaces of invariant Laplace
operators with eigenvalues in the discrete spectrum. They can also be defined via
certain iterated Cauchy-Riemann operators (see below). In this paper, we are
going to study a certain kind of “higher weight” Ha-plitz operators from 4*2(D)
to A?2(D). These operators constitute the ! many irreducible components of
A*?(D) ® A%*(D) viewed as the space of Hilbert-Schmidt operators between
these two spaces. We develop the Schatten-von Neumann properties of these

operators.

In the companion paper [14] concrete realizations of discrete parts of tensor
products of two holomorphic discrete series representations are obtained via the
analysis of the Casimir operators. Its connection with the present paper is
indicated in §3.

these spaces by 472 (D), where [ =0, 1,..., [ ]; A%? (D) is just the weighted
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Let us describe our result in some detail. The proof is given in §§1-2. Denote
D the invariant Cauchy-Riemann operator introduced in [10],

- 0
= (1 — |z|2)2 —
D=1z

Thus fe A*%(D) if and only if feI?(D,dy,), D'*'f =0, and f 1 Ker D". Let

. a+1 . .
o > 1 and not an odd integer, so that there are [ ] + 1 = 2 discrete partsin

a+1

the decomposition. For 1 £ s <1 < [ ], we define the operator H* from

A*2(D) to A¥?(D) by the bilinear formula

0.2) CHy f,9) = Lf (2)b(2) D’ g(2) dpa (2)-

Let S, be the Schatten-von Neumann class of operators on a Hilbert space,
0 < p < ov,and S, be the space of bounded operators. We are going to study the
S,-properties of the operator H*. We note here that when | = s = 0, our oper-
ator becomes the usual Toeplitz operator; so for b an non-zero analytic function,
it can never be a compact operator. However, if | > 0, s = 0, they are part of the
usual big Hankel operator (see [1]) so there are plenty of compact ones. So we
can speak of Ha-plitz operators (Nikol’skii).

We also recall the definition of the analytic Besov spaces B, where 0 < p < oo
and — oo <t < oo. Let m > t be an nonnegative integer. Then B, consists of all
analytic functions on D such that

S =12 e B((1 — |212)”  dm(2)).

The main result of the paper is the following:

1
THEOREM. Let b be analytic. If " < p £ o, then the operator Hy* is in the

1_ 1
Schatten-von Neumann class S, if and only ifbe BE~*. For p < 3 Hy* isin S, only
ifb=0.

To prove our theorem, we use the decomposition theorems of Coif-
man-Rochberg [3] and the methods developed by Peller [11]. We also note that
if we map the unit disk to the upper half plane and perform the Fourier transform,
the operators here become some kind of paracommutators. The integral kernels
are not of the type studied in [12].

ACKNOWLEDGEMENT. The author would like to thank Professor Jaak Peetre
for his constant encouragement and advice. He thanks the referee for the
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criticisms of the earlier versions of the present paper and the companion paper
[14]. He is also grateful to the Mittag-Leffler Institute for kind hospitality.
§1. The cut-off and the boundedness.

Let U“*? be the action of SU(1, 1) on C*(D) defined by (0.1). First we study
invariance properties of the operator Hy*. For simplicity, we write it as H, in this
section.

From the known intertwining properties of D (see [10]) we see that

lst‘(;-f-Z) — Uf;z+2—25) D's.
Therefore by the definition of H,,
CHUS™D fUG*gy = (UG [bDUE g)
= (UE? f,bUG2 2 D g

= L(UFID) D g),
where the last equality is simply obtained by change of variables. Thus we have
(L.1) (UG HUGH? = HU::s)b.

By the Arazy-Fisher theory of Moebius invariant spaces of analytic functions
(see, e.g., [1]) we see that

1Hyl13 = cllbli3s—=.

where c is either a constant or co. So for the S,-result of T, we need only calculate
its S, norm for a special symbol. To this end we now calculate the singular
numbers of the operator H, on A**(D).

The space A7 (D) has the following orthonormal basis {e{},> -, (see [10]),

I+ 1), 2
V) =c | (a(++2 _) D, p’"(l _Ifllz|2>z",

I+ n)
n!

where

pu(t) = F(-Ll—a—-1n+1, -1,

and we have used the Pochhammer symbol
@,=a@a+1)...(a+n—-1),

and F(a,b; c;t) = ,F,(a,b;c;t) is the hypergeometric function. In particular,



72 GENKAI ZHANG

[ n
e,(z) = e(z) = ¢ @ : 2 Z" is the standard orthonormal basis of 4*2(D).

Leth = Z;’;o l;(j)zj be an analytic function. We calculate the matrix elements
of the operator H,. Since

_ IZIZ r B lzlz r—1
D<1—|z|2 “\1o@E) ?
5 |2 ||
D m _ () m+s‘
plm(l _ |ZI2 z plm 1 _ |Z'2 z

Hence, (H,;e,,e;m> = 0,if n & m + s + j. Therefore
T +1, n!
<Hbem elm> - Cb(n m S)\/(a + 2 _ I)n (ot + 2)n X

n2 (s) ||
X Dlz I plm 1 _ |z|2 d”a(z)'

The integral in the above formula is

(s) r ™1 = r)*
nJ‘Dp,m(l_.r) 1 — r)*dr.

. . r o
Changing variables, t = T we can write it as
—r

@ t
) () —
J‘O p’m(t) (1 + t)a+2+n dt.

we have

This integral again can be expressed in terms of gamma functions. We find that it is

(=D(l—a—1D)T(n+ D (x+1)
(—1yPm+ 1)l (x+2+n)

aF(=l+sl—a—1+sn+1;m+1+s —ol),
where ;F, is the generalized hypergeometric function, see Erdelyi [4], vol. 1.
Therefore the matrix elements of H, are
(1.2) <Hbeme:n> =b(n —m — s)r,pm x

X 3F)(—=l+s]l—a—14+s,n+1;m+1+s —al),

where

F(n+1) % _at2
r"_C<F(n+a+2)) s
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Pm = Pmls) =

’

W+D!(Hm+a+2—0y~ a2,
mm+ 1),\ Tm+i+p ) "

and C is a constant.

In particular, we see the singular numbers of the operator H,; are obtained by
rearranging the sequence {(H,; €+ j+s, €my}. Moreover, from the definition, we
know that

F(—l+sl—a—14+sm+j+s+1im+1+s —o;l).

_ ’i‘ —l+sh(l—a—1+spm+j+s+ 1),
k=0 (m+ 1 + s)(—a) k!

It follows that if m — oo, the limit of the above sum is
sF(=l+sl—a—14+s1;1,—al)
=,F(=l+sl—a—1+s —ol)
Sl spl—a—1+s) 1

-3

k=0 (— o) k!
. o+1 .
Since 1 £s<1L > , the terms (—1 + ), ( — a — 1 + s), (—a); in the
above expansion are < 0, and consequently the sum = 0.

Thus,
I<H;J em+j+sa elm>| ~ m—s‘
Therefore the operator H,, is in the Schatten-von Neumann classe S, if and only if
1
p>—.
s
The invariance argument (see, e.g., Janson [5]) then implies that Hj is in S, for

p<%onlyifb=0.

Next, we will use the known Schur’s test to study the boundedness property of
the operators ([5]). First we recall the following fact ([5]).

LemMaA 1. For > —1 and ¢ > 0, we have

1 e
jﬁjﬁﬁ?@MWUH#%
R

The space A*?(D) has the reproducing kernel ([10])

a+2—21 L |z — wl?
Kiew) =— 27 K@wF (”” —e B T = )
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+1 . .
where K(z, w) = a—n—(l — zw)~@*2) is the reproducing kernel of A*2(D). For

convenience, we put

|z — w?

ZEW = T2 = wh)

By the properties of the hypergeometric functions ([4], vol. 1, p. 58), we have
DiF(—Ll—a— 1;1; —P(z,w))

_ (Dl —a— 1) z—wp( — 2wy
- ! (1~ wl?y

X F(=l+s]l—a—1+4s1+ s —2P(z,w)).
So for any g€ A¥?(D),

Dg(z) = f gW K (z,w) D;F (=11 — & — 1;1; = 2P(2, W))dpu,(w)
D

_(=D-a-, (2 = wp (1 - 2wy
- M| st E

X F(—=l+sl—a—1+s1+ s —P(z,0))dp,(w).

Substituting this equality to (0.2), we see that H, is an integral operator on
I2(D, u,) with the kernel

(=Ds(l = = 1),

Hy(w,z,) = 3 J;) K(w, z)K(z,zl)B(z) (€ = WP — Zwp

(1 —wl?y

X F(=1+s]l—a—1+s1+s —2P(z,w)du,(2).
That is

Hy f(w) = L Hy(W,21) f(21)dpa(24),  f € A*(D).
Now let be B ,* and ||b||3;s = 1, that is

b2) < (1 —|2*)~*.
Let us prove that this the boundedness of H,. We define
Ly = {f: /@)1 — |z1*) " e (D, (1 — |21*) " dm(z)}.
We have
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f Hy(w, 2| (1 = 121125 dpta(zy)

|z — wi*ll — Zwf*

=C Z f J (1 = 12" IK(w, 2) K(z, 2y)| = Wiy

: _at1l
x P(z,w) (1 = 124*) 7 2 dpa(z1)dp,(2)
|z — wi|L — Zwl°
(1 — 1wy

where the last inequality is obtained from Lemma 1. Using the fact that
|z — w| £ |1 — zw| and the same lemma, we then see that

l-s
<C}) j (1 = |21)~*| K(w, 2)K(z, w) (1= 12277 dp,(2),
i=0dJD

(z1) £ C(1 — W) "7~

(1.3) J [Hy(w, z )l (1 —
D

Similarly we have

(1.4) L [Hy(w, 2| (1 — [W2)™“T " dp,(w) < C(1 — |2f2)~*F".

= 1, thatis |[f(2)] < (1 — |2/>)"*Z". Then

L 1
7, and || fl.2%3

_etl
|H, f(W)I(1 — éj [Hy(w, 2)| f(2)dpa(2)- (1 — [w]*) ™2
D
< J |Hy(w, 2)(1 = |21)"2
D
=C
where the last inequality is obtained from (1.3). Therefore H,:L 2l - L‘T is

bounded. Correspondingly (1.4) gives us H,,'L1 T L2 5% is bounded. By

interpolation, we find that H,: L"'”—»L”—1 is bounded. In particular,
H,: A**(D) —» A*? is bounded.

§2. The S, properties, p < 1.

Now we prove the S, properties of the operators. We will only consider the case
p < 1. The results for p = 1 follow more or less from the standard arguments
(interpolation, duality), see [5], [2]. For an operator T acting between Hilbert
spaces, we will denote by || T'||, its norm in the Schatten-von Neumann class S,,.
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1 1
Assume that 1 = p > 3 and be Br*. We prove that H}* is in S,. By the

atomic decomposition of the Besov space (Coifman-Rochberg [3]), we know that
there exist {¢;} = D, {4;} = C and an integer N > 2s + 1 such that

@1 b(z) = 'Zl.-(l — &P = &),
with
Z [P < 0.
However, by (1.1), we see that if ¢ is a Moebius transformation, then H {',’, £z)-N 1S

i—z .
- (pis

unitarily equivalent to the operator H{y_z 4. - v o2y - Take ¢(2) =
not in SU(1, 1), but this does not matter of course). Then
(1 = &d@) ' (2) = (1 — &2V~ 2s(1 — 1&2) ™
Since (1 — £:z)¥ 2% is a polynomial in z of degree N — 2s and with uniformly
bounded coefficients in i, we get
(A = &GP P NHE - g -2alls, < € < c0.

Using (2.1) we then obtain
|15 < CYIAP < oo.

That is Hy"is in S,,.

Now we prove the converse. Let # be a Hilbert space with an orthonormal
basis { f,}:° - It is sufficient to consider the following operator on J#, which we
still denote by H}*, whose matrix elements in the basis {f,} 2, are

22)  CHy*fos Sy = b(n — m — $)rypp, %
X 3Fy(—=1+sl—a—1+sn+1m+1+s —al),

. at+2 at2 . . . .
withr,xn~ 2z, pp,~m 2z 5 Our observation is that the matrix of H}* is
a lower triangular one. We can divide the matrix into sum of blocks, each of
which is a Schur multiplier of the Toeplitz matrix. Therefore we can use the
known technique developed by Peller [11] to find the desired S,-estimate.

We recall here some basic facts about the Besov spaces and Toeplitz matrices.

For a function ¢ on the unit circle 0D we denote |c|, its norm in If (6D). For
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t < 0, the Besov space B, has the following equivalent definition. Choose a func-

tion ¢ € CF(R) such that supp ¢ = l: 214, 22 — 24], p=0;i<Px)<1if

1 1
xe [2 — 55> 22 — > :I and ¢(x) = 1if x e|:2 22 — 213 ] Define functions ¢, on

Dby ¢,(2) =) 0@ <——> z'. An analytic function b on 0D is then in the Besov

space B, if and only if

2]

Y 2P x @al2 < 0.

See [7], [8].
The following lemma can be found in Peller [11]

LEMMA 2. Let c(z) = ) 24 &(i)z' be a polynomial and T be the following n x n
matrix:

H0) dn—1) ... &1)
) &) ... &)
n—1) dn—2) ... {O).

Then we have | T/, ~ nv|ic||,.

For two matrices T and S, we denote T * S their Schur product (pointwise
multiplication of the matrix elements). The following Lemma can be proved by
the same method as Lemma 4 in Peller [11]. We omit the proof.

LEMMA 3. Let c(z) = Y 725 é(i)z* and denote T be the following n x n Toeplitz
matrix with symbol c,

é0) 0 ... 0
é1) {0 ... O
én—1) én-2) ... &0).
Then for any n x n matrix A, we have
1
IT* All, < Crip~iecllp | 4ll,-

To simplify the notation, for a polynomial ¢, we will use the same notation for
the Toeplitz operator T, on # with symbol c and its matrix. For a subset S of Z*,
we denote P the projection from # onto span { f;, j€S}.
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LeEMMA 4. If k > kg, then we have
”P[zk-",2k~ 1 Hll;'sP(zk'f 1 +s,2"*‘+s]": > C2K1-p9 b * ¢y "z,
where ko does not depend on b.

PrOOF. First we prove the Lemma for s =1 We denote I, = [2**! + |,
%2 40], L=[2"%2"* 422 -2"*1], and P,=P,, P,=P;. Let
¢(z) = ¢y * b(z). Define two operators R and S on H as follows,

Rf, = {rj"fj, if jel,

09 lf.’¢lka

-1 . . ’

_Jei Sy ifjelk
Sfi {0, if j¢I,.

Then we see that
ISIPIR|? < C2P.
We easily check that
(2.3) P, T.P, = SP,H;.,, PR
= (SP Hy'P) * (P, T;, R).
Since P T, Py is a Toeplitz matrix, by Lemma 3 we obtain
IPTPE < C2XU P IBIISIPIRIPI P Hy Pell.

Noticing that [|¢]|2 < C2¥?~ Y, we get

2.4 IPAT. Pll5 < C247|| P Hy ' Pylp.
Let Q") be the following matrix
é(2k+2~2k—4) é(2k+2_2k—4_ 1) é(2k+1 _2k—4+ 1)
0 H2HFE kY L Rkt 24 1))
0 0 F PAR |

Then similarly we can prove that

2.9 (Toand
S C2MP||Prgx-ag ghsa—ghev i gk-aqgers_gxe2_y)
H;"P2k+3_2k+,+,,3.2k+2_2k+2+,]|[§.

Let us put
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é(2k+2 _ 2k—4) é(2k+2 _ 2k—4) é(2k+1 _ 2k—4 + 1)
0= GRKFT 2t Rt -2 L k! —2k‘4+2)
C(2k+2 2k 4) é(2k+2 _ 2k—4 _ 1) c(2k+2 2k 4)

It follows that
Q= KTP + Q"
We can apply Lemma 2 to Q and use (2.4), (2.5) to obtain

(2.6)
207D bx b

= 24019l
< C277)Qllp = C277(1QVI; + I PTePll,
é C”P[zk—4+2k+2__2k+1‘2k—4+2k+3~2k+2_llHi'lP[2k+3__2k41+l‘32k+2_2k+2+””5.

This proves the Lemma for the case s = I.

Next we prove this for case s = | — 1. The general is much the same. By (2.2),
the matrix elements of Hy' ™! are

<HI£’1_1f;vfm> = 5(11 —m— s)rnpm 3F2(_1’2l - l’n +1Lm+ l’ % 1)

_ n+DR2I-1)
=bn—m-— s)r,,p,,,(l + _(m T (=) )

=cy b —m—s)r,(n+ Vpu(m+D)~! <1 + ¢y r:;),

where ¢; = . Therefore if n — m — | + 1 > kg, where kq is large enough,

21-—1
m+ 1\~ S g m+1F
<1+Cln+1> g‘ Y+ 12

with
2.7 Z ey [P ————7

Define operators R, and S, on J, as follows

R.f = c’}(]+1) of, if je[2**P +1— 1,272 +1-1],
9/ lf]¢[2k+1,2k+2].
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(j+l)afj, ifje[2"“,2"‘4+2"”——2"“]
Syf}: 0; ifj¢[2k—4,2k—4+2k+2 _2k+1]

Then, similarly to (2.3), we see that if k > k,,

P[zk—4’2k-4+2k+2_zk+l]T;P[2k+1+1_1,2k+2+1_1]
L
= Z SgSP((é)k-4,2k—4+2k+2_2k+IIH‘;;ik‘bI)lle-x+l,2k+1+l]TRg.
g=0
Moreover by (2.7)
©
ZO ISP TGl1” < co.
g=

Therefore we can get (2.4) (with | replaced by I — 1, r, by r,(n + 1), p,, by
pm(m + 1)71). Similarly we can prove (2.5). Finally (2.6) follows (with I replaced
byl —1).

1 1
Now suppose Hy*€ S, and 3 < p £ 1. Let us prove be B ~*. To complete we

have to estimate the norm ||b]| ;i—s in term of llH,f"Ilz. It suffices to consider the

case when b is a polynomial b(z) = Z}“; ,2nm B(j)z’, where M is a large integer to be
chosen later; see e.g. Peller [11].
Define

© ©
T(i) = Z Z P[sz+i—4’2jM+i—1]H£"P[2kM+i+l+s'2kM+i+4+s], l = 0, 1,‘.-, M - 1
k=0j=0
We put
P(_],l) = P[21M+i-4‘21M+(—l], Q(k,l) = P[2kM+(+l+s‘2kM+i+4+s].

With these notations,

. © ©

TO = 3, ¥ P(j,)Hy*Q(k, ).
k=0j=0

Then for M large enough, say M > 21°, and for fixed i, we see that the projections
in the definition of T are jointly orthogonal. Hence

2.7 17915 < | HyP115.

Moreover, since Hy® is a lower triangular matrix, we have

o k
TO =Y Y P(j,)H*Q(k,i)i = 0,1,...,M — 1.

k=0j=0
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We split this matrix into diagonal and off diagonal parts,

TO = TO 4+ T

with
TP = Y. Plk,)H*Q(k, )
k=0
and
) o k-1
TP =Y Y P(j,)HQ(k, i).
k=0j=0

We notice thatif M > 10,n — se [2XM*i+1 kM +i+a7 4y o [i=4 k=DM +i=17
then @y 4 * b(n — m — ). Therefore

IS PG DH MK,

=0
k-1

= I'Y PGOHES,, , w0k DI
j=0

< Pgics oo HpE QU ),

Using (2.2), we see that the matrix Pyi-a poc-nam+i- llHj;skM“,,,Q(k, i) is a Schur

product of the Toeplitz matrix symbol @yxm+i*b and the operator A from
O(k,))# t0 Pyi-4 y0- yam+i- 1 with matrix element

FpmaFo(—1+s,l—a—1+sn+1m+1+s,—al)

=r 1‘2 —1+s)d(l—a——1+s)d(n+1)d_1_
B ”pmd=o m+ 1+ s)(—a)y d’

So A is a finite sum of rank one operators. Using the asympotics of the matrix
elements, we find
l._
lalE<c Zs KM +i)py(k = DM +)(E5E s a)ppkM +i)( ~2L2 +a)p
d=0

+2 ;
<C2” M(E55 - D)pykM +i)(1 -s)p.

By Lemma 3, we then obtain

"P[zi-4’2(k— DM +i- 1]H,l£:kM H.bQ(ka l)”Ip)

. +2 .
< ComM+DNI- Py~ MEEE kM HI = 5k b

= C2MOEFE-Dpp kM +01=P9| gy w b2,
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Consequently,

i _afat2
ITNp = €275 by

Now we give a lower bound for || T{?||,. Clearly, by Lemma 4 we have
ITON2 = Y | Pk, )Hy*Q(k, )5
k=0
2 Cy Y, 26MEDUPI sy % b2
k=0

Therefore

M . M »
1Tl = Z ITEE — 3 105

B

-

v

M o
C, Z Z Z(kMﬂ)(l—ps)”d’kMH*b”ﬁ
i=0k=0

a+2

- C2M2_M( 2

_s)p”b”%:_%_s.

at+2

2 Cylblige.s-+ = C,M27 M5

R LA

Let M be large enough such that M2~ 5
obtain that

IHy*|15 = Cliblige.3-+-
This finishes the proof.

§3. Final remarks.

~9)rC, < 1C,. Finally using (2.7) we

In this section we clarify the relation between the operators H * and the invariant
Toeplitz type operators obtained in [14]. First we note that A% 2(D) and
A*~2-2(D), as SU(1, 1)-module, are unitarily equivalent. More explicitly, the

following operator

‘ 1 - z 1-j h(j)(z)
Viho ¥ (—1) (1_|Z|2> wr2-20)

j=0

from A%~ 22(D) to A>?(D) is the intertwining operator:
(31) Vng+2—2!) = U;a+2)l/.
See [10].
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We consider the operator (H-)* V from 4%~ 2" 2(D) to A% %(D). We claim that

1,5\% - (_1)3(25)1_3 (a+1—1+s)
(3.2) (HyY*V ———~—(_a)l_s T ,
where

(3 s Y (<1 (l ; S) b K

j=0 J (2s) (@+2—2D_;

is the invariant Toeplitz operator in [14].

(H-5)* V1 = P(bD*V1),

where P is the projection from I*(D, du,) onto A**(D). Since

vie = (-1 (1=).

(2 N z N\
7 (I——W> “(_”(_1)3<1 —|z12> ’

we easily see from the reproducing property that

(=1 (=1
(—a)s

and

(Hy5)*V1 = P(bDV1)z) = bt ~9(z).

On the other hand, we see that

bl —s(z)

T(a+1—l+s)lz = _ll—s .
; @ =155

Therefore

—1)(2s),—
(H-* V1 = & (_)s;),S)l s i -tea g

This proves our claim.
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