COMPLEX BORDISM AND FREE UNITARY ACTIONS OF FINITE SOLVABLE GROUPS WITH PERIODIC COHOMOLOGY ON SPHERES

ABDESLAM MESNAOUI

0. Introduction.

The purpose of this paper is to calculate the order of $[S^{2k-1}, G]$ in $U_{2k-1}(BG)$, the action of G being induced by a k-dimensional unitary fixed point free representation σ of G which is supposed to be finite solvable with periodic cohomology. Sometimes we shall use the notation $[S^{2k-1}, \sigma]$ instead of $[S^{2k-1}, G]$. We have the following classification of all finite solvable groups with periodic cohomology (see [6] page 179).

I $G = \langle A, B \rangle$, $A^m = B^n = 1$, $BAB^{-1} = A^r$, $m \ge 1$, $n \ge 1$, (n(r-1), m) = 1, $r^n \equiv 1(m)$, ord G = mn.

II $G = \langle A, B, R \rangle$ with $\langle A, B \rangle$ as in I, $R^2 = B^{n/2}$, $RAR^{-1} = A^s$, $RBR^{-1} = B^k$, $n = 2^u v$, $u \ge 2$, v odd, $s^2 \equiv r^{k-1} \equiv 1(m)$, $k \equiv -1(2^u)$, $k^2 \equiv 1(n)$, ord G = 2mn.

III $G = \langle A, B, P, Q \rangle$ with $\langle A, B \rangle$ as in I, $P^4 = 1$, $P^2 = Q^2 = (PQ)^2$, AP = PA, AQ = QA, $BPB^{-1} = Q$, $BQB^{-1} = PQ$, $n \equiv 1$ (2), $n \equiv 0$ (3).

IV $G = \langle A, B, P, Q, R \rangle$ with $\langle A, B, P, Q \rangle$ as in II and $R^2 = P^2$, $RPR^{-1} = QP$, $PQR^{-1} = Q^{-1}$, $RAR^{-1} = A^s$, $RBA^{-1} = B^k$, $k^2 \equiv 1(n)$, $k \equiv -1(3)$, $r^{k-1} \equiv s^2 \equiv 1(m)$, ord $G = 16 \, mn$.

If k > 0, q > 0, $q = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ the decompositions of q into primes then we define $N(k,q) = p_1^{\alpha_1 + k_1} \dots p_r^{\alpha_r + k_r}$ with $k_i = \lfloor k/p_i - 1 \rfloor$ the greatest integer α , $\alpha < k/p_i - 1$.

Let G be a finite solvable group with periodic cohomology and σ a fixed point free unitary representation of G with dim $\sigma = k$ over C.

The main result of this paper is as follows.

THEOREM. If G is of type I, II, III, IV, then $ord[S^{2k-1}, \sigma]$ is respectively,

 $N(k,m)N(k,n),N(k,m)N(k,v)2^{k+u-1},N(k,m)N(k,n)2^{k+1},N(k,m)N(k,v)2^{k+2}\cdot 3^{u+k'-1}$

$$(n = 3^u v, (v, 6) = 1, k = 2k).$$

Received January 29, 1991.

These results are proved in section II, theorems 2.1 and 2.2.

Let $U^*(\operatorname{pt})[[X]]$ be the $U^*(\operatorname{pt})$ -algebra of formal power series in X with coefficients in $U^*(\operatorname{pt})$ graded by taking dim X=2. If F denotes the formal group law then [q](X) is defined inductively by $[q](X)=F([q-1](X),X),[1](X)=X,q\geq 1$. We shall denote $s_{2k-1}=[S^{2k-1},k\sigma]\in U_{2k-1}(BZ_q),\sigma$ being the unitary representation of Z_q of dimension 1 defined by the qth primitive root of unity $\exp(2i\pi/q)$. It is well known that ord $s_{2k-1}=N(k,q)$ (see [5]).

If $P(X) = \alpha_p X^p + \alpha_{p+1} X^{p+1} + \dots$ is a homogeneous formal power series, $\alpha_p \neq 0$, we denote v(P) = 2p. We have the following result whose proof follows the lines of that of [3], theorem 2.4 b) and therefore will be omitted. We recall that $\{s_{2n+1}\}, n \geq 0$, is a system of generators for the $U_*(pt)$ -module $\tilde{U}(BZ_q)$.

THEOREM 0.1. If $\lceil q \rceil(X) = qX + a_2X^2 + \ldots + a_nX^n + \ldots$ then we have:

- a) $qs_{2n+1} + a_2s_{2n-1} + \ldots + a_{n+1}s_1 = 0$ for every $n \ge 1$
- b) In $\tilde{U}_{2p+1}(BZ_q)$: $\alpha_0 s_1 + \ldots + \alpha_n s_{2n+1} = 0$ iff there are a homogeneous polynomial H(X) and a homogeneous formal power series E(X) such that: $\alpha_n X + \alpha_{n-1} X^2 + \ldots + \alpha_0 X^{n+1} = H(X) \cdot [q](X) + E(X), \ \nu(E) > 2(n+1).$

In this paper we will use the notation and results contained in [3].

I. Preliminaries.

Consider the following exact sequence of finite groups:

$$1 \to H \xrightarrow{i} G \xrightarrow{\pi} S \to 1$$

H being a normal subgroup of G, $i: H \subset G$, $S \subset G$, (ord H, ord S) = 1. There is a homomorphism $f: S \to G$ such that $\pi \circ f = 1$. If $[M, H] \in \widetilde{U}_*(BH)$, $g \in G$, there is a new free action of H on M induced by the inner automorphism $i_g: H \to H$, $i_g(h) = g^{-1}hg$ and we obtain the element $[M, H]_g \in \widetilde{U}_*(BH)$. We can identify the groups S and G/H by means of the unique isomorphism $\lambda: S \to G/H$ such that $\lambda \circ \pi = \psi$, ψ being the quotient map: $G \to G/H$. If t_H denotes the transfer map: $\widehat{U}_*(BG) \to \widehat{U}_*(BH)$ then we get:

$$t_H \circ i_*([M, H]) = \sum_{j=1}^{j=s} [M, H]_{g_j}$$
 with $s = \text{ord } S, S = G/H = \bigcup_{j=1}^{j=s} g_j H$

(see [1] or [2]). The action of S on $\tilde{U}_*(BH)$ which derives from its action on H by inner automorphisms is as follows: $\gamma[M,H]=[M,H]_g, \ \gamma=gH\in G/H=S$. We have the following result by M. Kamata and H. Minami (see [2]): the map $\varphi\colon \tilde{U}_k(BH)^s\oplus \tilde{U}_k(BS)\to \tilde{U}_k(BG)$ defined by $\varphi(x,y)=i_*(x)+f_*(y)$ is injective if H is abelian. In the next result we do not suppose H abelian.

THEOREM 1.1. Suppose G finite with periodic cohomology and $1 \to H \xrightarrow{i} G \xrightarrow{\pi} S \to 1$ an exact sequence such that (ord H, ord S) = 1.

Then $\tilde{U}_*(BG)$ is isomorphic to $\tilde{U}_*(BH)^S \oplus \tilde{U}_*(BS)$ as $U_*(pt)$ -modules.

PROOF. Let φ : $\tilde{U}_*(BH)^s \oplus \tilde{U}_*(BS) \to \tilde{U}_*(BG)$ be the $U_*(\text{pt})$ -homomorphism defined by $\varphi(x,y) = i_*(x) + f_*(y)$, where $f: S \to G$ is a homomorphism such that $\pi \circ f = 1$. Suppose $\varphi(x,y) = 0$; then $i_*(x) = -f_*(y)$ and $0 = \pi_* \circ i_*(X) = -\pi_* \circ f_*(y) = -y$. So: y = 0 and $i_*(x) = 0$. As $x \in \tilde{U}_*(BH)^s$ we have $t_H \circ i_*(x) = sx = 0$, s = ord S. There is $\alpha > 0$ such that $h_*^\alpha = 0$, h = ord H; since $(h^\alpha, s) = 1$ we get x = 0 and φ is injective. Now let $\{S_1, S_2, \ldots, S_q\}$ be a complete set of Sylow-subgroups of G (S_i , S_j are not conjugate if $i \neq j$). The map $\chi: \bigcup_{i=1}^{i=q} \tilde{U}_*(BS_i) \to \tilde{U}_*(BG)$ induced by the inclusions $S_i \subset G$ is an epimorphism and as a consequence the map $i_* + f_*: \tilde{U}_*(BH) \oplus \tilde{U}_*(BS) \to \tilde{U}_*(BG)$ is epimorphic. It remains to prove that $i_*(\tilde{U}_*(BH)) = i_*(\tilde{U}_*(BH)^s)$. Let $x \in \tilde{U}_*(BH)$, $S = \{\gamma_1, \gamma_2, \ldots, \gamma_s\}$, $\gamma_i = g_iH$. Then we have: $i_*(\gamma_j x) = g_j \circ i_*(x) = i_*(x)$ because the action of g_j on $\tilde{U}_*(BG)$ induced by the conjugation by g_j on G is trivial. Take $x_1 = \sum_{j=1}^s \gamma_j x \in \tilde{U}_*(BH)^s$. Obviously $i_*(x_1) = si_*(x)$ and $i_*(x) = si_*(x)$ and

Let $t_H: \tilde{U}_*(BG) \to \tilde{U}_*(BH)$, $t_S: \tilde{U}_*(BG) \to \tilde{U}_*(BS)$ be the transfer homomorphisms. We keep the same hypotheses as in theorem 1.1.

PROPOSITION 1.2. If $x \in \tilde{U}_a(BG)$ then ord $x = \operatorname{ord} t_H(x)\operatorname{ord} t_s(x)$.

PROOF. Since ord $t_H(x)$, ord $t_s(x)$ are coprime we have ord $t_H(x)$ ord $t_s(x)$ ord x. By theorem 1.1 $x = i_*(x_1) + f_*(y)$, $x_1 \in \tilde{U}_*(BH)^S$, $y \in \tilde{U}_*(BS)$. So: $t_H(x) =$ $sx_1 + t_H \circ f_*(y) = sx_1$ and ord $t_H(x) \cdot x_1 = 0$ because (s, h) = 1, s = ord S, h = ord H. Similarly $t_S(x) = t_S(f(y))$ and $t_S(x) = 0$. Take $y_1 = f$ (ord $t_S(x) \cdot y$). We have $t_S y_1 = 0$. Suppose $y_1 \neq 0$, $y_1 \in \widetilde{U}_{2k-1}(BG)$. There is $q \geq 1$ such that $y_1 = J_{2q-1,2k-2q}, y_1 \notin J_{2q-2,2k-2q+1}$ where $J_{*,*}$ denotes the filtration of $\tilde{U}_{2k-1}(BG)$ associated to the Atiyah-Hirzebruch spectral sequence for BG. Let quotient $J_{2q-1,2k-2q} \rightarrow J_{2q-1,2k-2q}/J_{2q-2,2k-2q+1} =$ map: $H_{2q-1}(BG) \otimes U_{2(k-q)}(pt)$. The map $(f \circ t_s) \otimes 1$ defined on $H_{2q-1}(BG) \otimes 1$ $U_{2(k-q)}(pt)$ is the product by h = ord H and as $s^{\alpha}y = 0$ for some $\alpha > 0$, s = ord S, we get $s^{\alpha}y_1 = 0$. Consequently since $p(y_1) = 0$ we obtain $((f \circ t_s) \otimes 1)(p(y_1)) = 0$. Hence $f_* \circ t_S(y_1) = 0$ which is impossible. So $y_1 = f_*(\operatorname{ord} t_s(x)y) = 0$ and ord $t_S(x)y = 0$ since f is injective. As ord $t_H(x)x_1 = 0$ we have ord $t_H(x)$ ord $t_S(x)x = 0$. We have seen that ord $t_H(x)$ ord $t_S(x)$ ord x. Hence: $t_S(x) = \operatorname{ord} t_H(x) \operatorname{ord} t_S(x).$

Let σ be a unitary fixed point free representation of Z_q , dim $\sigma = k$.

PROPOSITION 1.3. We have ord $[S^{2k-1}, \sigma] = N(k, q)$.

PROOF. If $\mu: \tilde{U}_{2k-1}(BZ_q) \to \tilde{H}_{2k-1}(BZ_q)$ denotes the Thom-homomorphism then $\mu([S^{2k-1}, \sigma])$ is a generator of $\tilde{H}_{2k-1}(BZ_q)$. So:

1)
$$[S^{2k-1}, \sigma]$$
) = $ms_{2k-1} + \sum_{i \ge 1} \lambda_i s_{2(k-i)-1}, \lambda_i \in U_*(pt), m \in \mathbb{Z}, (m, q) = 1.$

As ord $s_{2k-1} \ge \operatorname{ord} s_{2(k-i)-1}$, $i \ge 1$ we have:

2) ord $[S^{2k-1}, \sigma] \leq \text{ord } s_{2k-1} = N(k, q)$.

There are $a \in \mathbb{Z}$, $b \in \mathbb{Z}$ such that am + bq = 1 and then : $s_{2k-1} = ams_{2k-1} + bqs_{2k-1}$. By using theorem 0.1 a) we obtain:

$$a[S^{2k-1}, \sigma] = s_{2k-1} + \sum_{i \ge 1} \lambda'_i s_{2(k-i)-1} \in U_*(pt).$$

Consequently if $c = \text{ord}[S^{2k-1}, \sigma]$ we get $: cs_{2k-1} + \sum_{1 \le i \le k-1} c \lambda_i' s_{2(k-i)-1} = 0.$

By theorem 0.1, b), there is a homogeneous polynomial $\overline{H}(X)$ and a homogeneous formal power series E(X) such that:

$$cX\left[1+\sum_{1\leq i\leq k-1}\lambda_i'X^i\right]=H(X)\cdot[q](X)+E(X),\,\nu(E)>2k.$$

It follows that $cX = H_1(X) \cdot [q](X) + E_1(X)$, $v(E_1) > 2k$. Let $D_1 \in \widetilde{U}^2(B\mathbf{Z}_q)$ be the Euler class of the universal complex vector bundle over $B\mathbf{Z}_q$ corresponding to σ (see the introduction). We have: $D_1 \cap s_{2k+1} = s_{2k-1}$ (see proposition 2.3 of [3] for a similar assertion). As $[q](D_1) = 0$ we get $cD_1 = E_1(D_1) = F(D_1) \cap D_1^{k+1}$, $F(X) \in U^*(\mathrm{pt})$ [[X]]. It follows that $cs_{2k-1} = cD_1 \cap s_{2k+1} = F(D_1) \cap (D_1^{k+1} \cap s_{2k+1}) = 0$ because $D_1^{k+1} \cap s_{2k+1} \in \widetilde{U}_{-1}(B\mathbf{Z}_q) = 0$. So: $c \geq \mathrm{ord} s_{2k-1} = N(k,q)$. Finally: $\mathrm{ord} [S^{2k-1}, \sigma] = N(k,q)$. (\cap denotes the cap-product).

Let Γ_m be the generalized quaternion group of order 2^m ; $\Gamma = \langle x, y \rangle$ subject to the relations $x^t = y^2$, xyx = y, $t = 2^{m-2}$. We refer the reader to [3] section III for the notation and results we shall use in the next proposition. Let σ be a unitary fixed point free representation of Γ_m , $k = \dim \sigma$.

PROPOSITION 1.4. We have ord $[S^{2k-1}, \sigma] = 2^{k+m-2}$.

PROOF. We give a proof in the case $m \ge 4$ (if m = 3 it is simpler).

The unitary representations of Γ_m of dimension 1 are not fixed point free. Hence $k = \dim \sigma$ must be even: k = 2k'. If μ denotes the Thom homomorphism: $\tilde{U}(B\Gamma_m) \to \tilde{H}(B\Gamma_m)$ then $\mu([S^{2k-1}, \sigma])$ is a generator of $\tilde{H}_{2k-1}(B\Gamma_m)$ and consequently there is $p \in \mathbb{Z}$ such that:

$$[S^{2k-1},\sigma] = (2p+1)w'_{4k'-1} + \sum_{i\geq 1} \lambda_i w'_{4(k'-i)-1} + \sum_{i\geq 1} \lambda'_i u'_{4(k-i)+1} + \sum_{i\geq 1} \lambda''_i v'_{4(k-i)+1}$$

(see [3], section III). We have ord $w'_{4k'-1} = 2^{k+m-2}$, ord $w'_{4(k'-i)-1} = 2^{k-2i+m-2}$ ord $u'_{4(k'-i)+1} = \text{ord } v'_{4(k'-i)+1} = 2^{k'-i+1}$, $i \ge 1$. Hence $2^{k+m-2}[S^{2k-1}, \sigma] = 0$, $2^{k+m-3}[S^{2k-1}, \sigma] \ne 0$ because $k+m-2 \ge k-2i+m-2$, $k+m-3 \ge k'-i+1$, $i \ge 1$.

II. Main results.

Let G be a finite solvable group with periodic cohomology and σ a fixed point free unitary representation of G of dimension k over C. Let

$$\Theta = \operatorname{ord} [S^{2k-1}, {}^{B}\sigma] \text{ in } \widetilde{U}_{2k-1}(BG).$$

THEOREM 2.1. Suppose G of type I, II or III. Then we have respectively $\Theta = N(k, m)N(k, n), \Theta = N(k, m)N(k, v)2^{k+u-1}, \Theta = N(k, m)N(k, n)2^{k+1}$.

PROOF. Theorem 2.1 is a consequence of propositions 1.2, 1.3, 1.4.

a) Suppose G of type I. We have an exact split sequence, (m, n) = 1:

$$1 \to \mathsf{Z}_m = \langle A \rangle \to G \to \mathsf{Z}_n = \langle B \rangle \to 1.$$

By propositions 1.2, 1.3, we get $\Theta = N(k, m)N(k, m)$.

b) Suppose G of type II. We have exact split sequences ((ord $\langle R, B^v \rangle, m$) = 1, (ord ($\langle R, B^v \rangle, v$) = 1)):

$$1 \to \mathsf{Z}_m = \langle A \rangle \to G \to \langle R, B \rangle \to 1$$
$$1 \to \mathsf{Z}_n = \langle B^{2^u} \rangle \to R, B \to \varGamma_{u+1} = \langle R, B^v \rangle \to 1.$$

Then $\Theta = N(k, m)N(k, v)2^{k+u-1}$

c) Suppose G of type III. We use the following exact split sequence, ((ord Γ_3 , ord $\langle A, B \rangle$) = 1):

$$1 \to \Gamma_3 = \langle P, Q \rangle \to G \to \langle A, B \rangle \to 1.$$

Then $\Theta = N(k, m)N(k, n)2^{k+1}$.

If G is of type IV we have the split exact sequences with $n = \text{ord } B = 3^{u}v$, (v, 6) = 1:

1)
$$1 \rightarrow \mathbf{Z}_m = \langle A \rangle \rightarrow G \rightarrow \langle B, P, Q, R \rangle = G_1 \rightarrow 1$$
,

2)
$$1 \rightarrow \mathsf{Z}_v = \langle B^{3^u} \rangle \rightarrow G_1 \rightarrow \langle B^v, P, Q, R \rangle = G_2 \rightarrow 1$$

We give some information about $G_2 = \langle B_1, P, Q, R \rangle$, $B_1 = B^v$. We have $\langle P, Q, R \rangle = \Gamma_4$ the generalized quaternion group of order 2^4 (see [6]). If x = RP, y = R we obtain $\langle P, Q, R \rangle = \{x^\alpha y^\beta, 0 \le \alpha \le 7, \beta = 0, 1, x^4 = y^2, xyx = y\}$. Furthermore: $\langle B_1 \rangle = Z_{3^u}$. We have the following relations:

 $\{B_1PB_1^{-1} = Q, B_1QB_1^{-1} = PQ, RB_1R^{-1} = B_1^{-1}\}\$ or $\{B_1PB_1^{-1} = PQ, B_1QB_1^{-1} = P, RB_1R^{-1} = B_1^{-1}\}\$ according as $v \equiv 1$ (3) or $v \equiv 2$ (3). We consider the first case only the second one being similar. As $H^2(BG_2) = \text{Hom}(G_2, U(1))$ it follows easily

that $H^2(BG_2) = Z_2 a$, $a = c_1(\tau)$ the first Chern-class of the unitary representation τ of $G_2: x \to -1, y \to -1, B_1 \to 1$. Moreover well known results by R. Swan (see [4]) show that $H^4(BG_2) = \mathbb{Z}_a g$, $q = 3^{\mu} 2^4$ and $H^*(BG_2)$ is periodic of period 4. As a consequence we have $H_{4n+1}(BG_2) = Z_2$, $H_{4n+3}(BG_2) = Z_a$, $q = 3^{\mu}2^4$ and if $i: \Gamma_4 \subset G_2$, $j: Z_3 \subset G_2$ are the natural inclusions then we have: $(i_* + j_*)(\tilde{H}_{4n-1}(B\Gamma_4) \oplus \tilde{H}_{4n-1}(B\mathsf{Z}_{3^u})) = \tilde{H}_{4n-1}(BG_2)$ and $i_*(H_{4n+1}(B\Gamma_4)) =$ $H_{4n+1}(BG_2)$. If $\{w'_{4n+3}, u'_{4n+1}, v'_{4n+1}\}, n \ge 0$ is the system of generators for the $U_*(pt)$ -module $\tilde{U}(B\Gamma_4)$ considered in [3] section III, $\{s_{2n+1}\}, n \ge 0$, the system of generators of the $U_*(pt)$ -module $\tilde{U}(BZ_{3u})$ described above, $\mu: \tilde{U}_*(BG_2) \to$ $\widetilde{H}_{\star}(BG_2)$ the Thom-homomorphism then: $\mu(a_{4n-1})$ with $a_{4n-1}=i_{\star}(w'_{4n-1})+$ $j_*(s_{4n-1})$ is a generator of $\tilde{H}_{4n-1}(BG_2)$ and there is b_{4n+1} of the set $\{i_*(u'_{4n+1}), \dots, u'_{4n+1}\}$ $i_*(v'_{4n+1})$ such that μb_{4n+1} is a generator of $\tilde{H}_{4n+1}(BG_2)$ (In fact, we will show in a forthcoming paper that $b_{4n+1} = i_*(v'_{4n+1})$.

THEOREM 2.2. If G is of type IV then $\operatorname{ord} [S^{2k-1}, \sigma] = N(k, m) N(k, v) 2^{k+2}$ $3^{u+k'-1}$, k=2k' (k is even), $k=\dim \sigma$ over C.

PROOF. By restriction to $\Gamma_4 \subset G_2$ we see that k is even by the proof of proposition 1.4. From the split exact sequences 1), 2) we get: ord $[S^{2k-1}, \sigma] =$ N(k,m)N(k,v) ord $[S^{2k-1},\sigma_2]$ where σ_2 denotes the restriction of σ to G_2 . The Sylow subgroups of G_2 are conjugate either to $\Gamma_4 = \langle P, Q, R \rangle$ or to $\langle B \rangle = Z_{3^{u}}$. It is easily seen by using the transfer homomorphisms and propositions 1.3, 1.4 that ord $[S^{2k-1}, \sigma_2] \ge N(k, 3^u) 2^{k+2} = 3^{u+k'-1} 2^{k+2}, k = 2k'$. The remarks made before the statement of theorem 2.2 show that:

$$[S^{2k-1},\sigma_2] = S^{4k'-1},\sigma_2] = \sum_{0 \le i \le k'-1} \lambda_i a_{4(k'-i)-1} + \sum_{0 \le i \le k'} \lambda_i' b_{(k'-i)+1}$$

As ord $w'_{4n-1} = 2^{2n+1}$, ord $u'_{4n+1} = \text{ord } v'_{4n+1} = 2^{n+1}$ (see [3], section III), ord $s_{4n-1} = N(4n, 3^u) = 3^{u+n-1}$ it follows that ord $[S^{2k-1}, \sigma_2] \le 2^{k+2} 3^{u+k'-1}$. Hence ord $[S^{2k-1}, \sigma_2] = 2^{k+2} 3^{u+k'-1}$.

REMARK. The results of this paper will be used in a forthcoming paper about the determination of the $U_*(pt)$ -structure of $\tilde{U}_*(BG)$ where G denotes a finite solvable group with periodic cohomology.

REFERENCES

- 1. P. E. Conner, E. E. Floyd, Differentiable Periodic Maps, Springer-Verlag, 1964.
- 2. M. Kamata, H. Minami, Bordism groups of dihedral groups, J. Math. Soc. Japan 25 (1973) 334-341.
- 3. A. Mesnaoui, Unitary bordism of classifying spaces of quaternion groups, Pacific J. Math. 142 (1990), 49-67.

- 4. R. G. Swan, The p-period of a finite group, Illinois (1960), 341-346.
- 5. G. Wilson, K-theory invariants for unitary G-Bordism, Quar. J. Math. Oxford 24 (1973), 499-526.
- 6. J. Wolf, Spaces of Constant Curvature, MacGraw Hill, New-York, 1967.

DÉPARTMENT DE MATHÉMATIQUES UNIVERSITÉ MOHAMMED V FACULTÉ DES SCIENCES, BP. 1014 RABAT MOROCCO