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COMPLEX BORDISM AND FREE UNITARY ACTIONS
OF FINITE SOLVABLE GROUPS WITH
PERIODIC COHOMOLOGY ON SPHERES

ABDESLAM MESNAOUI

0. Introduction.

The purpose of this paper is to calculate the order of [S?* ™!, G]in U, _ ;(BG), the
action of G being induced by a k-dimensional unitary fixed point free representa-
tion ¢ of G which is supposed to be finite solvable with periodic cohomology.
Sometimes we shall use the notation [S?* !, ¢] instead of [S** !, G]. We have
the following classification of all finite solvable groups with periodic cohomology
(see [6] page 179).

1 G=<CA4,B), A"=B"=1, BAB ' =A"m21,n21, (n(r—1), m=1,
r" = 1(m), ord G = mn.

Il G = <A,B,R) with{(A4,B)asin, R* = B"2, RAR™ ' = A4°, RBR ! = B",
n=2vuz2vodd,s>=r""!=1m),k= —112%,k* = 1(n), ord G = 2mn.

III G =<A,B,P,Q>with{4,B)asinl, P* = 1, P* = Q? = (PQ)?, AP = PA,
AQ =QA,BPB ' =Q,BOB™ ' = PQ,n=1(2),n=0(3).

IV G = (A, B,P,Q,R) with {(4,B,P,Q) asin Il and R*> = P, RPR™! = QP,
POR™'=Q !, RAR ' = A5, RBA™' = B k* = 1(n), k = —1(3),

1 =52=1(m),ord G = 16 mn.
Ifk > 0,9 > 0,q = p3'...p* the decompositions of g into primes then we define
N(k,q) = pi*+* ... p*r+* with k; = [k/p; — 1] the greatest integer «, o<
k/p; — 1.

Let G be a finite solvable group with periodic cohomology and ¢ a fixed point
free unitary representation of G with dim ¢ = k over C.

The main result of this paper is as follows.

THEOREM. If G is of type L, I, 111, IV, then ord[S** !, o] is respectively,
Nk, m)N k), Nk, m) N (k, 0)2 = N(, m) Nk m)25* 1, N(k, m) N(k, p)2< 2344+ 1
(n=3%,(v,6) =1, k = 2k).
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These results are proved in section II, theorems 2.1 and 2.2.

Let U*(pt) [[X]] be the U*(pt)-algebra of formal power series in X with
coefficients in U*(pt) graded by taking dim X = 2. If F denotes the formal group
law then [¢](X) is defined inductively by [¢](X) = F([q — 1](X), X), [1](X) =
X,q 2 1. We shall denote s, = [S*~*, ka] € U, ,(BZ,), o being the unitary
representation of Z, of dimension 1 defined by the gth primitive root of unity
exp(2in/q). It is well known that ord s, —; = N(k, q) (see [S]).

If P(X)=o,X"” + a,+; X"*! + ... is a homogeneous formal power series,
a, * 0, we denote v(P) = 2p. We have the following result whose proof follows
the lines of that of [3], theorem 2.4 b) and therefore will be omitted. We recall that
{Sam+1}, 1 = 0, is a system of generators for the U, (pt)-module U(BZ,).

THEOREM 0.1. If [q1(X) = gX + a, X* + ... + a,X" + ... then we have:

a) gSype1 + A28 1+ ... + ayy18, =0 for everyn = 1

b) In U2p+ 1(BZ,): 0081 + ... + 0, S2a+1 = Oiff there are a homogeneous poly-
nomial H(X) and a homogeneous formal power series E(X) such that:
0 X +a,_ X2+ ... +aX"" = HX) [q](X) + E(X), V(E) > 2(n + 1).

In this paper we will use the notation and results contained in [3].

I. Preliminaries.
Consider the following exact sequence of finite groups:
1-H5HG5HS-1

H being a normal subgroup of G,i: H = G, S < G, (ord H, ord §) = 1.

There is a homomorphism f: S — G such that ne f = 1. If [M,H]e U*(BH),
g€ G, there is a new free action of H on M induced by the inner automorphism i,:
H - H, ij(h) = g~ 'hg and we obtain the element [M,H],€ U,(BH). We can
identify the groups S and G/H by means of the unique isomorphism 4: S — G/H
such that 4 o = i, ¥ being the quotient map: G — G/H. If t; denotes the transfer
map: U*(BG) - L7*(BH) then we get:

j=s Jj=s
tyoi ([M,H]) = JZ [M, H],, with s = ord S, S = G/H = U g;H

j=1 i=1
(see [1] or [2]). The action of S on U, (BH) which derives from its action on H by
inner automorphisms is as follows: y[M,H] = [M,H],,y = gHe G/H = S. We
have the following result by M. Kamata and H. Minami (see [2]): the map
¢: U(BHY @ U(BS) —» U,(BG) defined by ¢(x,y) = i,(x) + fy(y) is injective if
H is abelian. In the next result we do not suppose H abelian.
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THEOREM 1.1. Suppose G finite with periodic cohomology and 1 —H
G5 S — 1 an exact sequence such that (ord H, ord S) = 1.
Then U, (BG) is isomorphic to [7* (BHS ® (7* (BS) as U,(pt)-modules.

PrOOF. Let ¢: ﬁ*(BH)s @ U,(BS) — U,(BG) be the U, (pt)-homomorphism
defined by ¢(x, y) = i, (x) + f,(y), where f: S — G is a homomorphism such that
no f=1. Suppose @(x,y)=0; then i (x)= —fi(y) and 0=rm i (X)=
—myofe(y) = —y. So: y=0 and i (x)=0. As xeU,(BHy we have
tpoiy(x) =sx =0, s = ordS. There is « > 0 such that hl = 0, h = ord H; since
(k% s) = 1 we get x = 0 and ¢ is injective. Now let {S,,S,,...,S,} be a complete
set of Sylow-subgroups of G (S;, S; are not conjugate if i +j). The map

1=q ~ ~
x: | Ux(BS;) - U,(BG) induced by the inclusions S; = G is an epimorphism
i=1

and as a consequence the map i, + f,: U,(BH) ® U,(BS) — U,(BG) s epimor-
phic. It remains to prove that i*(ﬁ*(BH)) = i*(ﬁ*(BH)‘). Let xe U*(BH), S=
{Y1:725--->7s}> ¥i = g:H. Then we have: i, (y;x) = g;°i,(x) = i,(x) because the
action of g; on U, (BG) induced by the conjugation by g;on G is trivial. Take

x; = Y. y;xe U, (BH)®. Obviously i,(x;) = si,(x) and h’x = 0 for some § > 0,
j=1
h=ordH. As (h,s) = 1 there are aeZ, beZ satisfying ah® + bs = 1. Hence
i (bxy) = it(x)‘ . . _
Let ty: U, (BG) - U, (BH), ts: U,(BG)— U,(BS) be the transfer homomor-
phisms. We keep the same hypotheses as in theorem 1.1.

ProPOSITION 1.2. If xe U,(BG) then ord x = ord ty(x)ord t,(x).

Proor. Since ord ty(x), ord t(x) are coprime we have ord t4(x) ord t,(x)|ord x.
By theorem 1.1 x =i,(x;) + f,(y), x;€U,(BHY, yeU,(BS). So: ty(x)=
sxq + tgofy(y) =sx; and ordty(x)-x; =0 because (s,h)=1, s=ordS§,
h=ord H. Similarly tg(x) = ts(f(y)) and tgf(ordts(x)y) =0. Take y, = f
(ord tg(x)- y). We have tsy; = 0. Suppose y; + 0, y; € Uy _1(BG). Thereis g = 1
suchthaty; = Jy,_ ;1 2k— 245 V1 € J2g— 2.2k - 24+1 Where J, , denotes the filtration of
U,x - 1(BG) associated to the Atiyah-Hirzebruch spectral sequence for BG. Let
p be the quotient map: Jy_jak-24 > J2g-1,26-24/J2g-2,2k-24+1 =
Hy,_1(BG) ® Uy—g(pt). The map (fot)® 1 defined on H,,_(BG)®
Uk-¢(pt) is the product by h = ord H and as s*y = 0 for some a > 0,5 = ord S,
we get s*y, = 0. Consequently since p(y,) = 0 we obtain ((f 2 t,) ® 1)(p(y,)) = 0.
Hence f,ots(y;) =0 which is impossible. So y, = f,(ordt(x)y) =0 and
ordts(x)y =0 since f 1is injectivee. As ordty(x)x; =0 we have
ord ty(x)ord tg(x)x = 0. We have seen that ord ty(x)ord t5(x)|ord x. Hence:
ts(x) = ord ty(x)ord ts(x).

Let o be a unitary fixed point free representation of Z,, dimo = k.
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PROPOSITION 1.3. We have ord [S**~!,6] = N(k, g).

Proor. If u: U;k_l(BZq) - ﬁZk_l(BZq) denotes the Thom-homomorphism
then u([S*~*,6]) is a generator of H,, _(BZ,). So:

1) [§*71,0]) = msy—y + Z AiSak—i)-1> 4 € Uy(pt), meZ, (m,q) = 1.
izt
Asordsy, -y = ord sy -y-1,i = 1 we have:
2) ord[S*71,6] < ords,,_; = N(k,qg).
There are aeZ, beZ such that am + bq = 1 and then : s,,_; = amsy,_; +
bgs,y - 1. By using theorem 0.1 a) we obtain:
alS* ', 6] = sp-1 + ), XiSak-iy—1 € Uy (pt).

i1

Consequently if c = ord [S** "', 0] we get 1 cspp—1 + Y,  C€AiSz0--1 = 0.
15isk-1

By theorem 0.1, b), there is a homogeneous polynomial H(X)and a homogeneous

formal power series E(X) such that:

cX[l + Y l;X‘] = H(X) [q1(X) + E(X), W(E) > 2k.
1<5i<k—-1

It follows that cX = H,(X)-[q](X) + E(X),v(E,) > 2k.Let D, e U*(BZ,) be the
Euler class of the universal complex vector bundle over BZ, corresponding to
o (see the introduction). We have: D M 5541 = S 1 (see proposition 2.3 of [3]
for a similar assertion). As [¢q](D;) = 0 we get ¢cD; = E (D) = F(D;) n D¥*?,
F(X)e U*(pt) [[X]]. It follows that cs,,_; = ¢cDy N Syvy = F(D) " (DX
Sa+1) = 0 because DX*!1 nsy €U ((BZ,) =0. So: ¢ 2 ordsy—; = N(k,q).
Finally: ord [S**~!, 6] = N(k, q). (n denotes the cap-product).

Let I, be the generalized quaternion group of order 2™; I = {x, y) subject to
the relations x* = y?, xyx = y,t = 2™~ 2. We refer the reader to [3] section III for
the notation and results we shall use in the next proposition. Let ¢ be a unitary
fixed point free representation of I',,, k = dim 0.

PROPOSITION 1.4. We have ord [S**~!,0] = 2kt~ 2,

PROOF. We give a proof in the case m = 4 (if m = 3 it is simpler).
The unitary representations of I',, of dimension 1 are not fixed point free. Hence
k = dimo must be even: k = 2k'. If u denotes the Thom homomorphism:
U(Br,,) - H(BT,,) then u([S*~!,4]) is a generator of H,,_(BI,,) and conse-
quently there is pe Z such that:
[S*7 461 =Q2p+ DWa—y + 2, AWl —y-1 + .; Aitgg—iyer + 2 M Vs-n+1

i1 iz1
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(see [3], section IIT). We have ord w/,._, = 2™~ 2, ord wyg. _;_, = 2¥72*m2
ord Uy i+ = 0rd Vg 4y =271, i 2 1. Hence 2**m 2[§%*"! g] =0,
2ktm=3r§%-1 6]+ Obecausek + m — 2=k —2i+m—2,k+m—-32k —
i+1,i=1.

II. Main results.

Let G be a finite solvable group with periodic cohomology and ¢ a fixed point free
unitary representation of G of dimension k over C. Let

O = ord[$*~ ! Bs] in U,,_,(BG).

THEOREM 2.1. Suppose G of type I, 11 or 11I. Then we have respectively
© = N(k,m)N(k,n), @ = N(k,m)N(k,v)2***~ 1, @ = N(k,m)N(k,n)2** 1,

Proor. Theorem 2.1 is a consequence of propositions 1.2, 1.3, 1.4.
a) Suppose G of type I. We have an exact split sequence, (m,n) = 1:
1-2,=<A>->G—>2Z,={B)-1.

By propositions 1.2, 1.3, we get @ = N(k,m)N(k, m).
b) Suppose G of type II. We have exact split sequences ((ord (R, B*),m) = 1,
(ord (KR, B”>, v) = 1))

12, =<A> > G- {(R,B>—1
152, =(B* >R B—T,., =<R B> 1.

Then © = N(k,m)N(k,v)2k**~1
¢) Suppose G of type III. We use the following exact split sequence, ((ord I's,
ord (A, B)) = 1)

1-T3=(P,0>>G—->{4,B)~1

Then © = N(k,m)N(k,n)2**1.
If G is of type IV we have the split exact sequences with n = ord B = 3"y,
v,6)=1:

H)1-52Z,=<{A>—>G—-><{(B,P,Q,R) =G, -1,

2) 1-2,=(B*) > G, > (B P,Q,R) =G, > 1

We give some information about G, = {(By,P,Q,R)>, B; = B*. We have
{P,Q,R > = I', the generalized quaternion group of order 2* (see [6]). If x = RP,
y = Rwe obtain (P,Q,R) = {x*y/,0<a £ 7,8 = 0,1, x* = y%, xyx = y}. Fur-
thermore: (B;) = Z;.. We have the following relations:
{B,PB;' = Q,B,QB;' = PQ,RB,R™ ! = B{'}or{B,PB{' = PQ,B,QB; ' =
P,RB,R™! = B[ !} according as v = 1(3) or v = 2(3). We consider the first case
only the second one being similar. As H*(BG,) = Hom (G ,, U(1)) it follows easily
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that H*(BG,) = Z,a,a = c,(7) the first Chern-class of the unitary representation
10fG,:x - —1,y—> —1, B; > 1. Moreover well known results by R. Swan (see
[4]) show that H*(BG,) = Z,g, q = 3“2* and H*(BG,) is periodic of period 4. As
a consequence we have Hy,,(BG;) =Z,, Hy,.+3(BG,) =2, q =3"2* and
if i:I'y,cG,, jZ3y<G, are the natural inclusions then we have:
(ix +js)(Han-1(BTa) ® Hay— 1 (BZ3) = Hup 1(BGy)  and  iy(Han+1(Bl4) =
Hyn+1(BGy). If {W,, 4 3, st 15 Uans 1} 1 2 0 is the system of generators for the
U, (pt)-module U(BI,) considered in [3] section ITL, {s,, ; },n = 0, the system of
generators of the U,(pt)}-module U(BZs.) described above, u:U,(BG,)—
ﬁ*(BGz) the Thom-homomorphism then: u(aq,-1) with ag4,—; = i, (Ws,_,) +
Jj4(San—1) is a generator of H,,_,(BG,) and there is by, ., of the set {i(WUlyn s 1)
i,(V4n+ 1)} such that ub,, , ,)is a generator of H,, , ,(BG,)(In fact, we will show in
a forthcoming paper that by, = i,(V,+ 1))

THEOREM 2.2. If G is of type IV then ord [S*!,6] = N(k,m)N(k,v)2**?
Utk =1k = 2k’ (k is even), k = dim ¢ over C.

Proor. By restriction to I'y = G, we see that k is even by the proof of
proposition 1.4. From the split exact sequences 1), 2) we get: ord [S?*7!,¢] =
N(k,m)N(k,v)ord [S*~!,5,] where g, denotes the restriction of ¢ to G,. The
Sylow subgroups of G, are conjugate either to I’y = {P,Q,R) orto (B) = Z3.. It
is easily seen by using the transfer homomorphisms and propositions 1.3, 1.4 that
ord[S%*71 5,1 = N(k,3*)2¢*2 = 3+ ~12k*2 '} — 2k’. The remarks made be-
fore the statement of theorem 2.2 show that:

[$* Lo,]1=8%"Y0,1= Y  Aag-n-1+ D, Abwx-i+1
0<isk'—1 O0sSisk’
As ordw,,_, =2**! ordu},,, = ordvy,,, =2"*"' (see [3], section III),
ordsy,_, = N(4n,3") = 3**"~ ! it follows that ord [S?* ", g,] < 2¢*23«*¥ 1,
Hence ord [S%*7!,g,] = 2k*23«*k ~ 1,

REMARK. The results of this paper will be used in a forthcoming paper about
the determination of the U, (pt)-structure of U,(BG) where G denotes a finite
solvable group with periodic cohomology.
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