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APPLICATIONS OF ULTRAPRODUCTS TO INFINITE
DIMENSIONAL HOLOMORPHY

MIKAEL LINDSTROM and RAYMOND A. RYAN

1. Introduction.

The purpose of this paper is to apply ultraproduct techniques to some problems
in Infinite Dimensional Holomorphy. The central problem we consider is the
following: Given a continuous polynomial P, or more generally, a holomorphic
function, f, defined on a Banach space X, can we extend P or f to a larger space
containing X? Questions such as these were first tackled by Aron and Berner
[AB]. They showed how polynomials, and certain holomorphic functions, can be
extended to the bidual X**. From this, they were able to construct extensions for
other spaces containing X. However, some questions were left open. For
example, it was not known whether the Aron-Berner extension of a continuous
polynomial P from X to X** had the same norm as P. This question was recently
answered in the affirmative by Davie and Gamelin [DG].

We present a new approach to this extension problem. Our approach is to
work with an ultrapower (X), of the Banach space X rather than the bidual of X.
There is a canonical embedding of X into (X),, and it is relatively simple to
construct extensions of polynomials and holomorphic functions from X into
(X),. For certain special ultrapowers of X we have roughly speaking,
X < X** < (X),,and so we obtain extensions from X to its bidual as byproduct
of our extension process. There is not one, but several ultrapower extension
processes. One of these processes is modelled on the Aron-Berner method, and in
this case we extend the scope of the result of Davie and Gamelin mentioned
above. The other extension process which we discuss is more adaptable for
dealing with holomorphic functions.

Our methods yield new results concerning the polarization constants of a Ba-
nach space. The polarization constants of X are a sequence of real numbers
K,(X) which contain information about the geometric structure of X. The
number K,(X) arises when one compares the norm of a homogeneous poly-
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nomial of degree n on X with the norm of the symmetric n-linear function which
generates the polynomial. We show that the bidual X** has the same polariz-
ation constants as X, at least when the bidual has the metric approximation
property.

We begin with some notation and terminology, and we recall some of the
pertinent facts concerning ultraproducts which will be required.

The spaces considered will be Banach spaces over either the real or the
complex field. The notation B,(x) represents the open ball with centre x and
radius r.

We now look briefly at some of the basic properties of ultraproducts. We refer
the reader to [He] and [Si] for further details. Let % be an ultrafilter ona set I. If
the limit with respect to % of a family {a;: i € I} exists, we denote it by lim; , a;, or
simply by lim, a; if the role of the index i is unambiguous. Let {X;: ieI} be
a family of Banach spaces indexed by I. The ultraproduct (X;), consists of
elements of the form x = (x;),, with x; € X;, for each i e I, where the norms of x; are
bounded, and where (x;), = (y;), if im,, || x; — y;|| = 0. The norm of (X;), is given
by

IGea)u | = Lim x; ],

We may consider X as a subspce of the ultrapower (X), by means of the canonical
embedding x — (x;), where x; = x for every i.

There is one particular construction of an ultrapower of X which will be
important for our purposes, and so we shall describe it in some detail. First, we
recall the Principle of Local Reflexivity [De]: Let M and N be finite dimensional
subspaces of X** and X* respectively, and let ¢ > 0. Then there exists a linear
mapping T: M — X such that:

(i) T is an e-isometry; that is, (1 — &) |x**|| < | T(x**)|| < (1 + &) ||x**| for
every x**e M,
(i1) T(x**) = x** for every x**e M N X;
(iil) x*(T(x**)) = x**(x*) for every x**e M, x*e N.

Now let the indexing set I consist of all triples i = (M;, N;, ¢;), where M; and N;
are finite dimensional subspaces of X** and X * respectivity and ¢; > 0. For each
i choose an g;-isometry T;: M; —» X in accordance with Local Reflexivity, so that
x*(Ty(x**)) = x**(x*) for every x**e M;,x*eN,, and T(x**) = x** for every
x**e M; n X. We define an ordering on I by setting i < jif M; = M;, N; = N;and
& > ¢;. Then the collection of sets of the form B; = {jeI: i < j}isafilterbase. Let
2 be an ultrafilter on I which contains this filterbase. Then the canonical
embedding of X into the ultrapower (X), extends to a canonical embedding
J: X** > (X),; furthermore, J(X**) is the range of a norm one projection on
(X),. The embedding J is defined by
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Ti(x**) if x**eM,
0 if x**¢ M,

The projection pr: (X), — J(X**) is given by pr((x;),) = J(w* — lim_ x;), where
the limit taken here is the weak*-limit in X** of the family (x;). We shall refer to
afilter of the type constructed here as a local ultrafilter for X, and we shall call (X),
a local ultrapower of X.

We shall also make use of the Local Duality of Ultraproducts. To state this
principle, let us first recall that there is a canonical embedding J of (X*), into
(X)¥, given by

J(x**) = (x;)., where x,~={

J(OeF).)x;), = lim xF(x;).

Now let M and N be finite dimensional subspaces of (X)* and (X), respectively,
and let ¢ > 0. Then there exists an ¢-isometry T: M — (X¥), such that:

(i) JT(p)x = @(x) for every pe M, xe N;

(ii) JT(p) = ¢ for every pe M N J(X*),).

Next, we look at polynomials and holomorphic functions on Banach spaces.
We refer to [Ch] or [ Di] for a full account. Let X be a Banach space over the real
or the complex field. A scalar-valued function P on X is a continuous n-homo-
geneous polynomial if there exists a continuous symmetric n-linear function 4 on
X such that P(x) = A(x,...,x) for every xe X. The function A is uniquely
determined by P; indeed, we have the Polarization Identity which gives 4 in terms
of P:

1
Tl Y er.. & Plerxy + ...+ EaX,).

T Egy.ens en=%1

Alxy, .. Xp) =

Let £("X) denote the space of all continuous n-linear functions from X" into the
scalar field normed by 4+ sup {|A(xy, ..., x,)|: [Ix|| £ 1,1 < k < n}. The Banach
space of continuous n-homogeneous polynomials on X is denoted by 2("X). The
norm on 2("X) is given by || P|| = sup {|P(x)|: ||x]| < 1}. Let Z,("X) denote the
space of continuous n-homogeneous polynomials of finite-type on X, that is,
polynomials of the form x> Y ¥_; (x})", where x¥e X*, 1 < i< k.

Finally, we mention holomorphic functions. Let X be a complex Banach space
and let Q be an open subset of X. A function f: Q — C is holomorphic if f has
a Taylor series expansion at each point; in other words, for each point z of Q there
exists a sequence of polynomials P, e 2("X) such that the series Zf:o P,(x — 2)
converges to f(x) uniformly for x in some neighbourhood of z. This is equivalent
to the existence of a Fréchet derivative for f at each point of Q. If f is a holomor-
phic function from X into C, and )%, P, is the Taylor series of f at the origin
then ) 2, P,(x) converges to f(x) for every xe X. However, if X is infinite
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dimensional, then this series need not converge uniformly on every ball. This is
related to the fact that f need not be bounded on the ball B,(0) for large r.
Denoting by R, the radius of uniform convergence of a power series
Y2 o P(x — z) about the point ze X, we have

R, = (limsup | P, ).

The space of holomorphic functions from € into C is denoted #(€2). The space
H,(R2) consists of the holomorphic functions from 2 into C of bounded type, that
is, functions which are bounded on Q-bounded sets. If X is infinite dimensional
then s#,(X) is a proper subset of #(X).

2. Extension of Polynomials and Holomorphic Functions.

In this section we investigate different ways of extending polynomials and
holomorphic functions from a Banach space into an ultrapower. We consider
two approaches. One is a generalization of the Aron-Berner process. The other is
more convenient for dealing with extensions of holomorphic functions.

Let (X), be an ultrapower of a Banach space X. For 4 € L("X) we define an
n-linear function 4 on (X), by

Alxy, ... X,) = lim .. lim A, .., x™M)
beinye
for x, = (x¥), e(X), . Itis easy to see that A is well-defined, that 4 is an extension
of A and that ||A|| = ||4|. However, if 4 is symmetric, it does not necessary follow
that 4 is symmetric. Taking the iterated limits in a different order may lead to
different values for the extension.

The Aron-Berner extension of a continuous n-linear function 4 on X is
obtained by extending A to an n-linear function 4 on X** by weak-star continu-
ity, one variable at a time, from last to first.

Now let Pe 2("X), and let A be the continuous symmetric n-linear function
that generates P. We obtain an extension, P, of P to (X), by defining

B((xi),) = A(x) )" = lim. . lim A, ..., x{7)

for every (x;), €(X),.

PROPOSITION 2.1. (a) Let P be a continuous n-homogeneous polynomial on X.
Then the extension, P, of P to (X), has the property that |P| = || P|.

(b) If (X), is a local ultrapower of X, then the restriction of P to the canonical
image of X** in (X), coincides with the Aron-Berner extension of P to X**.

PrOOF. Letz = (x;), €(X), with | z|| £ 1,choosing x; so that | x;|| < 1 forevery
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iel.Lete > 0. Then, proceeding exactly as in the proof of Theorem 1in [DG], we
obtain NeN and iy,...,iye [ such that

|P(2) — P(x)| <&,

where x = (x;, + ... + x;,)/N. It follows that | 2| = |P|. This concludes the
proof of part (a).

Now, let (X), be a local ultrapower of X. For simplicity we consider the case
n=2.

Let x**, y** e X** and let x** = (x;), and y** = (y;), be the canonical images
of x** and y** in (X),, where Xx;, y; are chosen as described in the introduction.
Let A be the continuous symmetric bilinear function associated with P and let
A be the Aron-Berner extension of A. Then

A(x**, y**) = lxm llm A(x,-, yj)
e j,u

First, fixing x;,

lim A(x;, y;) = lim A(x;, T;y**).

Jre Jre
If the functional y*: x +— A(x;, x) belongs to N;, then we have y*(T;y**) = y**(y*),
that is,

A(Xi, T;y**) = /I(xi’ y**)9

and it follows that

lim A(x/, Tjy**) = Axi, y**).
Joe

Hence,
,Zl(x**, y**) = hm /I(xb y**)’

and it follows in the same way that

ljm /](xi,y**) — /T(x**,y**).

This proves (b).

The disadvantage of this extension is that symmetry might be lost; if A4 is
a continuous symmetric n-linear function, there is no guarantee that the extended
function A4 is also symmetric. Aron, Cole and Gamelin [ACG] point out that if
symmetry is preserved in the case of bilinear functions, then it is preserved for
every n-linear function. Furthermore, they show [ACG, Theorem 8.3] that the
Aron-Berner extension of every continuous symmetric bilinear function is sym-
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metric if and only if every continuous symmetric linear operator from X into X*
is weakly compact. We have an analogous result for the ultrapower extension.

PROPOSITION 2.2. For every ultrafilter % and every continuous symmetric bi-
linear function A on X, the ultrapower extension A on(X), is symmetric if and only if
every continuous symmetric linear operator from X into X* is weakly compact.

Proor. If A is always symmetric, then, taking % to be the local ultrafilter for X,
it follows from the proof of Proposition 2.1 that the Aron-Berner extension
preserves symmetry and hence by the result quoted above, every continuous
symmetric linear operator from X into X* is weakly compact. Conversely,
suppose that every continuous symmetric linear operator from X into X* is
weakly compact. Let 4 be a continuous symmetric bilinear function on X, and let
(X). be an ultrapower of X. Let (x;)., (y;).. be two elements of (X),. Since the
operator xe X — A(x,")e X* is weakly compact, it follows that the family
(A(x;,)) has a weak limit point with respect to %. So we may let

y* = W'hm A(xl" )
Therefore

lim lim A(x;, y;) = lim y*(y;) = y**(y*),
Ju

Joe L

where y** is the weak*-limit with respect to # of the family (y;). Taking the
iterated limits in the reverse order, we have

lim lim A(x;, y;) = lim y**(A(x;, ")) = y**(»*).
L J,u i,

Thus the iterated limits have the same value.

If we modify the extension process slightly, we obtain an extension which
preserves the symmetry for every space. We define

‘;{ (x19' "9xn) = liln A(x?)" --,xsn)),

that is, we take a joint limit instead of an iterated limit. It is easy to see that A is
a continuous symmetric n-linear function on (X), which extends 4 and that
A = |IA]l. Let P be the polynomial generated by A. If we denote by P the
polynomial generated by A4, then

P((x;)..) = lim P(x;).

Pis an extension on P and it is trivial that | P = || P||. We summarize this in the
following proposition.
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PROPOSITION 2.3. (a) Let A be a continuous symmetric n-linear function on X.
Then A has a continuous symmetric n-linear extension A, to (X), with the same
norm, defined by

A(xy,...,x,) = lim A(xD, ..., x)

for every x, = (x),e(X),, 1<k <n.
(b) Let P be a continuous n-homogeneous polynomial on X. Then P extends to
a continuous n-homogeneous polynomial P on (X), satisfying

P((x;),) = lim P(x,)

and we have ||P|| = || P).

The following example (cf. [ACGT]) shows that the iterated extension and the
symmetric extension can give different polynomials on the ultrapower.

ExaMmpPLE. Let A: l; x l; — C be given by
AX,y) = [x1y2 + (xg + x2 + x3)ya + ... ]+ X2 + (g +y2 + ya)xa + .1
Then A is a continuous, symmetric bilinear function on I, such that

l'}m l'}lm A(e2m e2m) =1 and 1;3;m A(e2m, e2m) = Oa

where % is any countably incomplete ultrafilter on N. Now let # be any

countably incomplete ultrafilter on a set I. (For example, it is easy to see that local

ultrafilters are countably incomplete.) Thus, % contains a decreasing sequence of

elements U,, U,, ..., whose intersection is empty. Now we define the family (x;) as

follows: x; = 0 if i is not in U,, and x; = e,, if i is in U, but not in U, ,,. Let

x denote the element of the ultrapower (I,), corresponding to this family. Then
lim lim A(x;,x;) = 1 but l."? A(xi, x;) =0,

Lha J,u
and so P(x) is not equal to P(x).

We now look at the interaction between differentiation and extension. First we
note that there is a canonical embedding J of (2(*X)), into 2(*(X), ) given by

J(P).)(x)., = lizn Py(x;).

Thus we may identify (#(*X)), with a subspace of 2(*X),).

Let Pe 2("X) and let 4 be the continuous symmetric n-linear function that
generates P. We wish to compute the kth derivative of P at a point (x;), in (X),.
We have
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~ o
FPE)N00) = o= o Ay (00
= lim o AR ) = i 2P,

Using the above-mentioned identification, we may state this result as follows
PROPOSITION 2.4. Let Pe Z("X) and let (x;)e(X),. Then
d*P((x),) = (d*P(x), for every k,1<k=Zn.

Next, we focus our attention on extending holomorphic functions. The prob-
lem is to find a holomorphic Hahn-Banach theorem. It is known that this is not
possible in general; even in the case X = cqand X** = [* there exists a holomor-
phic function f: X — C which cannot be holomorphically extended to X**. In
[AB] Aron and Berner have extended holomorphic functions on a Banach space
X to an open subset of the bidual containing X. The Aron-Berner method is first
to extend polynomials and then to use local Taylor series representations to
extend holomorphic functions locally. They had to show that their extensions
were coherent in the “overlaps” by examining how their extension process for
polynomials interacted with the process of taking derivatives. We have a much
simpler way of extending f, because we can get around the coherence problem by
the fact that the extension f satisfies f((x;),) = lim, f(x;) at every point in its
domain. Therefore f is uniquely defined.

PROPOSITION 2.5. Let f € 5#(X). Then there exists a connected open subset Oy of
(X), containing X, and a holomorphic function f on O, which is an extension of f,
and satisfies

F(x:).) = lim f(x;) for every (x;),€ 0.

PROOF. Let ze X and let R, denote the radius of uniform convergence of the
Taylor series Y >, P, of f at z. Then f is bounded on any closed ball B,(z) of
radius r < R,. Since || P,|| = || P, |, the series Yo P, on (X), has the same radius
of uniform convergence as the series Y -, P,. The function fu Bg (z) = C,
defined by f((x;).) = Y% o B,((x:), — 2), is an element of #,(Bg (2)).

Let r < R, be fixed. Now if x =(x;),e(X), and ||x — z|| <r, then we may
assume that |x; — z|| £ r for every iel. Hence lim, f(x;) exists, since f is
bounded on B,(z). Further, for given & > 0, there exists an N € N such that

f(x) — }: P(x; —z)| <e forevery m> N andevery iel.
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Thus, lim, f(x;) = Y2, P,((x;), — z) uniformly in B.(z), and it follows that
Jl(xi).) = lim,, f(x;) for every (x;), € Bg (2).

Now, let Oy = U,.x Bg_(2). Then 0 is a connected open subset of (X), contain-
ing X and it is clear from the above that we may define a holomorphic function
f: 0> C, by flp, @ = f.r and that f is an extension of f.

If we now apply this result to the case where % is a local ultrafilter for X, we get
‘an alternative to the Aron-Berner extension.

COROLLARY 2.6. Let f € #(X). Then there exists a connected open subset Q of
X** containing X, and a holomorphic function fon Q which is an extension of f.

For holomorphic functions of bounded type, the situation concerning exten-
sions is particularly straightforward:

PROPOSITION 2.7. Let f € 5#,(X). Then there exists a holomorphic function of
bounded type f on (X), which is an extension of f, and satisfies

F(Ge)) = lim f(x;) for every (x;).€(X),.

This follows from the proof of Proposition 2.5, since the radius of uniform
convergence at the origin is infinite.

For derivatives of functions of bounded type, we have a result similar to
Proposition 2.4.

PRrOPOSITION 2.8. Let f € #,(X) and let (x;),€(X),. Then
d*7((x:).) = (@ f(x). forevery k2 1.

PROOF. Let Y ., P, be the Taylor series expansion of f at the origin. Then the
Taylor series expansion of the function d*f is Y'2_, d* P,, and so

o)

F(x)))) = Y dP((x))0).)

n=k
= 3 EmdP ) = lim 3 Py(e)(y) = lim d* (),
n=k “ “ n=k “

since the series Y 2 |d“P,(x;)(y;)| converges uniformly in iel.

REMARK. Let f be a holomorphic function on X, not necessarily of bounded
type. Then, by applying a similar argument to the above to the Taylor series
expansion of f at each point of X, it follows that there exists a connected open
subset Q; of ¢; containing X, such that

df((x:)) = @ f(x))

for every (x;),eQ, and every k = 1.
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While writing this paper it has came to our attention that S. Dineen and R.
Timoney [DT] have proved results similar to some of the results in this section,
using an ultrapower method.

3. Polarization Constants of a Banach space.

Let X be a Banach space over the real or complex field. Let P be a continuous
n-homogeneous polynomial on X, and let A be the continuous symmetric
n-linear function on X which generates P. It follows from the Polarization
Identity that

nn
1Pl = 14l = — 1Pl

The constant n"/n! which appears here is the best possible in general. In the case
X =1, this constant is achieved for every n. On the other hand, when X is
a Hilbert space, we have || 4| = || P|| for every P.

We define the Polarization Constants of a Banach space X to be the smallest
numbers K,(X) satisfying

IPI = 4]l = K.(X) |IP],
for every P e #("X). Thus we have

12K, (X)< %'— for every n.

In view of the Polarization Identity, we have

Yo e PEXy + ...+ E,X,)

E1yeres em==11

2"n!

K, (X) = sup{

PeZ(X),|Pl £ L,xeX, [xl £1L,1=i= n}

There are many open questions concerning these constants. We refer to [Ha, Sal,
Sa2] for further details.

Our main results in this section are that, subject to a suitable approximation
property of X, the ultrapower (X), and the bidual X** have the same polariz-
ation constants as X.

We recall that a Banach space X has the metric approximation property if, for
every ¢ > 0 and every compact set K — X, there is a finite rank operator
S: X — X such that ||S|| < 1 and ||Sx — x||x < &

The following lemma is well-known, but we give a proof for the sake of
completeness.



APPLICATIONS OF ULTRAPRODUCTS TO INFINITE DIMENSIONAL . . . 239

LeEmMMA 3.1. Let X have the metric approximation property, and let P € 2("X).
Then for every compact subset K of X and every & > 0, there exists a Q € 2,("X)
such that

IP—Qlk <& and Q] <|IP].

PRrOOF. Since P is uniformly continuous on K, there exists a § > 0 such that
|[P(x) — P(y)| < eforall xe K and y € X with ||x — y|| < J. Since X has the metric
approximation property, there is a finite rank operator S: X — X with ||S|| £ 1
such that [[Sx — x|| < é foreach xe K. ThenQ = P°SeZ,("X)and ||Q| < | P,
and if x e K, it follows that [P(x) — Q(x)| < e.

A Banach space X has the 1 + uniform approximation property if the following
holds: For each natural number n there is an m(n) such that, given an n-dimen-
sional subspace M = X and ¢ > 0, there exists an operator T e (X, X) such that
Ty = idy, rank(T) < m(n) and || T|| £ 1 + & If each of the Banach spaces
X;,iel, has the 1 + uniform approximation property, and % is an ultrafilter on I,
then the ultraproduct (X;), has the metric approximation property [He].

Since every continuous n-homogeneous polynomial on X extends to a con-
tinuous n-homogeneous polynomial on (X), with the same norm, it follows that

K,(X) £ K,((X),) foreveryn.
Our aim now is to establish the reverse inequality.

THEOREM 3.2. If each of the Banach spaces X; has the 1+ uniform approxi-
mation property, then the polarization constants of the ultraproduct (X;), are given
by:

K.(X)).,) = li‘r‘n K, (X;) for every n.

PrOOF. Lety > 0.Choose Pe 2("(X;).), |Pl = 1, xi = (x®), e (X)), x|l £ 1
for k = 1,...,n, such that

K, (X).) =

Y ey & Plerxy 4 .o+ EaXy)

Elyeens =11

+ 1.

2"n!

Since (X;), has the metric approximation property we get by Lemma 3.1 that
there is a Q e Z("(X;),) such that [|Q|| < ||P| = 1, for which

1
St Y e &PeiXy ...+ EnXn)
2 n E14.ees en=11
1
- Y e..g QX . aX)| + 1
2 n Elrsars en=11
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(i:e. we take K = {e;x; + ... + &,Xp,:&5,...,& = +1}). We now have,

K (X)) € — L Y e 8aQ(E1Xy + ...+ EnXn)| + 21,
2”"! ..... en=11
where Q@ = Y7, ¥" for some ¥;,..., ¥, e(X,)¥ and Q| < 1.
Let now M = span{¥,,..., ¥} = (X))¥ and N = span{x,,...,x,} < (X))..
Then by the local duality of ultraproducts, given ¢ > 0, there is an e-isometry
T: M — (X}), such that

JT(P)x = Y(x) forall WYeM and xeN,

where J is the canonical embedding of (X¥), into (X;)}. Let x¥ = JT(¥;) e (X))},
and let Q € Z,("(X;).) be given by

0(x) = 3 xHx)\,
j=1
ie. 0 =37, (x})" Then Qe;x; + ... + &X,) = Q61X + ... + &,X,).

We now estimate the norm || Q|| 2expe: LEt X = (x;), €(X;), with [ x|| < 1. Then
106 = (X7 ITOE)xY] = Yo, GTYS(E,Y], where ~:(X;), — (X)2* s the ca-
nonical mapping. Since |(JT)|| = |JT|| £ 1 + & and M* = (X,)**/M*, we can
choose z**e(X;)** with |z**| <1+ 2¢ such that |2}"=1 JTYX(Py)| =
I z**(¥;)"|. By Goldstine’s theorem there exists a net z, €(X;), such that
z, = z** in o((X,)**, (X;)¥) and ||z, || = ||z**| for each a. Hence we get that
1O() = (1 + 2¢)".

To summarize, we have

1 -
Kn((Xi)«) é Ano Z &y "EnQ(elxl + ...+ I';nxn) + 2'1:
2""! 81,000y en=11
where § = ZT: 1 (x¥)', and "Q-HQ("(Xi)a) =1+ 2

Since x¥ € J(X*), | c(X))¥, we get with x¥ = (x}),, that x}(x;), = lim; , x}(x: )

Hence

0(x) = lim 0i(x;),

where §; = Y™, (x¥)"e Z,("X,).

Let us now turn to the norm ||Q; || px: For each i€ I choose x;€ X;, || x;[| £ 1,
such that ||| — & < |Qi(x;)|. Let x = (x;),. Then |x| < 1, and @] Z 10()] =
lim, |Gy(x;)| 2 lim, |Q;]| — ¢, so lim, || Q]| < Q] + e.

Thus,

1
K,(X3),) < lim—— Sl Y £,0ierxP + ... + £,xM)| + 21,
n €11 eees e,.—il
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where x;, = (x{*),., x|l < Lfor k = 1,...,n, and lim, |Q;]| < [|Q] + e.
Therefore,

Ku((X3).) = (1 + 2¢)" + &) lim K,,(X) + 21,

and since ¢ > 0 and 5 > 0 are arbitrarily small, the required inequality follows.
COROLLARY 3.3. If X has the 1+ uniform approximation property, then
K.(X).,) = K, (X) for every n.

If we apply the above theorem to the case where % is a local ultrafilter on X, we
can show that the bidual X** has the same polarization constants as X, when
X has the 1+ uniform approximation property. However, by modifying the
proof of Theorem 3.2, we can prove this result about the bidual for a larger class
of spaces.

THEOREM 3.4. Let X be a Banach space for which X** has the metric approxi-
mation property. Then

K, (X**) = K, (X) for every n.

PrOOF. Almost exactly as in the proof of Theorem 3.2 one can show that, for
giveny > 0 and ¢ > 0,

1 -
K, (X*¥) < T Yo e e0(EX 4.+ &Xa)| + 20,

..... en=11

where § = Z;’; 1 (X" e 2("X**), and Q1 pemx= < (1 + 2¢)". Instead of the local
duality of ultraproducts one uses the principle of local reflexivity applied to X*.

Now @ restricts to a polynomial on X, and an application of Goldstine’s
theorem shows that

”Q_”@("X) = ||Q_“9(nx**)-

We now apply the principle of local reflexivity again, this time to X. Let
M = span{x}¥*....,x}*} < X** where |x¥*|<1 for k=1,...,n, and
N = span{x¥,...,x*} = X* Then there is an ¢-isometry S: M — X such that

X*(Sx**) = x**(x) forall x**eM and x*eN.

Let x;=Sx**eX. Then |x;|<1+¢ and QOext* +... +ex*) =
01Xy + ... + g,x,).
Thus,

K (X**) < Y ey.&aQilErxy 4 oo+ EaXy)| + 20,

Elyenny en==t1

2"n!
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where |Qllprx) < (1 + 2¢)"and ||x;|| £ 1 +eforj=1,...,n
Hence,

Ku(X**) = (1 + 2¢)°(1 + &)"K,(X) + 2n,
and the required inequality follows.

The authors wish to thank the referee for the contribution of the example after
Proposition 2.3. We are also grateful to Manuel Maestre for providing us with
another similar example.
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