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LANDSTAD DUALITY FOR C*-COACTIONS

JOHN C. QUIGG

Abstract.

We prove a dual version of Landstad’s characterization of reduced C*-crossed products: C*-coc-
rossed products by coactions of a locally compact group G are characterized by the presence of an
action of G and an equivariant representation of Cy(G).

1. Introduction.

A decade and a half ago, Landstad [Lan 1] was able to characterize reduced
C*-(and W*-) crossed products by a given group. Loosely speaking, he showed
that a C*-algebra A is a reduced C*-crossed product by a locally compact group
G if and only if there are a C*-coaction (see the next section for the definition) of
G on A and a unitary representation of G in M(A) satisfying a certain
equivariance condition relative to the coaction. Nonabelian .C*- (and W*-)
crossed product duality, in its infancy when this result was published, can be used
to cast a different perspective on Landstad’s characterization. Imai and Takai
[IT] proved (in different terminology) that every reduced crossed product of 4 by
G carries a “dual” coaction such that the corresponding cocrossed product
(defined in the next section) is isomorphic to A ® /', where ¥ denotes the
compact operators on L*(G) (see also [Val]). This generalized Takai duality
[Tak] for crossed products by abelian groups, which employed actions of both
G and its Pontryagin dual group. When G is nonabelian, coactions of G replace
actions by the (nonexistent) dual group. Landstad’s characterization, which we
call Landstad duality, can be regarded as telling which coactions of G on A4 are
dual, namely, those for which there is a suitable unitary representation of G in
M(A).

Half the intervening time elapsed before Katayama [Kat] proved a dual
version of Imai-Takai duality: every (reduced) cocrossed product of 4 by G car-
ries a “dual” action such that the corresponding reduced crossed product is
isomorphic to (again) A ® # . Nonabelian C*-crossed product duality has not
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yet been placed in a self-dual category, as has W*-crossed product duality [Eno],
[ES], although the first steps have been taken [lor], [Val], [BS1], [BS2]. In the
dictionary of crossed product duality, coactions are dual to actions, cocrossed
products are dual to crossed products, and representations of Cy(G) are dual to
unitary representations of G. Our main result (Theorem 3.3) is the dual version of
Landstad duality: an action of G on A is dual if and only if there is an equivariant
representation of Cy(G) in M(A). Here equivariance is with respect to translation
on Cy(G) and the given action on A4 (extended in the canonical way to M(A4)). We
remark that Landstad [Lan3, Theorem 1] proved the special case of this dual
version for compact G.

In Section 2 we present a few tools designed to make C*-coactions a little more
manageable. The basic idea is to recognize that C*-coactions usually arise as
restrictions of W*-coactions. One result in particular (Proposition 2.6), which
improves [LPRS, Proposition 4.3], shows that when G is amenable things go
about as smoothly as could be expected.

In Section 4 we discuss a dual analogue of another aspect of Landstad duality,
namely “Landstad’s conditions”. Here again, things do not go as well as one
might hope unless G is amenable.

We remark that it will be interesting to try to generalize Landstad duality to
the twisted coactions of Phillips and Raeburn [PR].

2. Preliminaries on coactions.

We begin by establishing our notation for C*-coactions. We use the “reduced”
C*-coactions of [Kat] and [LPRS] (as opposed to the “full” coactions of [Rael],
[Rae2]: a C*-coaction of a locally compact group G on a C*-algebra B is
a nondegenerate monomorphism &: B — M(B ® C*(G)) (the multipliers of
B ® CXG) which multiply C ® C*(G) into B ® CXG)) such that (§ ® id)°d =
(id ® 6) <5 (the “coaction identity”), where & itself is the canonical coaction of
G on C*(G) defined by 5%(A(s)) = A(s) ® A(s), 4 being the left regular representa-
tion of G. When § is a C*-coaction of G on B we call the triple (B, G, d), or the pair
(B, G), a C*-cosystem. Tensor products of C*-algebras are completions relative to
the minimal C*-tensor norm, except in the obvious (because of the notational
signal) cases where the von Neumann algebra tensor product is used. Nondegen-
eracy here is in the sense of Banach representations, i.e., 6(B)(B ® C*(G)) is dense
in B® C*(G). This is equivalent to the usual condition that 8(s;) — 1 strictly in
M(B ® CX*(G)) for some (hence every) bounded approximate identity {¢;} of B.
Unfortunately, this use of the term nondegenerate conflicts with a more specializ-
ed connotation (see below), but the meaning is always clear from the context.
A coaction 6 of G on B gives rise to a Banach representation of B,(G)
(= CHG)*, the reduced Fourier-Stieltjes algebra of G) on B via d,(a) =
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{d(a),id ® [, where id ® f denotes the slice map determined by f. Most of the
time we only need the restriction of this representation to A(G) (= #(G),, the
Fourier algebra of G, where .#(G) itself is the reduced von Neumann algebra of
G). Two cosystems (B, G, 9) and (C, G, ¢) are conjugate if there is an isomorphism
0: B— C such that g =(0®id)°5, or equivalently 6 intertwines the
A(G)-module structures. d is called a nondegenerate coaction if B is a nondegener-
ate A(G)-module, i.e., d 4,(B) is dense in B, or equivalently B is a nondegenerate
B,(G)-module. Is every C*-coaction automatically nondegenerate? This is the
automatic nondegeneracy problem, originally posed by Landstad [Lan1]. Auto-
matic nondegeneracy has been proven when G is amenable [Lanl, Lemma 3.8],
[Kat, Proposition 6] or discrete [BS1]. Landstad et al point out in [LPRS,
Remark 2.2 (3)] that the proofs given in [Lan1, Lemma 3.7], [Kat, Proposition
6] of automatic nondegeneracy for discrete G seem to be incorrect. Another
equivalent formulation of nondegeneracy is that 6(B)(C ® C¥(G)) should be
dense in B ® CX(G) [Kat, Theorem 5] (here and in the sequel the juxtaposition of
two subsets S and T of an algebra denotes the linear span of {ab|a€ S, be T}). We
mention that Katayama’s Theorem 5 depends upon his Lemma 4, whose proof
we have been unable to understand. Specifically, one of his assertions seems to
imply that x€d§)(x) for all xe CXG), which as far as we know is an open
problem. The corresponding weak* approximation problem for .#(G) is an old
question of Eymard [ Eym, (4.14)]. Actually, the difficulty with Katayama’s proof
of his Lemma 4 appears to be roughly the same as with his Proposition 6.
Fortunately, we have been able to rearrange Katayama'’s proof of his Theorem
5 to our satisfaction without appealing to his Lemma 4.

We recall a bit of the theory of W*-coactions from [NT] (see also [Lan2],
[Nak], [SVZ]). A W*-coaction of G on a von Neumann algebra .# is a normal,
unital monomorphism J: .# — .# ® .#(G) (the von Neumann algebra tensor
product) satisfying the coaction identity (which now is interpreted at the level of
von Neumann algebras rather than multiplier algebras of C*-algebras). We refer
to (A, G, 6) as a W*-cosystem. A W*-coaction of G on ./ gives rise to a Banach
representation of A(G) on .# in the same way as for C*-coactions. W*-coactions
usually are implemented by representations of Co(G) in the following way: let
. Co(G) » ZL(#)(the bounded operators on the Hilbert space 5#°) be a represen-
tation. Let W; denote the left regular representation of G regarded as a unitary
element of M(Co(G) ® C*(G)), and let W = p® id(W;). Then We L(#)®
M(G), and for f e A(G) we have u(f) = {W,id ® f). Moreover, W implements
a W*-coaction 6* of G on ZL(H#) via 6*(x) = Ad W(x ® 1). A useful identity
relating u and 6* is:

Ofgp(X) = Jﬂ(t xue-g)dt,  f,9eC(G), xe L(K),



280 JOHN C. QUIGG

where the integral is taken in the weak operator topology, ¢'(s) = g(s '), and
t f(s) = f(s0).

We will present several technical results, mainly concerning restrictions of
W*-coactions to C*-coactions. To avoid any possibility of ambiguity, we first
record the following completely elementary

LEMMA 2.1. Let B be a C*-subalgebra of a von Neumann algebra .#. Then M(B)
is faithfully represented as the idealizer of B in the weak* closure B of Bin /.

ProOF. Realize 4 as a von Neumann algebra on a Hilbert space 5. Then B,
hence B, is nondegenerately and faithfully represented on a unique closed
subspace #, of #. In this situation, M(B) is faithfully represented on s, as the
idealizer of B in #(#,) [Bus, Theorem 3.9], which of course agrees with the
idealizer of B in B. Moreover, it is easy to see that this representation of M(B) in
B is independent of the choice of 5.

Now suppose we have a W*-coaction 6 of G on a von Neumann algebra .#,
and suppose Bis a C*- subalgebra of .#. We want to make sense out of restricting
8 to a C*-coaction on B. Since §(#)c M @ #(G) and B® CXG) is
a C*-subalgebra of # ® #(G), by Lemma 2.1 M(B ® CX(G))is faithfully repre-
sented as the idealizer of B ® C*(G)in the weak* closure B ® .#(G) of B® C*(G)
in .# ® .#(G). Thus, the question of whether 6(B) = M(B ® C*(G))is unambigu-
ous.

LEMMA 2.2. Let(#,G, ) be a W*-cosystem, and let B be a C*-subalgebra of M.
(1) 6 restricts to a C*-coaction of G on B if and only if both

(CRY) 4(B)(C ® C}G)) = B® CHG) and
2.2 3(B)(B® CF(G) = B® CHG).

(2) O restricts to a nondegenerate C*-coaction of G on B if and only if
2.3 5(B)(C ® CY(G)) = B® CXG).

ProoF. (1) Only the sufficiency requires proof, so assume (2.1) and (2.2). Since
B, C¥(G), and B ® CX(G) are self-adjoint, we have

2.4 (C® CHG))¥(B) = B® CHG),
(2.5 (B® CHG)(B) = B® CHG)
as well.

By the discussion preceding the current lemma, to show that
3(B) = M(B ® C*(G)), we must show that §(B) is contained in B ® .#(G) and
idealizes B ® C*(G). For the first part, let be B, and let {¢;} be a bounded
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approximate identity for C¥G). Then 1 ® ¢; > 1 weak* in .# ® .#(G). By (2.1)
we have

db)(1 ®e)eB® CXG) = BR #(G)
for all i, so

d(b) = weak* lim 5(b)(1 ® e;)e B ® #(G).
For the other part, (2.2) and (2.5) trivially imply that §(B) idealizes B ® C*(G).
It now follows from (2.1) and (2.4) that in fact
3(B) = M(B ® CX(G)).

Nondegeneracy of d as a homomorphism into M(B ® C*(G)) follows at once
from (2.2). Since the coaction identity holds on .#, it continues to hold on B. We
conclude that ¢ restricts to a C*-coaction of G on B.

(2) Again, only the sufficiency requires proof, so assume (2.3). As before, we
also have

(2.6) (C® CHG))o(B) = B® CHG).

The verification of §(B) = B ® .#(G) goes exactly as in the proof of (1), except we
appeal to (2.3) rather than (2.1).
The idealizer property follows from

d(B)(B® C¥(G)) = 4(B)(C ® CHG)B® C)
c(BRCHO)B®C) by(2.3)
= B® CX0),

and a similar computation for (B ® C*(G))d(B).
As in the proof of (1), it now follows from (2.3) and (2.6) that in fact

8(B) € M(B ® CX(G)).

To see that 6 is a nondegenerate homomorphism into M(B ® C¥(G)), let
ze B® CXG), and let {¢;} be a bounded approximate identity for B. Then

zx ) 8(b)1®x;)  for finitely many b;e B, x;€ C¥G)
j
=1lim Y 5(b;)(1 ® x;)(e; ® 1)
i

€ 6(B)(B ® C}G)).

Again, the coaction identity holds by restriction, and we conclude that ¢ re-
stricts to a C*-coaction of G on B. We appeal to (2.3) one more time to see that
this coaction is nondegenerate.
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The next lemma records a couple of vital integral identities. In one form or
another these were first proven in the weak* sense by the pioneers of nonabelian
W*-crossed product duality [Nak], [SVZ]. Specifically, (2.7) below is
a C*-version due to Katayama [Kat, Lemma 1] of a result which can be traced to
Nakagami [Nak, Lemma 4.3 (ii)] (see also [NT, Lemma I1.1.5]), and (2.8) below
isa C*-version of a result of Stratila et al [SVZ, Lemma I1.1.4]. We mention also
that Katayama has proven an identity [Kat, proof of Lemma 3] which, although
not as convenient, can be used in the same way as (2.8).

LemMMa 2.3 (Katayama, Nakagami, Strdtila, Voiculescu, and Zsido). If
(A,G, ) is a W*-cosystem, then for f e A(G), ce CHG), x € 6 4g)(#) we have

2.7 ()1 ® Af)e) = J O7.5-1(x) @ A(s)c ds,

28 x® AMf)e = J (0. s ()1 ® Als)c) ds,

both integrals taken in the norm topology.

ProOF. (2.7) can be proven as in [Kat, Lemma 1], even though his context is
different: he starts with a C*-coaction, whereas we are starting with a W*-coac-
tion. However, it is actually easiest to prove this in the weak* sense without the
¢ (see [Nak, Lemma 4.3 (ii)] or [NT, Lemma II.1.5]), then multiply by 1 ® c.

(2.8) is proven in the weak* sense without the ¢ in [SVZ, Lemma I1.1.4], and
again one can multiply by 1 ® c.

The integrals exist in the norm topology because the integrands are norm
continuous and have compact support.

COROLLARY 2.4. Let (#,G, 6) be a W*-cosystem, and let B be a C*-subalgebra
and a nondegenerate A(G)-submodule of #. Then J restricts to a nondegenerate
C*-coaction on B.

ProOOF. We show (2.3). Let Z = §(B)(C ® CXG)). (2.7) shows that B® C¥G)
contains

(6 4,46(B)(C ® UA(G)CHG)),

hence contains Z by density.
Similarly, (2.8) shows that Z contains

0 4,46(B) ® UA(G)CHG),
hence contains B ® C*(G) by density.
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COROLLARY 2.5. Let (M, G,d) be a W*-cosystem with G amenable, and let B be
a C*-subalgebra and an A(G)-submodule of # such that

d(B) = M(C ® CX(G))

Jor some C*-subalgebra C of M. Then § restricts to a(nondegenerate) C*-coaction
on B.

ProoF. First note that we have
8(B) = M(C ® CXG)) = M(H# ® CXG)),

and further that nondegeneracy will be automatic by amenability of G.

By the preceding corollary it suffices to show that J 4,(B) = B. Since G is
amenable, the constant function 1 is in B,(G). We first show §; = id on B, and for
this it is enough to show d° 8, = J on B, since ¢ is injective. But

500, =id® 8%,

and id ® 6§ = id on .# ® C*(G), hence on .4 (.# ® C*(G)) by strict continuity
[LPRS, Lemma 1.5].

Now let  be an element of the annihilator é 4,(B)* of 6 4,(B) in #*. We
finish by showing w € dp ()(B)*. Let be B. Then for all f € A(G) we have

0 = <o,(b), w) = ({o(b),w ® id), .

Now, (4(b), » ® id) € M(C*(G)) since (b) e M(#4 ® CX(G))[LPRS, Lemma 1.5],
and A(G) separates M(C¥(G)), so we must have {i(b), » ® id) = 0. But then we
have

{b,w) = {d4(b),w) = {é(b), w ®id), 1) =0,
so indeed w € 5 ()(B)".

We recall some more terminology from [Kat], [LPRS], and adapt a little of
the terminology and point of view of [Rael], [Rae2], [Qui]. A representation of
a C*-cosystem (B, G, d) is a pair (r, u) of representations of B and C,(G) on the
same Hilbert space s such that (n ® id) ° § = 6* o n, where " is the W*-coaction
of G on £ (s#) implemented by u as above. In this situation n(B)u(Co(G)) turns
out to be a C*-algebra (by essentially the same argument as [LPRS, Lemma 2.5]),
which we denote by C*(r, u), and we have n(B) U u(Co(G)) = M(C*(, p)). It
follows easily from Lemma 2.2 that when (=, y) is a representation of (B, G, ) the
implemented coaction J* restricts to a C*-coaction on n(B), and this coaction is
nondegenerate if § is [Qui, Proposition 2.4]. Moreover, if x is faithful, then it
implements a conjugacy between the cosystems (B, G) and (n(B), G). A representa-
tion (m, p) is weakly contained in another representation (p, v) if there is a represen-
tation 0 of C*(p, v) such that §° p = 7, 8 °v = u. Two representations are weakly
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equivalent if each weakly contains the other. A representation is faithful if it
weakly contains every representation. If (x, p) is a faithful representation, we call
the triple (C*(r, ), 7, w), or just the C*-algebra C*(m, ), a cocrossed product of the
cosystem (B, G, 9). Of course, all faithful representations are weakly equivalent, so
all cocrossed products are isomorphic. When a particular cocrossed product is
understood, we denote it by (B b<; G, jg, jg), and we call jg and j; the canonical
imbeddings of Band Cy(G)in M(B < ; G), respectively. When ¢ is understood, we
denote the cocrossed product by B ><G. We warn that this notation is not
standard; the notation and terminology of crossed product duality have not yet
stabilized, and we are trying to find a symbol which is “obviously” the dual of the
symbol for crossed product, and ><thas been used frequently for the latter. For
a representation (7, u) of a cosystem (B, G) the unique representation 6 of B b< G
such thatfcjz = 7,0°j; = pis denoted by n x u. If mis a representation of B on
M, then the representation of (B, G, d) induced from B is the representation on
# ® [*(G) given by Indn = (n ® id) ° 4, | ® M), where M denotes the canoni-
cal representation of Co(G) on L*G) [GL], [Man]. If r is faithful, so is Ind =
[LPRS, Theorem 3.7}, [Qui, Proposition 2.8], [Rae2, Theorem 4.1], and
C*(Ind m) is the original definition of the cocrossed product by a coaction [Kat],
[LPRS]. The dual action § of G on B t< ;G is determined by

s-jp(b) = je(b), s-je(f) =Jjs(s' f), seG.

When we refer to the system (B < G, G), we have in mind the dual action.
Katayama duality [Kat, Theorem 8] states that if J is nondegenerate then

BK><JG><13,,G§B®9{,

where the subscript r indicates the reduced crossed product (recall that ¢ de-
notes the C*-algebra of compact operators on L*(G)).

We conclude this section with a sample application of Corollary 2.5, namely an
improvement of [LPRS, Proposition 4.3].

PROPOSITION 2.6. Let (B, G, 6) be a C*-cosystem with G amenable, and let C be
a C*-subalgebra and an A(G)-submodule of B. Then § restricts to a(nondegenerate)
C*-coaction on C.

Proor. Without loss of generality replace B by jg(B), so that  extends
naturally to a W*-coaction on (B < G)**. Since

8(C) = 8(B) = M(B® CHG)),

the result follows from Corollary 2.5.
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3. Landstad duality.

We begin with a couple of results which characterize both the canonical image of
B in M(B 0<; G) (for nondegenerate &) and representations of (B, G, §) induced
from B.

PROPOSITION 3.1. A representation (m,p) of a C*-cosystem (B, G) is weakly
equivalent to arepresentation induced from B if and only if there is an action of G on
C*(m, w) such that m x pis G-equivariant (i.e., “C*(m, u) carries an image of the dual
action”). In this case, if m faithful then sois m X p, so that the system (C*(n, p), G) is
a realization of the dual system (B < G, G).

PRrOOF. Assume that (m, p) is weakly equivalent to Ind ¢ for some representa-
tion ¢ of B. By the first part of [GL, Proposition 2.11] (which does not require
nondegeneracy), Ind ¢ extends to a representation of the dual system (B < G, G).
Therefore, C*(Ind o), hence C*(r, u), carries a suitable action of G.

For the converse, let # be the Hilbert space of the representation (r, ), and
suppose that C*(n, u) carries an image of the dual action. We use a trick of
Landstad [Lan3]: define a faithful representation t of C*(r, u) on # ® I*(G) by

((@2)(s) = 5 a&(s),
and then define § = Ad W o1, where W = u ® id (Wy). One readily verifies that
fon = (n ®1id)°9,

Oou=10M

(recall that M denotes the canonical representation of Co(G) on L*(G)). Hence,
0 implements a weak equivalence between (7, ) and Ind &
The last statement of Proposition 3.1 is now obvious.

The above result, which should be compared to [Rae2, Corollary 4.3], can be
regarded as a “weak” version of the imprimitivity theorem, which says in this
context that a representation of B < G is (unitarily) equivalent to a representa-
tion induced from B if and only if it extends to the dual system (B o< G, G) [Qui,
Corollary 2.11]. As we mention in [Qui], this imprimitivity theorem is actually
equivalent to Katayama duality, and when G is amenable it is a special case of
a result of Mansfield [Man1, Theorem 28] (see also [Man2, Theorem 3]). The
amenability restriction here comes from the fact that Mansfield deals with a more
general induction process, namely from a “restricted cosystem” (B, G/N, 6|) for
a normal amenable subgroup N. The restricted coaction d| is defined as
(id ® g)° 6, where g: C*(G) —» CX(G/N) is the natural quotient map (which makes
sense since N is amenable). Presumably the amenability requirement in Mans-
field’s imprimitivity theorem could be removed through the use of the full
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coactions of Raeburn [Rael], [Rae2], for then the appropriate quotient map
would be C*(G) - C*(G/N), which always makes sense. However, as Raeburn
points out [Rae2, Remark 2.7], it is not obvious how to adapt the definition of
Mansfield’s induction process to full coactions.

PROPOSITION 3.2. Let (B, G) be a nondegenerate C*-cosystem. Then jg(B) is the
unique C*-subalgebra C of M(B < G) satisfying:

3.1) &7 restricts to a nondegenerate C*-coaction on C,
3.2) Cjg(Co(G)) = B<G.
(3.3) sc=c, seG,ceC,

Proor. For ease of writing let A = B <G and replace B by jg(B), so that
6 = &S, Let & denote the collection of C*-subalgebras C of M(A) satisfying
(3.1)H3.3). Of course, Be &, and we must show & = {B}. First we show & is
directed by inclusion. Specifically, let C,, C, € &, and let D be the C*-subalgebra
of M(A) generated by C, u C,. We show that De &. To show (3.1) we need only
verify (2.3). Define Z = §(D)(C ® CXG)). To see that Z =« D ® CXG), let
x € C¥(G), and define

D' = {deD|5(d)(1 ® x)eD ® CXG)}.

Then D’ is a closed subspace of D containing C, U C,, so to show D' = D it
suffices to show that D’ is a subalgebra. For d,e e D’ we have

d(de)(1 ® x) = 6(d)d(e)(1 ® x)
~ 8(d) Z e ® x; for some e;e D, x;€ C¥G)

=Y 6d)(1 ®x)e;® 1)
i

~ Z(d.y@ yi)ei®1) for some d;;eD, y;;e CXG)
i,j

= Z(dijei ® yij)
iL,J]

e D® CXG).

This shows that Z =« D ® CXG).

We prepare for the verification of the opposite containment by showing that
Z is a C*-subalgebra of D ® C*(G). Clearly Z is a closed subspace. To show that
Z is self-adjoint, it suffices to show that (C ® C*(G))d(D) = Z. Let x e C*(G), and
define

D' = {deD|(1 ® x)3(d)e Z}.
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As before, D' is a closed subspace of D containing C; U C,, so to show D’ = D we
need only show that D’ is a subalgebra. For d,ee D’ we have
(1 ® x)d(de) = (1 @ x)d(d)d(e)

~ Y 3(d)1 @ xMe)  for some d;e D, x;e C*G)
~x Z 5(d‘)5(e,})(1 ® y'.l) for some eij € D, yijE C;“(G)
LJ

e”Z.

Hence, Z is self-adjoint. To show that Z is a subalgebra, it suffices to show that it
contains all elements of the form §(d)(1 ® x)d(e)(1 ® y) for d,ee D, x, y € CXG).
From the above we have

3(d)(1 ® x)é(e)(1 ® y) ~ o(d )Z o)1 ®@ x)(1®y) for some e;e D, x;€ CHG)
= Z‘S(dei)(l ® x;y)

e Z.

Hence, Z is a subalgebra, and therefore is in fact a C*-subalgebra of D ® CX(G).
We are now prepared to show that Z > D ® C¥(G): merely observe that Z is
a C*-subalgebra containing (C; ® C*(G)) u (C, ® CXG)).
We have verified (3.1) for D, and we now check (3.2). Certainly

Djg(Co(G)) = Cyjg(Co(G)) = A.

For the opposite inclusion, let f € Co(G) and define
D' = {deD|djg(f)eA}.

Clearly D' is a closed subspace of D containing C; U C;, so to show D' = D we
only need show that D’ is a subalgebra. For d,ee D’ we have

dejg(f)edA < A,

the latter inclusion following from D < M(A).

We have now shown that D satisfies (3.1) and (3.2). Of course, (3.3) is clear since
the G-fixed points of M(A)form a C*-algebra. Hence, D € &, so that & is directed
under inclusion.

Next we observe that for every Ce & the system (4, G) is a realization of the
dual system (C o< G, G). To see this, note that (id, jg) is a representation of the
cosystem (C, G), C*(id, jg) = A by (3.2), and A carries an image of the dual action
by (3.3), so (id, j¢) is faithful by Proposition 3.1.



288 JOHN C. QUIGG

Finally, we are ready to show that & contains at most one element. Suppose
C,De ¥ with C £ D. By the above we may assume that C = D. Then

Cr<;G>5,G=A><5,6 =D <G >5,G,

and Katayama’s isomorphism [Kat, proof of Theorem 8] of D o<;G >3, G
with D@ A takes Cro<;G>,G to C®H, so we must have
C® A =D ® A. We derive a contradiction from the existence of a nonzero
functional of the form ¢ ® Y with ¢ e D*, Yy e #™*, and ¢|C = 0.

THEOREM 3.3. Let (A4, G) be a system. Then there is a cosystem (B, G) such that
(4, G) is a realization of the dual system (B >< G, G) if and only if there is a non-
degenerate G-equivariant homomorphism . Cy(G) - M(A).

Moreover, the cosystem (B, G) may be chosen to be nondegenerate, and then it is
uniquely determined up to conjugacy by the further requirement that j; = p.

ProOF. When (4, G) is a dual system, we can take u = jg.

Assume the existence of u. We must show existence and uniqueness of an
appropriate cosystem (B, G). First we show uniqueness. Note that if (B, G) is
a cosystem such that (4, G) = (B < G, G) with j; = pu, then so is (jg(B), G), and
this latter cosystem is conjugate to (B, G). Therefore, uniqueness follows from
Proposition 3.2.

It remains to show existence of a suitable cosystem (B, G). We pave the way
with several definitions and lemmas. Dualizing Landstad’s strategy [Lanl1], we
copy from Olesen and Pedersen [OP1, Section 2], [OP2, note added in proof]
the construction of an “averaging operator” from a dense self-adjoint subalgebra
of A into the G-fixed elements of M(A).

DEerFINITION 3.4. We define the following sets:

p = {a € M(A)* | there exists be M(A)* with (b, )

=J {s+a,¢) ds for all ¢eA*+}
G

n = {ae M(A4)|a*aep}
m = n*n.

In the definition of p, clearly ihe element b is uniquely determined by a; we
denote it by Ea. Part (1) of the following lemma is proven in [OP2, note added in
proof7]. Parts (2)~4) follow from (1) using standard arguments, e.g., [ Ped, Lemma
5.1.2].
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LemMMA 3.5. (1) p is a hereditary cone in M(A)*.

(2) nis aleft ideal in M(A).

(3) misaself-adjoint subalgebra of M(A) which is equal to the span of its positive
part m*.

4) m* =p.

COROLLARY 3.6. (1) E extends uniquely to a positive linear map from m into
M(A).

(2) Ea = [gs-adsforall ae m, where the integral is taken in the weak* topology.

(3) For b,cem the map a E(bac) is norm continuous on M(A).

Proor. (1) and (2) follow immediately, and (3) may be proven using an
argument similar to, e.g., [OP1, Lemma 2.5].

DEFINITION 3.7. Ay = w(C.(G))Au(C(G)).

LemMA 3.8. (1) w(C(G)) € m.
(2) Agcmn A
(3) Ao is a dense G-invariant self-adjoint subalgebra of A.

Proor. (1) This is very similar to [OP1, Lemma 2.6], and essentially follows
from the fact that for fe C.(G) the integral js~ fds is weak* convergent in
Co(G)**.

(2) This follows immediately from (1) and Lemma 3.5.

(3) This follows from (2), the definition of A,, and nondegeneracy of p.

DEerINITION 3.9. B will denote the C*-subalgebra of M(A) generated by E(Ag).

LemMma 3.10 (1) Every element of B is fixed under the action of G.
(2) Bu(Co(G)) = A.

Proor. (1) It is enough to show it for elements of E(A), and this easy.
(2) Let C denote the left hand side. To see that C = A, itis enough to show that
A contains all elements of the form E(au(f))u(g) for ae Ay, f, g€ C.(G):

E(ap(f)ulg) = J s (au(f))ds u(g)

= fs~ au(s- fg) ds.

Since s- fg vanishes for s outside a compact set, the integrand is in C.(G, A), so the
integral exists in A.

To show A4 = C, it suffices by Lemma 3.8 (3) to show A,u(C.(G)) = C. Let
ae Ay and f e C.(G), and choose a net {g;} in C.(G) consisting of nonnegative
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symmetric functions of integral one with supports shrinking to the identity
element of G. Then {g; * g;} is a bounded approximate identity for L'(G). For each
idefine h: G x G- A by

hi(s, t) = t-(ap(fgi- s~ Nulgi s ™),
where g - s(t) = g(st). It is routine to verify that h;e C.(G x G, A). On the one hand
we have

f e = J J - (apfge- s~ lge- s~ ) de ds

= IE(au(fgi s Yulgi-s™h)ds,

and the latter integrand is in C (G, C) (continuity following from Corollary 3.6
(3)), so [ h;e C. On the other hand,

f = f J - (@Dt gy s~ 'ge- s~V ds dt

= J t-(au(f))g:* g:(t) dt

= (gi* g:) " (au(f)),
so that | h; tends to au(f) in norm, forcing au(f)e C.
Let 6 be the W*-coaction of G on A** implemented by u as in Section 2.
LemMa 3.11. (1) For beB, f,ge C.(G) we have
87.g(b) = E(u(f)bu(g)).
(2) E(u(C(G)Bu(C(G))) is dense in B.
Proor. (1) We compute:

Osugb) = Iu(t “fbu(t- g)dt

= It'(#(f )bu(g)) dt

= E(u(f)bu(g))-

(2) It suffices to show that E(u(C,(G))Bu(C.(G))) contains all elements of the
form E(u(f)au(g)) for f,ge C.(G), ac A. By Lemma 3.10 (2) we can choose
a sequence {a,} in Bu(C,(G)) converging in norm to a. By Corollary 3.6 (3) we

have E(u(f)anu(g)) = E(u(f)au(g)). But u(f)a,u(g) e u(C:(G)Bu(C(G))-
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CONCLUSION OF THE PROOF OF THEOREM 3.3. It follows from Lemma 3.11 that
Bis anondegenerate A(G)-submodule of A**. From Corollary 2.4 we deduce that
d restricts to a nondegenerate C*-coaction on B. It now follows by definition that
(id, p) is a representation of the cosystem (B, G), and Lemma 3.10 (2) says that
A = C*(id, y). Moreover, it follows from Lemma 3.10 (1) and the equivariance of
u that the representation id x u of B < G is G-equivariant. By Proposition 3.1
we conclude that the system (4, G) is a realization of the dual system (B t< G, G).

4. Landstad’s coconditions.

Let (4, G) be a system, let u: Co(G) - M(A) be a nondegenerate equivariant
homomorphism, and let § be the W*-coaction on 4** implemented by u. By
Theorem 3.3 there is a unique C*-subalgebra B of M(4) such that § restricts to
a nondegenerate C*-coaction on B and (4, G) is a realization of the dual system
(B >< G, G) with jg = p. In the dual situation, Landstad was able to characterize
the corresponding version of B as the set of elements of M(A) satisfying three
conditions [Lanl, (3.6)+3.8)] which have since become known as Landstad’s
conditions. We propose the following as a dual analogue of these conditions in
our context:

DEFINITION 4.1. We say an element b of M(A) satisfies Landstad’s coconditions
if

(1) s-b = b for all seG;

(2) bu(f), u(f)be A for all feC(G);

(3) é(b)e M(M(A4) ® C¥(G)).
We let L denote the set of elements of M(A) satisfying Landstad’s coconditions.

The formulation of Landstad’s cocondition (3) deserves comment. L is clearly
a C*-subalgebra of M(A), and the idea is that 6 should restrict to a C*-coaction
on L. Unfortunately, we have been unable to show this. However, we atleast have
the following:

ProrosiTion 4.2. (1) B < L. .
(2) Lis an A(G)-submodule of M(A).

ProoOF. (1) We must show that every element of B satisfies Landstad’s cocon-
ditions. Landstad’s cocondition (1) is Lemma 3.10 (1).

The first half of Landstad’s cocondition (2) was shown in the proof of Lemma
3.10 (2), and the other half can be shown similarly.

Finally, to verify Landstad’s cocondition (3), let be B. Then

8(b)e M(B ® CXG)) = M(M(4) ® CXG)).
(2) Note that M(A)itselfis an A(G)-submodule of 4**. This follows easily from
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the following observations: W = u® id(W;)e M(A ® C*(G)) (since u® id:
Co(G) ® CHG) » M(A ® C*(G)) is a nondegenerate homomorphism), and for
f € A(G) the slice map id ® f takes M(A ® C*(G)) into M(A4) [LPRS, Lemma
1.5]. Now let beL, fe A(G). We must show that J,(b) satisfies Landstad’s
coconditions.

For Landstad’s cocondition (1), let se G, and compute:

5:0(b) = s-<0(b),id ® £
= <s-6(b),id ® 1),
letting G act on the first factor of 4** ® .#(G),
=(Ads W(s-b® 1),id® f)

=(Adp®id(s- We)(b® 1),id ® f),
letting G act on the first factor of Z(I3(G)) @ #(G).

= (Adp @ id(Ws(1 @ A))(b ® 1),id ® f>

=(Adp®id(We)(b® 1),id ® f)

= 6,(b).

It suffices to show Landstad’s cocondition (2) for f = g *h* with g, he C(G).
The computation is similar to the first part of the proof of Lemma 3.10(2). Letting
ke C.(G), we have

o (b)ulk) = J (s - g)bu(s - h) ds p(k)

= f u(s - g)bu(s - hk)ds.

Since s - hk vanishes for s outside a compact set, the integrand is in C (G, A4) (since
be L), so d,(b)u(k)e A. A similar computation works for u(k)d ;(b).
Finally, we verify Landstad’s cocondition (3). For x e C¥(G) we have

8(6,(b))(1 @ x) = (6, @id)(d(b))(1 ® x)
= (0, @id)(4(b)(1 ® x)),
which is in M(4) ® CXG) since d(b)(1 ® x) is, and similarly for (1 ® x)d(5,(b))-

Ideally, it should turn out that not only does é restrict to a C*-coaction on L,
but in fact L = B. This would imply, among other things, a positive resolution of
the automatic nondegeneracy problem. To see this, suppose (C, G, ) is a (pos-
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sibly degenerate) cosystem, let 4 = C ><G and u = jg, and without loss of
generality replace C by jc(C). Then yu is covariant for the dual action on A4, so by
Proposition 3.2 there is a unique C*-subalgebra B of M(A) such that J restricts to
a nondegenerate C*-coaction on B, Bu(Cy(G)) = A, and every element of B is
fixed under G. It is not hard to see that necessarily B = C < L, so if Landstad’s
coconditions actually characterize B then we must have B = C and the original
cosystem (C, G) is nondegenerate. It seems natural to ask whether Landstad’s
coconditions characterize B when G is amenable or discrete. We answer this in
the affirmative when G is amenable.

THEOREM 4.3. Let (B, G, d) be a C*-cosystem with G amenable. Then jg(B) is
characterized in M(B < G) by Landstad’s coconditions.

Proor. Let A = B< G and u = jg, and replace B by jg(B). Then § extends
naturally to a W*-coaction on 4A**.

Let L denote the set of elements of M(A) satisfying Landstad’s coconditions.
Then B < L, so by Landstad’s cocondition (2) we have

A > Li(Co(G)) = Bu(Co(G)) = A.

Moreover, Landstad’s cocondition (3), Proposition 4.2 (2), and Corollary 2.5
(with C = M(A)) show that ¢ restricts to a nondegenerate C*-coaction of L.
Hence, by Proposition 3.2 we must have B = L.
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