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SCATTERING AND SPECTRAL THEORY FOR STARK
HAMILTONIANS IN ONE DIMENSION

YANG LIU

Introduction.

Let H, = —d?/dx* + xand let H = H, + V, where V is a function. We are going
to study the scattering theory for the pair (H,, H) and some related inverse
problems. There is an extensive literature on these topics and we refer to Avron
and Herbst [2], Ben-Artzi [4], Herbst [6], Jensen [3], Rejto and Sinha [12] for
some background material. Most of these authors used the time-dependent
approach combined with commutator estimates. Under some general conditions
(see [4]) they were able to prove the completeness of the wave operators for
(H,, H).

Here we adopt the time-independent approach making use of the Fourier-Airy
transformation. We prove first of all a limiting absorption principle (see Agmon
[1] and Chapter 14 in Hérmander [8]) for the free Stark Hamiltonian H, in
Section 1. A similar limiting absorption principle for H is obtained in Section
2 under some decay conditions on V introduced in Proposition 2.2, and the
absence of discrete spectrum of H is proved. By the results obtained in Sections
1and 2 we are able to prove an eigenfunction expansion theorem for H in Section
3(Theorem 3.3). In Section 4 we consider some problems in the inverse scattering
theory for (H,, H). Here, the conditions on V are more restrictive, since we assume
that the function (1 + |x|)V(x) is integrable. This condition is assumed in the
inverse scattering theory for the Schrédinger equations on the line. We adopt
here the approach used in Melin [11] which was previously developed by L. D.
Faddeev (see the references in [11]). A similar approach to inverse scattering for
the Stark Hamiltonians appeared also in a recent note by Kachalov and Kurylev
[10]. However, their conditions on the potentials are much stronger than ours. It
is clear that we obtain better estimates here.

Finally, I would like to thank my supervisor, Professor Anders Melin, for‘all
his help and tolerance during the preparation of this note. His constructive
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suggestions are invaluable to me, and his work on the inverse scattering theory is
always an inspiring source of my learning this branch of mathematics.

1. The Fourier-Airy transformation and the resolvent of the free Stark Hamil-
tonian.

Let &(R) be the space of all smooth functions on R which together with all their
derivatives are rapidly decreasing. The Fourier transformation

Fu(§) = 4(¢) = je_""'gu(X) dx

is a homeomorphism on &(R). By duality it can be extended to a homeomor-
phism on &'(R). The restriction of (2r) " }/2F to #?(R) is a unitary operator.
The Fourier-Airy transformation F, is given by

(L.1) ’ F,=F"'GF

where Gu(&) = e ~*°/3y(&). This is a homeomorphism on #(R) and #'(R) by the
preceding remarks and its restriction to .£2(R)is a unitary operator. Moreover, it
follows from (1.1) that F, is a convolution operator:

(1.2) Fu=#=d*xu, ue¥R)
where d(x) = a(— x) and Airy’s function a(x) is the inverse Fourier transform of

€3 Since F, ! = F~'G~'F where G~ ! is the multiplication by €*/3, it follows
that

(1.3) F lu=axu, ue%R).

We now recall some facts about Airy’s function which can be found in
Hormander [7] pp. 213-215.

Airy’s function a(z) is an entire function which is real when z is real. It satisfies
the following differential equation

(1.4) —a"(z) + za(z) =0,
~and
(1.5) a(0) = 3711 (1/3)/2n, a'(0) = —3Y°1(2/3)/2n.

Let w = €'2™3. Then z— a(wz) and z — a(w?z) also satisfy the equation (1.4). We
have the relation

(1.6) a(z) + wa(wz) + w*a(w?z) =0

and {a(z), a(wz)} are linearly independent solutions of the equation (1.4).
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In order to describe the growth properties of a at infinity it is convenient to
introduce the function

(.7 o(z) = 22°%3, |argz| <=

Here and in the following we set z* = ¢*'*8%, ¢ € C, wherelog z = log |z| + iargzis
the determination of the logarithm which is defined outside the closed negative
real axis and has real values on the positive real axis. We note that Re(z) extends
to a continuous function on the whole complex plane and that Re(z) = Re(3).
The following simple lemma will be needed.

LEMMA 1.1. Let o = €*". Then
(18)  Ro(wz) < Ro(2), Ro(wz) £ Rp(w?z), -n3<argz<m
(19)  [Ro(x +iy) + IxI'"2 )] < ClyP(xl + 1¥)7*2 x <0, yeR;
(1.10) [Rop(w(x + iy) + X2y < ClyPxl + )%, x <0, yeR;
(L1)  [Relx +iy) — o) = ClyPPx + 1Y) 7" x>0, yeR;
where C is some positive constant.

ProOF. When proving (1.8) we may assume for reasons of homogeneity that
z=¢" where —n/3<a <.

If —n/3 <a < n/3, then p(wz) = —(z) and p(w?z) = —@(z), and the esti-
mates (1.8) hold since 3R¢(z)/2 = cos(30/2) 2 0. On the other hand, if
n/3 <o < m, then @(wz) = ¢(z) and @(w?z) = —¢@(z), and the estimates (1.8)
follow since 3R¢(z)/2 = cos(3x/2) £ 0.

When proving (1.9)«(1.11) we may assume for reasons of homogeneity that
x| = 1, and it suffices then to prove the estimates when [y| is small. Then ( 1.9)
follows since

Ro(—1 + iy) = Re(—1 + ily]) = 2R(E>(1 — ily)**)3
= 2R(—i(1 — 3il/2)/3 + 0*) = =l + 00”)

The estimate (1.11) follows by expanding (1 + iy)*’? in a Taylor series at y = 0.
Finally (1.10) follows from (1.9) since p(wz) = + ¢(z) when Rz < Oand £3z > 0.
This completes the proof of Lemma 1.1.

LEMMA 1.2. There are positive constants Cy,k = 0,1,..., such that
(1.12) la®(z)| € C(1 + |z|)k/2—1/4e*9f¢m, zeC.

PROOF. According to (7.6.20) of Hormander [7] we have the following asym-
ptotic expansion at infinity:
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(1.13)  a(z)e”® ~ (2m)~ 1z 114 i (=9)"*I'(3k + 1/2)z~342/(2k)!
k=0

in any sector I', = {z:|arg z| £ n — ¢} where ¢ is a small positive number. Since
the left side of (1.13) is analytic in the sector and p®(z) = O(|z| **3/%),k = 0,1,...,
at infinity the estimates (1.12) hold in I',. It suffices therefore to prove now that
there are estimates

laM(@z) S Cull + |2/~ 1rte =00,

when z is in a small conic neighborhood I' of the half ray from the origin through
the point ™3, Since z and w?z are in a set where (1.12) holds, the result follows
then from (1.6) and (1.8).

We have now made all preparations necessary for our estimates of the resol-
vent of the free Stark Hamiltonian.

Set Du = —idu/dx and Mu(x) = xu(x) when ue &'(R). Then

P,=D*+ M
is a continuous operator on %'(R). We note that
(1.14) F,PF;'=M
since

F,P, = F"'G(M? — D)F = —F"'DGF = MF~'GF = MF,,

It follows directly from (1.14) and the mapping properties of F, already
discussed that the restriction H, (the free Stark Hamiltonian) of P, to

D(H,) = {u: ue £?, Pue ¥?}

is a self-adjoint operator on #?(R). It is unitarily equivalent to M. Hence its
spectrum is the whole line and it is simple and absolutely continuous. It also
follows from (1.14) that H, is the closure of P, restricted to &(R), and this implies
that C3(R) is dense in 2(H,) under the graph norm.

We let R (1) = (H, — /)~ ! be the resolvent of H, when I/ % 0, and R,(x, ;)
denotes its integral kernel. (It follows from (1.14) that F,R,(A)F, ! = (M — )~ ".
Hence R,(4) is continuous from & to & and from &' to &'.)

PROPOSITION 1.3. R,(x,y;4) is the unique continuous function on R x R X
(C\R) which satisfies the following conditions:

1.15) R,(x, y;4) = i2ne ™" a(x — Da(w(y — 4), Ii>0, x>y;
(1.16) Ry(x, 13 ) = Ry, %3 A);
(1.17) Ry(%,3;4) = Ro(3, X%; 2) = Ry(x, y; 4).
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ProoF. Let 31 > 0and K(4) be the integral operator with the kernel K(x,y;4)
defined by (1.15) and (1.16). Since —a"(x — 4) + (x — A)a(x — 1) = 0 and
a(x — Aa(w(x — 1)) — wa(x — Aa'(o(x — 1) =
a'(0)a(0) — wa(0)a'(0) = —(2xi)~ Lei™?

by (1.5), it follows that (P, — )K(A)u = u when ue CZ(R). Since K(A)u(x) is
rapidly decreasing at infinity in view of Lemma 1.1 it follows that K(A)u e 9(H,).
Hence K(A)u = R (A)u v_vhen ue CZ(R). The proposition follows now if we ob-
serve that R (A)* = R,(4).

It follows from (1.12), (1.15) and the fact that p(wz) = — ¢(z) when 3z < 0 that

(118) 1Ry06, 3 21 S C(1+ b = A)TV4(1 + [y — )~ aghotr 4 ots—,
JI1>0, x>y,

where C is some positive constant. We shall need the following estimates for the
exponent in the right side of (1.18).

LEMMA 1.4. Let A be a complex number. Then x— Reo(x — A) is an increasing
function and

(i) Ro(x — 1) — Roly — 2) 2 ¢(x — RA) — oy — RA),
0Sy—RASx— R

(i) Rolx —2) — Ro(y — 2) Z [SAU(@'(RA =y + |3)) — @'(RA — x + [34)),
y—RIEx—RILZO0.

PRrOOF. The function x — Re(x — A)increases since its derivative is non-nega-
tive.
When proving (i) and (ii) we may assume that R4 = 0, 34 # 0, and since ¢(z) is

homogeneous, Ro(z) = Re(Z), we may assume also that I4 = —1. We have thus
x x /SZ + 1 +5 1/2
Ro(x — 1) — Ro(y — 4) = f Ro'(s + i)ds = s ds.
y ¥y

If0 < y < x, then the last term is not less than

jxs”z ds = ¢(x) — @),

y

Wwhich gives (i). If y < x < 0, then the same term equals

x 1 1/2
d
L (2(\/s2+1+|3|)> ’
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which is not less than
J (1 +[s)""2ds/2 = ¢'(1 — y) — ¢'(1 — x).
y

This completes the proof of Lemma 1.4.

We shall use (1.18) and Lemma 1.4 to establish the continuity properties for the
resolvent between some weighted £ spaces. For an integral operator K with
a locally integrable kernel we shall use the notation

IK]l.« = max {ess suleK(x, y)ldy, ess suleK(x, Y dx}.
x y

If this number is finite, then K is a continuous operator on #? withnorm < ||K|| ,
when 1 < p < oo. We also introduce the weighted £? spaces:

LP = {u: {x)u(x) e £*},

where « is real and {x)> = 1 + |x|. We shall need to consider such spaces with
different exponents p and different weights {x>* on the positive and negative
axis. Let 0 be the Heaviside function on the positive real axis, and set

O(x) = 6(—x).

LEMMA 1.5. Let a, B be real numbers and let K = K, 4 ,.. be the integral
operator with the kernel

Ka, ﬂ,a,t(x’ y) = G(X - y)<x>a<y>ﬁeﬁ¢(y—a~ir)—9!¢p(x—a—ir)’

when o, teR. If I = R\{0} and J = R are compact sets and 6. are bounded
measurable functions such that 6.(x) = 0(+ x) for |x| large, then

(1.19) sup 104K, 5 0+la<o0, a+p<1/2
oel,teR

(1.20) Sup 104K, 5,0 Il < 0;
ogelJ,tel

(1.21) sup 0-K, 5, 0-lu<0, a+ps—1/2
oel,tel

(1.22) sup [0+K, p,6,:0-llglogr <00, y€ER;
oeJ,teR 4 L4

(123) sup |I9~Ka,ﬁ.a,t0-“.?l—*2’°f < 0.
cel,teR A *

ProoOF. Since {x + o)*(y + o)? is of the same order of magnitude as
{x)*(y>? when x,yeR and ¢ is in a compact set, it is no restriction for us to
assume that J = {0}.
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When proving (1.19) we may assume that t = Oin view of Lemma 1.4 and since
K(x, y) is rapidly decreasing when y stays in a compact set and x tends to infinity
we may also assume that 6, (x) = 6(x — 1). We have for x > 1

X

x x/2
j eV dy < (yHPe®V dy + C<x>ﬂ—1/2f
1 0

x/

@'(y)e® dy
2

S Cill + CxpP T 1)er™ID 4 Cx Y1120,

Since e?*/? =™ s rapidly decreasing at infinity it follows that
f IK(x, y)ldy £ Cp{x)**FP=12 x> 1.
1
When y = 1 we also have

© 4y ©
J (xD% " dx < C{y)* 12 J @'(x)e”*™dx + f (x)% ¥ dx
4y

’ y
e o)
< C<y>a—1lze-¢(y) +f <x>ae—<p(x) dx < C1<y>““”2e‘<°‘y’.
4y
Hence we have proved that

J IK(x, )l dx < Co{y>* P12, yz 1,

y

and (1.19) follows. .
When proving (1.20) we may assume that 6_(y) = 6(—y) and since e**” " is

rapidly decreasing at — co in view of (1.9), again by Lemma 1.4, we may assume

also that 0, = 0. Then we write

Ro(x — it) — Re(y — it) = Re(x — it) — Rep(—it) + Ro(—it) — Rely — it)
when x > 0 > y. The right side can be estimated from below by a constant plus
o(x) + clyl'”?,
where c is a positive constant which depends on I only. Hence
IK(x, y)| < Cxd¥yHPeo@ =PIy <0< x

and (1.20) follows. .

In the proof of (1.21) we may first replace § - K6 _ by 6_Kfand applying (1.20)
we find then that 0 _ in the last expression may be replaced by d. An application of
Lemma 1.4 allows us to estimate Ro(x — i) — Ro(y — ir) from below by a nega-
tive constant plus @'(Iyl) — ¢'(x)), where ¢ > 0 depends on I only. Hence ifGis



272 YANG LIU

the operator obtained from §K# when (x, y) is replaced by (— y, — x) in the kernel,
then x, y = 0 in the kernel of G and

IG(x’ y)l é Ce(x —_ y)<x>ﬂ<y>ue—c(q;’(x)_q,:(y))‘

Arguing as in the proof of (1.19) we conclude therefore thatifa + f < —1/2, then
there is a bound for the .#-norm of G which depends only on I, J, « and . Hence
(1.21) holds.

In the proof of (1.22) we may assume that 8, = 0 and 0_ = . Then (1.22) is
obvious if we estimate K(x, y) for y < 0 < x by <x>*(y>#e™ ¢, Finally (1.23)
follows from the estimate |K(x,y)| < {x)>*(y)?. This completes the proof of
Lemma 1.5.

The preceding lemma together with (1.18) motivate the following definition.

DEFINITION 1.6. Let o, B be real numbersandlet 1 < p,q < co. Then(Z%, £})is
the space of all functions u such that 0 _ue % and 0 ,.ue ¥} whenever 6. are
bounded measurable functions such that 8. (x) = 6(+x) for |x| large.

We note that (%%,%9) is a Fréchet space under the semi-norms
10 _uller + 10 +ul 5 and it is invariant under translations. In the following we
a

shall use the notation C, = {4 AeC, + 34 > 0}.

THeOREM 1.7. (i) If A€ C\R and a, f are arbitrary real numbers, then R,(A) is
continuous from (L2, £3) 10 (L2, L5+ 1).

(ii) If B < (LL,,4,L}) is bounded and J < C is bounded, then {R,(A)ju: A€J,
J2 % 0,ue B} is bounded in (L34, Lj+1)-

(i) If Xj is the space of all continuous linear operators from (L1, Lh)to
(£ L5+ 1), then the mapping A R,(4) is strongly continuous from C  to X;.

(iv) Ifn(x) is any bounded measurable function tending to zero at — oo, then the
mapping A nR,(A) is strongly continuous from C ;. to X,.

PROOF. (i) Let 6 be as in Definition 1.6 and let 8%, be the operator which is
the multiplication by 6. (x){x)’. We want to prove that the operators

(1.24) 6% R, (A)0-%, 0~ R,(D)0:%, 6LFIR, (1O, 65 'R, (1)OF*

have finite .#-norms. In view of (1.17) and (1.18) it suffices to prove the corre-
sponding statement obtained when 34 > 0and R,(4)is replaced by the operators
K . (A) with the kernels

(1.25) K. (x,y) = 0(x ~ y){xp ™ HA(y) P mH e,
(126) K—(x,,V) = K+(y’ X).

The assertion is then a consequence of Lemma 1.5.
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(i) When proving this assertion we may again replace R,(1) by K (4) as
above. This time we want to give estimates independent of 1 for the norms

0 -K(A)0- ||3’1_1/4—~.9’°°

1/4’

10-K(D)0+]| 2 o2

1/4’

16+ K(4)6 - “.91_1/4-'.92

p+1
10+ KO- o202,

b

1

when K(4) = K +(4) and A is in a bounded set in C. The statement for K . (4) is
then again a consequence of Lemma 1.5 and the statement for K _(4) follows by
passing to the adjoint operators.

(iii) It follows from (ii) that it suffices to prove that C\R 3/ R,(A)u is
continuous with values in (£;7,, £5.,) when ue C(R). The assertion follows
therefore if we recall Proposition 1.3. By that proposition R,(4)u(x) is a continu-
ous function of (4, x) e(C\R) x R. Moreover, we have R,(A)u(x) = f+(A)a(x — 4)
for large positive x and R, (Au(x) = f_(A)a(w(x — A)) for large negative x, when
34 > 0, with f, being continuous on C . Similar argument applies when 34 < 0.

Finally (iv) follows from the proof of (iii) since we have the estimates
la(w*(x — A))] < C<{x>~*/* when x < 0 and 4 belongs to a bounded set in C,.
This completes the proof of Theorem 1.7.

REMARK 1.8. It follows from Lemma 1.2 and Proposition 1.3 that the operator
kernel (x>~ Y2D_R(x, y; A) of the operator (M)~ */2DR,(4), where (M)~ "/ is
the multiplication by (x) ~ /2, satisfies the same kind of estimates as R,(x, y; 4).
Hence the operators DR,(J) satisfy the conclusions of Theorem 1.7 if we replace
(g&gpﬂ ) and (£, gpz+ ,) by (32_1/2,3132+1/2) and (_7301/4,,?;“/2) in the
statement of the theorem.

In the next section we shall also use some results about the mapping properties
of the resolvent from %2 to ¥ .

PROPOSITION 1.9. Let J = C\R be compact and 0+ be as in Definition 1.6. Then
there is a positive constant C so that

16-C-SY4R (Al g + (104D *Ro(Aull o= < C lullg2s A€d, ue L2,

PROOF. It is no restriction to assume that 6(x) = 6(+x) and that J < C..
Write 4 = ¢ + irandletK, 4, beasin Lemma 1.5.1t suffices for us to prove the
corresponding estimate obtained when 6_(->'*R,(4) is replaced by the oper-

aors 0_Ko _y.0 . O_K* 114 0.0.c and 0., (->¥*R,(4) is replaced by the oper-
ators 9+K1/2 —t/aoe 0+ K% 14 1/2,0.0 Hence we want to have bounds indepen-

dent of A and x for the expressions
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IO-(x) Ko, - 1/4..(%; Y)I* dy,

Je +() K12, —1/4,0,:(%, Y)IZ dy

and the corresponding expressions obtained when Ko, _ 4,4, ,,.(X, y) is replaced by
K_y/a.0.0.0:%) and K _1/4,4,.(x,y) is replaced by K _y 4 1/2,4..(y,x). Since
|K,, ﬁ,mlz is the same as K,, 54 ,, . after ¢ has been replaced by 2¢, the result
follows from the proof of Lemma 1.5. This completes the proof of Proposition 1.9.

We shall conclude this section by making some additional remarks about the
solutions of the equation

(1.27) Pyp—ou=f

when o is real and fe(£2,,, £?, ;2)- It follows from (iv) of Theorem 1.7 that
R,(o + i0)f are solutions in (£7,, 212,2) of the equation. If ue #'(R) is another
solution we have

(1.28) u(x) = cza(x — o) + Ry(o £ i0)f(x),

where ¢ ;. are some constants depending on . In fact, any distribution solution of
the equation (M — a)g(x) = 0 is proportional to d(x — o). It follows therefore
from (1.3) and (1.14) that h(x) is proportional to a(x — ¢) if (P, — o)h(x) = 0 and
he #'(R).

An application of (1.2), (1.3) and (1.14) shows that the integral kernel of
R, (0 + i0) — R (o — i0) is (2ni)a(x — o)a(y — o). When proving this we may as-
sume that ¢ = 0, for (Pu)(- — o) = (P, — o)u(- — o). Then (2ri)d(x)d(y) is the
integral kernel of the operator (M — i0) ! — (M + i0)~ . The statement follows
since F, '6 =aand F,0 = d.

If ue £, and fe !, we shall use the notation (u, f) for the integral
J u(x) f(x) dx. We note here that the Fourier-Airy transform fof fe(&!, P
is a continuous function for any real .

PROPOSITION 1.10. Let o be real and let ue &'(R) be a solution of the equation
(1.27) with fe(L2 1,4, L2,)5). Then ue(L5,, £1,), (1.28) holds, and

(1.29) —3(u, ) = (lc+1* — lc_|?)/4x,
(1.30) ¢y —c_ = —i2nf(o).

PrOOF. Wemay assume that ¢ = 0. We have already proved that (1.28) holds.
Hence ue(%y7,, &£2,) since a is in this space. It follows from (1.28) that
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0 = (c+ —c)a(x) + (R,(i0) — R,(—i0)) f(x)
so that
¢y —c_ = —i2nf(0)
which is (1.30). By (1.28) it follows that
2u = (c+ + c_)a + (R,(i0) + R,(—i0)) f
so that
23, f) = Hes + ¢)JO)
By (1.30) the right side equals
—=3ic+ + c-)cx —T0)2m) = (lc-* — |e+[?)/2n.
This proves (1.29), hence Proposition 1.10.
COROLLARY 1.11. Ifone of c. and c_ vanishes, then
flo)=0 < c,=c_.=0 < 3uf)=0.

Let fe(£2,,4, %) for some real f. Then {x)'/*R,(¢ * i0)f(x) is bounded
near — oo by (iv) of Theorem 1.7. The following result is more precise.

PROPOSITION 1.12. Let fe(£2,,4, %}). Then
X4 R, (0 + i0) f(x) — i2ne ™3 f(a)a(w(x — a))| = O,
(xYY4|R, (0 — i0) f(x) + i2ne™? f(a)a(w?*(x — a))| = 0,
as x — — oo,

ProOF. We may assume that 6 = 0, and by the continuity we may also assume
that f'e C(R). It follows then from Proposition 1.3 that

R,(i0)f(x) = i2ne~ " f(O)a(wx), Ra(—i0)f(x) = —i2ne™f(0)a(w?x)
when x is negative and large. This completes the proof of Proposition 1.12.
The following result will be needed in the next section.

PROPOSITION 1.13. Let g, N be real numbers and let fe & 2 1ja(— e, N). Then
the equation (1.27) has a unique solution u such that (x)'"*u(x) » 0 as x —» — .
This solution satisfies the estimate

<O Julx)] < Cy fx Gy~ f)ldy, x <N,

where Cy is a positive constant which is independent of f.
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Proor. We may assume that ¢ = 0. Since
G(x,y) = i2me™"™0(x — y)a(x)a(wy) — a(y)alwx))

is a fundamental solution of P,, it follows that u(x) = j G(x, y)f(y)dyis asolution
of the equation (1.27) with ¢ = 0 and satisfies the properties listed above.

To prove the uniqueness we assume that u satisfies the equation P,u = 0 and
{x)>MY4u(x) - 0 as x > — oo, We can write

u(x) = Ca(wx) + C_a(w ™ 'x),

where C; are some constants. Since @(w*1x) = Fip(|x]) when x < 0 it follows
from (1.13) that

A+C+ei¢(!xl) 4+ A_C_e ielxh -0, x—> —o0,

where A ; (#F 0) are some numbers. Hence C,. = 0. This completes the proof of
Proposition 1.13.

2. The resolvent of a short range perturbation of H,.

We shall first find a relatively weak condition on a potential V(x) which makes
H, + V a self-adjoint operator on 9(H,).

PROPOSITION 2.1. Let V(x) e #2.(R) be a real function and assume that
V(x) = 0(—x)(Vi(x) + Va(x)) + 0(x)(V3(x) + Va(x))

with Vi (x)e £, Va(x)e L2, lim, ., V3(x)/x =0 and Vi(x)e L2;,. Then
H, + V is a self-adjoint operator with the domain 2(H,).

PrOOF. By Kato’s theorem and the fact that Co(R)is dense in any £ it suffices
to prove that 2(H,) equipped with the graph norm is continuously embedded in
the Banach space of all functions u(x) such that 8(x){x)>"*u(x)e &>, fue 2,
0(x) (x> *u(x) e L=, O(x)xu(x) e L>.

Since R,(it) is a homeomorphism from #? to 9(H,) when t ¥ 0, the result
follows from Theorem 1.7 and Proposition 1.9.

PROPOSITION 2.2. Let V satisfy the conditions of Proposition 2.1 with V; = 0. We
assume in addition that Ve %! | ;2. Let U(A) = VR,(4) when A€ C. Then the
mappings C . 5 A U(A) are strongly continuous from C.. to the space X of all
bounded linear operators on(£*, 4, £?), and each U(4) is a compact operator on
that space. The operator I + U(4) is a bijection on that space for each AeC ; and
the mappings C .3 A (I + U(A)) ™' € X are strongly continuous.

PrROOF. LetK ;. < C, becompactsetsand B = (£2,,,, & 2) be a bounded set.
We shall first prove that the sets
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{VR, (A f: AeK;, feB}

are bounded in (£ 4, £?). Since {R,(4)f: 1€K 4, f € B} are bounded in (£}, O
£2) by Theorem 1.7, it suffices for us to prove that {0R,(4)f: AeK ., fe B} are
bounded in &Z57,. We shall use the estimate

= ()
x

where u = R,(A)f, A€ K4, f € B, x > 0. Then it follows from Remark 1.8 that we
have a bound for the norm in #*(R ;) of the right side. Hence we have a bound for
) *u(x) in LR ).

When proving that A+ U(4)e X is strongly continuous and that U(J) is
compact, we may in view of the estimate above assume that V is compactly
supported, and then the first assertion follows from (iv) of Theorem 1.7. The
second assertion follows from Remark 1.8, which shows that {R,(4)f: f € B} is an
equicontinuous family of functions when restricted to the support of V. Therefore
the sets

S CCM2 UG + (<)M W NCx [u(x))),

{VR,(A)f: AeK:, feB}

are relatively compact in (£, £?).

Next we prove that I + U(J) is a bijection. Since U(4) is compact, it suffices to
provethat f = 0if fe(£L!,,4, £ and f = — VR,(A)f. Wenote that f € £ since
RS e(LBy, LP). Set u= R,(A)f If 34+ 0, then ue2(H,) = 2(H) and
Hu = ju.Hence f = u = Osince H is self-adjoint. When Ais real we have to apply
another argument. Assume for example that

[ = —VR, (A + i0)f

with fe(£! |, £?). Assume also, as we may, that 2 = 0. Then u = R,(i0)f €
(& 1/4,-71) Since (u, f) = —(u, Vu) is real, it follows from Corollary 1.11 that
f(0) = 0, so that by Proposition 1.12

O Ju(x) -0

asx — —oo. Since P,u = fe &, ,,(—oo,N)foranyN, it follows from Proposi-
tion 1.13 that

X

x4 fu(x)| < CNJ Y AV dy, x <N,
where Cy is a positive constant. Since §V e £.,,, it follows that u = 0, hence
f =0. A similar argument applies when R,,(lO) is replaced by R,(—i0).

Finally we prove that C , 5 A (I + U(4)) ™' € X arestrongly continuous map-
pings. Let B and K , be as above. We claim that the sets
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D, ={l +U®) 'f ieKs, feB}
are bounded in (£, ,, £?). Assume for example that D, is not bounded. Then
there are a number o € R and sequences f;e B, A;e€ K, so that

¢; = [6(- — oI + UA) ™ Sfillet |, #1160 — o) + UG)™ fllg2 = o0

as j — co. It is no restriction to assume that ¢ = 0. Set g; = (I + U(4;))" ' f}/o;.
Then

2.1) g; + Uldjg; = file;.

It follows from the proof of Theorem 1.7 together with Remark 1.8 that
{6R4(4j)g;} is bounded in £, , {0R,(4;)g;} is bounded in £ and {R,(4;)g;} is
bounded in £%.. Hence {U(4;)g;} is bounded in (£2 | ,, £?). It follows therefore
from (2.1) that {g;} is bounded in that space. But then {U(4,)g;} is precompact in
(£ ,,4, £?), and it follows from (2.1) that we may take out a subsequence g, of g;
which converges to an element g (& 0)in (£, ,, £?). Since g + U(X)g = 0if Ais
a limit point of {4;, }, we obtain a contradiction. Similar argument shows that D _
is bounded.

It is now easy to complete the proof. Let 4,eC, and 1;€C, be a sequence
which converges to Ao. Let h; = (I + U(4;))” " f, where fe(£,,,, £?). Since

hy + UGy = f
it follows that {h;} is precompact in (£ 4, £?). Since h = (I + U(4,))~ ' fis the
only limit point of {h;}, we conclude that h; - h in (£, £?). Hence

C.oi (Il + UW) fe(L! )0 £?)

is continuous. This completes the proof of Proposition 2.2, since the proof for the
corresponding statement with C . replaced by C_ is the same.

We shall need the following result about the resolvent R(4) = Ry(4) of H, + V.

PROPOSITION 2.3. Assume that V satisfies the assumptions of Proposition 2.2. If
A€ C\R then U(4) is compact on %2, I + U(A) is a bijection on that space, and

2.2) R(A) = R,(A)I + UR) ™.

Proor. Itfollows from the proof of Proposition 2.1 that U(4) is continuous on
%2 When proving that it is compact we may assume that V is compactly
supported. Then it follows from Remark 1.8 that {R,(1)f: f € B} is equicontinu-
ous when restricted to the support of ¥, if B is the unit ball in #2. Hence U(4) is
compact on #2 The resolvent equation

2.3) R,(A) = R(}) + R(A)VR,(A) = R() + RA)VR()
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shows that R,(4) = R(A)(I + U(A)). Hence the bijectiveness of I + U(4) and (2.2)
follow. This completes the proof of Proposition 2.3.

It follows from (2.2), Theorem 1.7 and Proposition 2.2 that R(4) is defined
when 1€ C and it is continuous from (£, ,, £2) to (£}, £7) there.

THEOREM 2.4. Let V satisfy the assumptions in Proposition 2.2, R(A) be the
resolvent of H = H, + V and n be a bounded measurable function tending to zero at
—00. Then the mappings C,. A+ nR(A) extend to strongly continuous mappings

from C. to the space X, of bounded linear operators from (£2,,, £?) to
(L5, L1). Moreover, the spectrum of H is absolutely continuous.

Proor. It follows from (2.2), Theorem 1.7 and Proposition 2.2 that
nR(A) = nR(A)(I + U(4))~*, AeC, are strongly continuous families of oper-
atorsin X, multiplied to the right by strongly continuous families of operators on
(£1 1,4, L?). This proves the first part of the theorem.

The statement that H has an absolutely continuous spectrum follows from
Proposition 4.1 in Cycon-Froese-Kirsch-Simon [5] and the fact that

sup |[R(A)S | g2y < o0

ieK

for any f e CZ(R), any compact set K in C. and any bounded interval I c R.
This completes the proof of Theorem 2.4.

The preceding results motivate the following definition.

DEFINITION 2.5. The space ¥ is defined as the set of functions V(x) satisfying the
assumptions of Proposition 2.2. We call H = H, + V a short range perturbation of
H,ifVey.

The following result shows that R(4) = R, (4) depends continuously on V.

THEOREM 2.6. Let Ve ¥ and (V))¥ be a sequence in ¥ such that |V;| < |V| and
V;= V uniformly on any compact set. If Ky < C, are compact sets and
B < (£, %2 is bounded, then

{RV,(A)fU{EKi, jeZ,, feB}

are bounded in (%3, £2). Moreover, if n is a bounded measurable function tending
to0at —co and e Cy, then nRy (2) tends to nRy(4) strongly in the space X, of
continuous operators from (L2 4, L) to (L4, £7).

PROOF. Set Uj(4) = V;R,(4) and
Dy ={U+UfA)'f AeKy, jeZ., feB}.

The argument given in the proof of Proposition 2.2 for the boundedness of the
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sets D, in (2,4, £?) shows also that D, are bounded in the same space. The
first part of the theorem follows since Ry (4) = R (I + Uj(4)~ !, The argument
given at the end of the proof of Proposition 2.2 shows that
I+ U) ' f > + VRA) " fin(LL, 4, L¥)forevery finthat space. Hence
nRy (%) = nRy(4) strongly in (£ /4, £?). This completes the proof of Theorem
2.6.

3. The distorted Fourier-Airy transformations.

It was proved in Theorem 2.4 that H = H, + V has an absolutely continuous
spectrum, if H is a short range perturbation of H,. The distorted Fourier-Airy
transformations, which we are about to construct, will give explicit diagonaliz-
ations of H. The operators U(4) = VR,(A) were introduced in the preceding
section and their main properties were proved in Propositions 2.2 and 2.3.

DEFINITION 3.1. Let fe Co(R). The distorted Fourier-Airy transforms of f are
given by

Fyf(0) = F(I + U(e £ i0))""' f(0).

The definition makes sense since (I + U(c + i0)) ' f is a continuous function
of ¢ with values in (£, ,, £?), and F, is continuous from that space to the space
of bounded continuous functions on R.

PRrROPOSITION 3.2. Let
(3.1) bi(x,0) = a(x — 6) — R(c £ i0)V,(x)

with V,(x) = V(x)a(x — o). Thenb .(x, ) are continuous functions on R x R. They
satisfy the differential equation

(3.2) (P, + V(x) — 0)b4(x,0) =0
and
(3.3) lim (x>'*|b.(x.0)| > 0.

If f € Cy(R), then
34 Fyf(o) = j b+ (x,0)f(x)dx.
PrOOF. When o stays in a compact set we have a bound (independent of o) for

V,(x)in (£}, 0L 2). Since o+ V,(+) is a continuous function of ¢ with values in
that space an application of Theorem 2.4 shows that
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sup |R(¢’ £ i0)V,(x) — R(g £ i0)V,(x)| = 0

xel

when ¢’ = ¢ and [ is a bounded interval. The continuity of b follows now from
the continuity of b, as functions of x and (3.2) follows by letting P, + V — ¢ act
on both sides of (3.1).

By (2.2) and Proposition 1.12 we have

(3.5 by (x,0) — a(x — o) + i2ne™"3(F V,)(0)a(w*(x — 7))
=o(|Ix|"'*), x- —o0.

Hence (3.3) follows then from (3.5) and (1.13) (see also the proof of Proposition

1.13).
When proving (3.4) we can write

(3.6) Jbi(x, 0)f(x)dx = F.f(0) — {R(o £ i0)V;, [
= F.f(0) — {V5, R(e £ i0)f).

Indeed, since f € C, it suffices by Theorem 2.4 and by a simple argument of
approximation to prove the second identity when V,(x) = V(x)a(x — o) is re-
placed by a function in C,, and then the identity follows from (1.16). Now the
right side of (3.6) is equal to F,f; +;0(c) where

Joxio = = VR(@ £ i0)f = (I = Ule + i0)I + Ule £ i0)"")f
= (I + Ul £ i0)"'f.

Hence F,f, 1 :0() = F4 f(0). This completes the proof of (3.4) and therefore also
of Proposition 3.2.

THEOREM 3.3. The distorted Fourier-Airy transformations F + extend to unitary
operatorson #* and Fy H = MF , if M is the operator Mu(c) = ou(a) with domain
equal to the set of all the ue #? such that ou(c)e L>.

Proor. We first show that
3.7) 3(R(o + i0)f, f) = +n|F+(0)* feCo.

Let f,,.0=(+ U@ +i0) 'f be as before, so that R(ci0)f =
R.(o % i0)f, 0. It follows from Proposition 1.10 that

R(o £ i0)f(x) = c1(0)alx — 0) + Ro(0 F 10y £10(%)
with
(3.8) c4(0) = +i2nF, f(0),
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(3.9) le+]? = £4n3(R(o £ i0)f, f;+10)-

Since  f — fo1io = Ulo £ i0)fs1i0 = VRi(0 £i0)f;150 and R(oc xi0)f =
R, (0 + i0)f, 1.0, the equation (3.9) holds if £, ;0 is replaced by f. Therefore (3.7)
follows from (3.8) and (3.9).

It follows from (3.7) that

(3.10) (6(H)f.9) = j ®(0)F 1 f(0)F + g(0) do

when f, g, ¢€C,. Taking g = f and letting 0 < ¢; be a sequence in C, that
increases to 1 we conclude that F, extend to isometric transformations on £2,
and (3.10) is true for arbitrary f,g e #?, ¢ € Cy. Let f € £2. Since f € 2(H,)if and
only if Fn_lj_,w IHp(H)f|| < oo, it follows that fe%(H,) if and only if
F, fe 2(M). Moreover,

(3.11) FyHf(o) =aFyf(a), fe2(H,).

Infact, if f € C3(R) then (3.11) follows from (3.2), (3.4) and a partial integration in
the integral

F1Hf(o) = fbi (x, 0)Hf (x) dx,

and (3.11) holds then in general since CJ(R) is dense in 2(H,) equipped with the
graph norm.

It remains to prove that F. are onto, or equivalently that F¥ are injective.
Assume that h is in the kernel of F*. Since by (3.11) we have (F*(¢h),g) =
(h, F .(§(H)g)) when ¢ € Co(R), g e £2, it follows that F*(¢ph) = 0 when ¢ € Co(R).
In view of (3.4) this implies that b, (x, 6)h(a) = 0 for every x and almost every a.
Hence h = 0 by (3.3). Similar arguments show that F_ is onto. This completes the
proof of Theorem 3.3.

We shall now introduce the scattering matrix using the time-independent
approach.

THEOREM 3.4. Let
(3.12) S(o) =1 — i2nF, V, (0),

where V,(x) = V(x)a(x — o). Then S(0) is a continuous function satisfying |S(c)| = 1
and

(3.13) F.f(o) = S(0)F-f(o), feZ”.

Proor. It follows from the equations Fy H = MF, that F, F*M = MF, F*.
Hence the unitary operator F, F* commutes with multiplications by functions
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and we conclude that there is a measurable function S(¢) of modulus 1 such that
F.f(0)=S@)F_f(0), fe 2. By the definition of b.(x, o) and (3.4) we have
b.(x,0) = S(6)b_(x,0).
It follows from (3.5) that
b+(x,0) = a(x — 0) — i2ne~"3F, V,(0)a(w(x — o)),
S(0)b _(x, 0) = S(0)a(x — o) + i2ne™*S(6)F _ V,(0)a(w*(x — o))

modulo functions which are o(|x| ~'/4) at — co. It follows from Proposition 1.13
and (1.6) then that

(S(0) = Dalx — 0) = i2nF .V, (o) walw(x — o)) + v a(@(x — o))
= —i2nF . V,(o)a(x — o)
so that
S(6) — 1 = —i2nF, V,(0).

This proves (3.12) from which follows the continuity of S(¢). This completes the
proof of Theorem 3.4.

4. Some problems in inverse scattering theory.

Let H, be as before and let V be a short range perturbation of H,. It was proved in
Sections 2 and 3 that H = H, + V is a self-adjoint operator on the domain of H,.
The distorted Fourier-Airy transformations F introduced in Definition 3.1
diagonalize H so that F. H = MF., where M is the multiplication operator in
(1.14). Since F,H, = MF, it follows that F*F, are solutions of the following
equation

4.1 HA = AH,.

In the time-dependent scattering theory the operators F% F, can be identified
with the usual wave operators. In the following we shall find another solution of
(4.1) which differs from the operators F* F, when V is not identically equal to 0,
since its distribution kernel will be supported in a half-plane. The distribution
kernel A(x, y) of a solution A of (4.1) satisfies the equation

4.2) (02 — 0} + y — x)A(x,y) = V(X)A(x, ),

provided that the right side is a distribution. In order to construct a solution of
the equation (4.2) we need to construct an inverse of the operator in the left side of
4.2).

LEMMA 4.1. Assume that x' < y'. Then the equation
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“43) (02 = 35 + y — Xulx,y) = 8(x — X',y — )
has a unique bounded and measurable solution with support in the set where x < x'.

ProoF. Since the operator on the left side of (4.3) is invariant under any
translation (x, y)+—=(x + h, y + h), we may assume that y’ = 0. In order to con-
struct a solution we make the Ansatz

u(x, y) = 3E(x — X', yW(g(x, y, x')),

where E(x, y) is the characteristic function of the set where |y| < |x|and x < 0,y(z2)
is a function to be determined and

o= (52 -5,

(0x — G))E(x — X', y) = —20(—y)o(x" — x + )

Since

and
(Ox + 8,)E(x — x',y) = =20(y)0(x" — x — y),
it follows that

(@ — Ou(x, y) = —B(—y)o(x’ — x + y)(0)

+ E(x—x',y)w'(q)(";y)(“yz‘ "')

and
(02 — 33, y) = Y(O(x — x,3) + Elx = X, '@ (‘x‘zi) !

x—)y

+ E(x — x', yW'(q) (—2—)
Hence we have
(02— 82 + y — u(x,3) = Y(OO(x — x,3) + Ex = X)) (-"—;—y) (@@

+ V') — ¥(@).

In order to have a solution of (4.3) we shall therefore choose  so that y(0) = 1
and

4.4 2Y"(2) + ¥'(2) — ¥(2) = 0.
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Since x' < 0and |y| £ x" — xin the support of u(x, y), it follows that g(x, y,x) £ 0
there. In order for u to be bounded, we choose ¥ so that i is bounded on the
negative axis. Hence we can take

Vo) = 3 2K

k=0

Then y(x) = Jo(2 |x|'/*) when x < 0, where Jo(z) is the Bessel function of the first
kind of order 0. This is an even function which is bounded on the real line. In fact,

2 1/2
Jo(x) = (W) cos(|x| — m/4)(1 + O(x|~2))
as |x| — oo (see Whittaker -Watson p. 368). From this follows the estimate
(4.5) lu(x, ) < C(1 + |qh)~*"*

for some positive constant C.

Since the half-plane x < x' is non-characteristic for the operator
02 — 02 + y — x which has analytic coefficients, the uniqueness follows. This
completes the proof of Lemma 4.1.

Let x' < y’ and let G(x, y; x', y') be the function constructed in Lemma 4.1, i.e.
46)  Glx,y;x,y)=3Ex — X,y — yWax = y,y =y, x = y)

where E and q are defined as in the proof of Lemma 4. 1. The estimate (4.5) implies
that
@4.7) |G(x,y;x,y)| £ CE(x — x',y — y)1 + lg(x — ¥,y =y, x' = y)) "%,
X2V,

and this implies in particular that x < y, x < x’ when (x, y,x',y")esupp G and
xl g yl.

Since y is bounded from below in the support of G when the other variables are
kept fixed, we can define the partial Fourier-Airy transform

~

G(x,0;x,y) = Ja(y — 0)G(x,y; x,y)dy.

It follows from (1.14) and (4.3) that

(4.8) (=% 4+ x — 0)G(x,0;x,y) = —a(y’ — 0)d(x — x).
Since G(x, o; X, y') = 0 when x > x/, this implies that

4.9) G(x,0;x,y) = a(y — 0)T(x — 0,x' — 0),

where
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T(x,x") = (2ri)e ™30(x' — x)(a(x)a(cwx’) — a(x")a(wx)).

In fact, the right side of (4.9) is also a solution of (4.8), and it vanishes when x > x',

We shall construct a solution of the equation (4.2) under some conditions on
V(x) that are more restrictive than the conditions considered in Section 2. We are
going to require that x < y in the support of A. Writing

A(x,)") = 5()( - }’) + R(x’ y)
we have then the following equation
(0% — 07 + y — MR(x,y) = V(x)d(x — y) + V(x)R(x, y).

An integral version is given by

(4.10) R(x,y) = Ro(x,y) + f JG(x, »x,Y)V(X)R(X, y)dx' dy'.

Here we have used the notation

@«

(4.1 Ro(x,y) = Ro,y(x,y) = 0y — x) V@W((x — yP(x + y — 22)/8)dz/2

(x+y)/2

for the expression which can formally be written as
J fG(x, y; X, Y)WV(x)o(x" — y)dx'dy'.

If we denote the second term on the right side of (4.10) by LR(x, y) = Ly, R(x, y),
then (4.10) takes the form

4.12) (I —L)R =R,

Hence we have to invert the operator [ — Lon some suitable space. In order to be
able to give a meaning to (4.12) and to solve that equation we shall assume that

(4.13) Vg = f (1 + IxDIV(x) dx < oo.

The space of real-valued measurable functions which satisfy (4.13) is denoted by
£, and we let Z* be the Fréchet space of real-valued measurable functions ¥ on
R such that | V|, = [2(1 + |x])|V(x)/dx < o for any real z. Following Melin
[11] we introduce the following space.

DEFINITION 4.2. We let & be the set of real functions R(x, y) on R? such that
(i) R(x,y) tends to zero when x + y —» + o0 and x,y = C,
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(i) the restrictions of R(x,y) to the sets where x < y and x > y extend to
continuous functions on R,
(ii) if

(4.14) R,(z,w) = sup [R(x, ),

x2z,y2z,x+y22w

then

R, = max R, (z, w) + 2f R, (z,w)dw < ©

ZSw
for any real z.

We let &/ < # be the subspace consisting of all R(x,y)eZ# such that
R(x,y) = 0 when x > y. (The spaces &, ./~ are denoted by V*, #* in Melin
[11].) We also let # + 4 be the set of distributions é(x — y) + R(x, y) where
R(x,y)e &/, and £ + Ris defined in a similar way. The space £ is a Fréchet space
under the semi-norms ||R||, above, and the mapping R(x, y) — R*(x, y) = R(y,x)
is a homeomorphism on £. In what follows we shall always identify a continuous
operator K : C§(R) — 2'(R) with its distribution kernel K(x, y)e 2'(R x R). We
have continuous composition operations A4~ x #3(Ry,R;) — R;R;, R,R¥ €A,
and # + A isatopological group (Proposition 3.4in Melin [11]). If R(x, y)e A4/,
then |R(x, y)l < R,(x/2,y/2) when x 2 0. Since [ R, (zo, w)dw — 0 when z — o0
and z, is fixed, and R, (z, w) is decreasing in each of its arguments, it follows that

(4.15) IR, >0, z— + oo.

Lemma 4.3. () If Ve #™, then I — Ly, is a linear homeomorphism on A",

(i) The mapping £* x &5 (V,R) — (I — Ly)~' Re A" is continuous.

(ii) The mapping £* >V > Rgy €N is continuous.

(iv) If Ve Zand Ry = (I — Ly)"'Ro,y, then V(x)Ry(x,y)e £*(R?) and the
mapping ¥ sV + V(x)Ry(x, y)e L(R?) is continuous.

ProoF. Since |G(x, y;x',y)| £ CE(x — x',y — y'), the proof is the same as that
of Lemma 4.2 of Melin [11].

We shall need the following simple result.

LEMMA 4.4. (i) Assume that f(x,y) is a measurable function with support in the
set where x < y and that

”> |f(x, y)dxdy < c©

Jor every x,. Then
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Jf(x,y) = j IG(x, ¥ X, ) (X, y)dx' dy

is a continuous function and
(02 — 03 +y—x)Jf(xy) = f(x,).
(ii) If R(x,y)e & and (02 — 82 + y — x)R(x,y) = O, then R = 0.

ProOF. (i) Since x’ = x in the support of G, it follows that the restriction of J f
to the set where x = x, depends only on the restriction of f to that set. A simple
argument of approximation, which uses the fact that C¥(R?) is dense in #*(R?),
allows us therefore to assume that fe C¥ (R?), and then (i) follows from (4.3).

(i) Let

R(x,0) = f a(y — o)R(x, y)dy

be the Fourier-Airy transform with respect to the last variable. Then
(@* — x + 0)R(x,6) = 0, and it follows from (4.15) that R(x, o)/a(x — 6) = 0 as
x = + 0. From this observation and (1.13) we conclude that R(x, ) = 0. Hence
R = 0. This completes the proof of Lemma 4.4.

THEOREM 4.5. If Ve #*, then there is a unique solution A(x,y) = 6(x — y) +
Ry(x,y)in F + A of the equation (4.2). Moreover, A(x,y) — d(x — y) — Ro(x, )
is continuous.

ProOOF. Anapplication of Lemma 4.3 shows that Ry(x, y) € 4" and that thereis
a unique A(x, y) = é(x — y) + R(x,y)e £ + A such that

A(x,y) = 6(x — y) + Ro(x,) + Ly R(x, y).

Since (02 — 02 + y — x)Ro(x,y) = V(x)d(x — y) and (37 — 8} + y — X)(Ly R)(x,y) =
V(x)R(x, y) by Lemma 4.4, it follows that A(x, y) solves (4.2), and Ly R(x, y) is
continuous in view of the previous lemma. If A'(x,y) = 6(x — y) + R'(x,) is
another solution of (4.2) in 4 + 4 and S(x,y) = R'(x,y) — LyR'(x,y) —
Ro(x,y), then S(x,y)e#" and it follows from (i) of Lemma 4.4 that
(02 — 02 + y — x)S(x, y) = 0. The second part of that Lemma shows that § = 0,
and since I — Ly is injective on A" it follows finally that R’ = R. This completes
the proof of Theorem 4.5.

The next result shows that V(x) is uniquely determined from A(x, y).

PROPOSITION 4.6. Let A(x,y) = 6(x — y) + Ry(x, y) be the solution of (4.2),
where Ve £ *. Then
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Ry(x,x + 0) = 2“‘[ V(z)dz

Proor. Thisis animmediate consequence of the fact that Ry (x, y) — R ,(x, )
is continuous and supported in the set where x < y.

If Ve£ and A(x,y) = 6(x — y) + Ry(x,y) is as above, then the Fourier-Airy
transform

A(x,0) = a(x — o) + fa(y — 0)Ry(x,y)dy

of A(x, y) with respect to the second variable is a solution of the equation (3.2). We
observe that (see the proof of Lemma 4.4)

4.16) A(x,0)fa(x — ) > 1, x— +c0.

PROPOSITION 4.7. Assume Ve £ n ¥ . There are bounded continuous functions
N (o) % 0 so that

4.17) A(x,0) = N1 (0)b;(x, 0),
and N (o) = 1 as |o] > 0.

PrROOF. Assume first that V is compactly supported. Then every solution of
(3.2) which is in #? at + oo must be proportional to A(x, o). Since b, (x, o) are in
% at + oo by Lemma 2.4 and (3.1), it follows that b, (x, 6) are proportional to
A(x, g).

In the general case we can take a sequence V; of compactly supported functions
such that |V <|V| and V;— V uniformly on any compact set. Since

Vi(x)a(x — o) tends to V(x)a(x — ¢)in (L 4, £?), it follows from Theorem 2.6
that the corresponding solutions b ; of (3.2) converges to by in °Z.‘,C(R) From
Lemma 4.3 follows that AV (x, o) converges locally uniformly to 4y (x, a) If Iis
a compact interval on whlch A(x, ) does not vanish, then b, i a)/AVJ(x o)
converges in £2(I). Since these functions do not depend on x, we conclude that
bi and 4 are proportional to each other. Hence (4.17) holds for some functions
N +(0) # 0. Since b, (x, 6) depend continuously on ¢ by Proposition 3.2 and the
corresponding statement for /T(x, o) is obvious, it is true that N + (o) are continu-
ous functions.

In order to prove that N, (o) are bounded and to study their behaviour at
infinity we introduce the functions
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Y(0) = 2mie™ /3 Ja(w(x — o) V(x)A(x, 0)dx,

Z(o) = 27tifa(x — 0)V(x)A(x, 0)dx.

The integrals in the right side are convergent since V(x)A(x, y) is a bounded
measure on R? (Lemma 4.3) and a(w(x — o))a(y — o), a(x — o)a(y — o) are
bounded functions of (x,y) when x < y. These statements follow from (1.15),
(1.18) and Lemma 1.4 from which it also follows that

(4.18)
[Y(o)l + |1Z(0)| = C.”(l +1x — al)TV4HA + |y — o) V4 V(X) A(x, y)l dxdy,

where |V (x) A(x, y)| should be interpreted as a measure in the right side. It follows
from this that Y(¢) and Z (o) are continuous functions which tend to 0 at infinity.

The functions Y(o) and Z(c) can be used to describe the asymptotic behavior of
A(x, 6) when x tends to — co. The equations (4.10) and (4.12) show that

(4.19) R(x,y) = _[ J Glx, y;x, y)V(X')A(X', y')dx' dy’,

if again we treat the leading part of V(x') A(x’, y') as a measure. When x is kept
fixed then we have a bound from below for x’ by x in the support of the integrand.
Since [|G(x, y; x',y)ldy < C|x — x'| and

jj Ix"V(x)A(x', y)ldx'dy’ < oo,
xSx’

it follows that G(x, y; x', y') V(x') A(x', y') is a bounded measure on R? for every x.
If we multiply (4.19) by a(y — o) and integrate with respect to y, we find therefore
that

A(x,0) —a(x — 0) = J- f G(x,0;x',y)V(x')A(x', y')dx'dy'.
By (4.9) the right side can be written as
J T(x — 0,x — o) V(x')A(x', 0)dx,

and it follows that
A(x,0) — a(x — o)

= (2mi)e " Ba(x — o) j a(w(x’ — o) V(x')A(x', 6)dx’

X
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(4.20) — 2ri)e " a(w(x — 0)) ‘[ ) a(x’ — o) V(x') A(x', 0)dx’.

Since flV(x’)}f(x’, 0)|dx' < oo, it follows that
4.21)
A(x,0) = (1 + Y(0))a(x — 6) — e" ™3 Z(s)a(w(x — 0)) + o(|x|~/*), x - — o0.
Comparing (4.21) and (3.5) we conclude that
A(x,0) = (1 + Y(0)b+(x,0).

Also taking into account that A(x, o) is real-valued, we conclude from (4.21) and
(3.5) that

A(o,x) = (1 + Y(0))b_(x,0).
Hence (4.17) holds with
N.(o) =1+ Y(o),
4.22) N_(0) =1+ Y(o).
This completes the proof of Proposition 4.7.

PROPOSITION 4.8. The following relations hold:

_ 1+ Y(o)
(4.23) 50) = TV Yo
(4.24) Z(0) = Y(0) — Y(0).

ProoF. The equation (4.23) follows from (4.17) and (4.22) since |S(s)| = 1 and
b (x,0) = S(6)b_(x,0). Since Z(o)(1 + Y(0))~* = 2ri(F, V,)(o) by (3.5) and
(4.21), and S(0) — 1 = —2mi(F, V,)(0), it is true that
Y(o) — Y(0)

ZE)(1 + Y(@) ™' =1-50)=—7 Yo)
Hence (4.24) holds.

We have already seen that Y(¢) and Z (o) are continuous functions which tend
to O at + oo. In order to obtain more precise estimates about Y and Z we prove
the following lemma.

LEMMA 4.9. Assume that V € &. Then there is a positive constant C so that

(4.25) (xyem 1 ﬁky(x, P dy<C, 05a<12
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Proor. We shall first prove that
(4.26) jIG(x, X, Y)dy S Codx' — xpV2y —x) 714, X' <y

It follows from (4.7) that the left side can be estimated from above by a constant
times

L g (1 +lg(x—y,y, —o))~*dy < CIJ; | Iy +1+ 0% —*lly — 1)~ ay,
YISt st

where 71 = x" — x 2 0and ¢ = y' — x’ = 0. The integral in the right side is equal
to

r”“f (y+ 14201 41 — y») Yy S Cy(1 + 0'*(1 + T+ 9~ M4,
yl=1

and this proves (4.26) since T + ¢ = y' — x.
Since (4.19) holds, it follows that

~[lR(x, yldy £ Co J<X' = x)UHV(x) dx

+ Co JJ X=Xy = x> TUHV(X)R(X, y') dx' dy'.
xsx' sy

In the right side we may estimate {(x' — x>'2{y’ — x>~ 1/* from above by
{x' — x)'*. Set hy(x) = [|R(x, y)|{ y>*dy. Then there is a positive constant C, so
that ho(x) < C, when x = 0,and when x < 0it follows from the inequality above
that

ho(x) = Co J<X’ =MV dx’ + Cof (X' = XMV () ho(x)dx'

=x'£0

+ C0C2J X = xHYVH V() dx.
0=sx’

The first term may be estimated from above by a constant times {x>!/*. In the
second term in the right side we may estimate {x’ — x)>'/4 from above by {x)>'/*,
and we know that _[ [V(x) ho(x")dx' < oo. It follows therefore that the second
term in the right side may be estimated from above by a constant times (x>/4. In
the third term in the right side we may estimate {x' — x>** from above by
xHM4 4 (x4, and since [ |x']|V(x') dx’ < oo, we conclude that {x) ™ *hy(x)
is a bounded function. Hence (4.25) holds when a = 0.
When proving (4.25) in general we apply (4.19) and (4.26) again. Since



SCATTERING AND SPECTRAL THEORY FOR STARK HAMILTONIANS ... 293

IIG(x, X, YKyt dy £ JIG(x, Vs X YN = x)* + (YY) dy,
the following estimate follows

IIR(x, WKy dy = CI((JC) + XDPTHHV() dx

+ CJf (14 1x = x| + [V = DY = )T V()R )| dx'dy
xsx'=y'

The first term in the right side can be estimated from above by a constant times
{x)** 14 and the contribution to the second term from an integration over a set
where (¥’ >({x> + {x')»)" ! is large can be estimated from above by a positive
constant times

J<X’ — XYV () by 14 (x)dX.

The contribution from the set where {y'>({x> + {x'»)"! is not large can be
estimated from above by a constant times

J J (G + D) e = XDV R, y) dx dy’

= J (XD + D) x = XMV (X ho(x) dx'.

When x is positive then hy(x’) in the right side is bounded and the right side can be
estimated from above by a constant times {x)**!/4, When x < 0 we can estimate
the right side from above by a constant times

j YTV ho(x') dx + ‘[ () + PV () dx'.
xSx'50 0

=x'

This can again be estimated from above by a constant times {x)** /. It follows
from these estimates that

ho(x) £ C<xY*F1* + Cf(x’ — X2V (X Ny - 174 (x')dX.
If a = 1/4, then it follows that
ho(x) = hyu(x) € CGOM2 4 C f (& — ORIV (X dX € CxOM2

Hence the estimate (4.25) is true when o = 1/4. If « = 1/2, then it follows that
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hy(x) < C{x)¥* + Cj<x’ — x|V () (X HV2dx £ C' x>,

Hence (4.25) holds when a =0 and o =1/2, and therefore it holds for
0 < a < 1/2. This completes the proof of Lemma 4.9.

PROPOSITION 4.10. Assume that Ve %. Then
[Y(0)| +1Z(0)| < C<ad ™12
ProoF. This is an immediate consequence of (4.18) and Lemma 4.9.
PROPOSITION 4.11. Assume that Ve %. Then
(4.27) 1A(x,0) — alx — o)l < a(x — 6)| Ryl x — 0 2 0,
and there is a positive constant C so that
(4.28) |A(x,0) — a(x — 6)| £ C{x — o)~ V4 (a)12e~Rox—0),
where ¢ is defined in (1.7).

Proor. The first statement is obvious, since a(x) is a positive decreasing
function when x > 0. In order to prove (4.28) we first observe that it follows from
(4.25) with « = 1/4 that there is a positive constant C so that

|A(x,0) — a(x — o)) J la(y — @)Ry(x,y)ldy < C<{x)'7? (SUP<Y>' Ya(y - 0)l>-
y2x

Since the last factor in the right side can be estimated from above by a constant

times (o) ~1/*e~ %2~ it follows that | A(x, 0)] £ C{x)'/2(a) ~V/*e~Rex=9 for

some other positive constant C. An application of (4.20) together with the

definition of Y (o) gives

|A(x,0) — (1 + Y(o))a(x — o) £ C J B(x — 0,x' — 0)|V(x')A(x', 0)|dX’

- 0

+C f B(x' — 0,x — 0)|V(x')A(x', 0)|dX,
where B(x, y) = 6(x — y)|a(x)a(wy)| can be estimated from above by a constant
times (x) /4 y) ~1/4Fo0) ~%ol0) Also estimating A(x’, ¢) from above by a con-
stant times {x’')}/2(c) " 14e~%*('~9) we obtain (4.28) since {x)>*V(x) is inte-
grable and Re(x) increases. This completes the proof of Proposition 4.11.

PROPOSITION 4.12. Assume that Ve %. Set
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Yo(0) = 2mie i3 J a(w(x — o))a(x — o) V(x)dx,

Zo(0) = 2mi Jaz(x — g)V(x)dx.

Then there is a positive constant C so that
[Y(0) — Yo(0)l +1Z(0) — Zo(0)| < C{a) 1.
Proor. This is an immediate consequence of (4.28).

We assume now Ve % n ¥ again. Let N, (o) be as before and let N, be the
multiplication by N, (¢). Then N, = F*N, F, are linear homeomorphisms on
#? by Proposition 4.7. We set

(4.29) W=(N%*N,) ! =(N*N_)™1,

where the second identity follows from (4.22). It follows therefore that W is
a linear homeomorphism on #2, and the following result shows then that the
same is true for A.

ProposiTION 4.13. If Ve ¥ % , then
(4.30) A=F%F,N,,
4.31) I = AW A*. (Gel'fand-Levitan-Marchenko equation)

PrOOF. The formula (4.30) follows from (4.17) since A(x, o) is the integral
kernel of AF* and F,N F* is the multiplication by N (). The formula (4.31)
follows now from (4.29) and (4.30). This completes the proof of Proposition 4.13.

In order to be able to solve A4 from (4.31) we introduce the space 2 consisting of
allBe # + # such that B* = B and B has a positive lower bound on £?(z, o) for
any real z (Definition 3.5 in [11]). The following result follows from Proposition
3.6 of [11] together with the fact that # + .4 is a topological group.

PROPOSITION 4.14. If Ae # + N, then A~ (A*)™ ' € 2P and the mapping
(4.32) I+ N34 AN (A*) e
is a homeomorphism.

We shall finish our discussions by giving some comments on the scheme fqr
inverse scattering. Thus assume that Ve % n ¥ and that the function S(o) is
given. Then (4.23) holds and it follows from (1.15) together with the definition of
Y(o) that
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(4.33) Y(o) = JjRa(y, x; 0 + i0)V(x) A(x, y)dxdy.

Hence (1.18) implies that N_(¢) = 1 + Y(0) extends to an analytic functionin C ,
which is continuous in the closure of that set, and N_(¢) — 1 wheno — 0 in C,.
It follows therefore from (4.22) and (4.23) that

_ ]\7+(G’)
" N_(0)’

(4.34) S(0) €R,

where N, (6) = 1 + Y(o) extends to an analytic function in C _ which is continu-
ous in C_ and tends to 1 at infinity. The function N, (o) has no zeros in
C:. To see this we set

Vilx) = tV(x), te[0,1],

and let Y,,(o) be the corresponding functions obtained when V'is replaced by V;. It
follows from Lemma 4.3 and (4.33) that Y},(s) depends continuously on ¢ when
oe C, and it is uniformly small when ¢ is large. Since 1 + Y;,)(0) # 0 when ¢ is
real and Yo, = 0, a simple application of the Hurwitz’s theorem (p. 171 in [14])
shows that 1 + Y,,(c) # OwhenoeC, and t€[0, 1]. Hence N . (0) have no zeros
and we have a representation of S = N, /N _ as a quotient of functions analyticin
C; with continuous extension to the closures C; and no zeros there. This
representation is of course unique. Hence W is uniquely determined from S. It
follows then from Propositions 4.6 and 4.14 that V is also uniquely determined
from S.
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