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REMARKS ON THE SYMMETRIC SPACE #,(#)/%(#)
AND ITS QUANTIZATION

ERIK B. NIELSEN

0. Introduction.

Consider a Bose-Fock space. Exponentials exp h; and exp h¥ of quadratic forms

- of creations and annihilations respectively play an important role in both
mathematics and physics. In mathematics they help to write an explicit form of
Shale-Weil representations and in physics they are used to describe squeezing of
bosons.

One of the main technical problems in this connection consists of changing the
order of operators in the superposition (exp h¥) (exp h.). It is obvicus that
something like Campbell-Baker-Hausdorff formulas would be welcome. How-
ever, they are not available! Instead one uses in [2] a formula for (exp h¥) (exp hy)
which is sufficient to handle an explicit form of the Shale-Weil representations
which we call here a quantization of the restricted symplectic group &%,(#). The
only handicap is that the formula is verified in [2] only in a special case and that
the proof requires long and tedious integration (left to the reader!).

In this paper we present a short proof of the formula for (exp h¥) (exp hy) in
whole generality. We give a thorough exposure of the relation of this formula to
the quantized ¥4 ,(#). Moreover we show that the formula can be used to design
a kind of a product of uniquelly selected representatives of the cosets of the
symmetric space F%,(H#)/U(), where %(#’) denotes the subgroup of all unitary
operators.

At the end of the paper we point out that the formula for (exp h¥) (exp h.) goes
further than the application to %%,(3) representation and squeezing of bosons.

1. Preliminaries.

In the sequal 4, (,> will denote a complex Hilbert space. Consider the
symplectic form a(x, y) = $i(<{x, y) — {y, x)). It is well known that a symplectic
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operator M can uniquely be represented in the form M = NU, where N is
symplectic real selfadjoint and non negative and U is unitary [2]. Let #,(3¢) be
the subgroup of the symplectic group consisting of the operators M with
I — (M’M)* Hilbert-Schmidt. In [3] %4,(H#) is called the restricted symplectic
group. Given a contraction L we call kL = (I — L)(I + L)™* the Cayley trans-
form of L and we define (xL)* = (I — L)(I — [?)~* taking for (I — L?)~* the
positive square root of (I — L?)™ !, The restricted symplectic group consist of the
operators M = (kL)*U, where and Le £,(5#) (= conjugate linear real-selfadjoint
Hilbert-Schmidt contractions) and U is unitary. We have the identity
(ktanh — M)* = exp M for M e £,5(#) (= conjugate linear real-self-adjoint
Hilbert-Schmidt operators). The operator exp M has only positive eigenvalues
and tanh — M is obviously in £,(s#). Consider the symmetric space
Fp2(K)/U(H) of the cosets MU(H'), where M € F4,(H#). To each MU () there
corresponds a unique Le£,(3#) such that (kL)*e M%(#). The product
(«L)*(xK)?* belongs to a coset of M%(#’) with the unique representant of the form
(kN)%, N € £,(). Hence (kL)}(xK)* = («N)*U and then kN = (xL)}(xK)(xL)?.
We define L # K = (I — L*)~*L + K)(I + LK) (I — L?)* and find that,

k(L # K) = (kL)}(xK)(xkL)* = kN.

Hence L # K e £,(#). If[L,K] = Othen L # K = (L + K)(I + LK)~ '. We have
proved that K # Lis allways a contraction which does not seem obvious for non
commuting K, Le £,().

We shall use an axiomated version of Bose-Fock space as described in [4]. We
recall main definitions. We consider the free commutative algebra generated by
the Hilbert space # and the unit element ¢ called the vacuum. We denote this
algebra by I'p.# and call it the Bose algebra of 5#. We extend the scalar product
of # to I'y# in such a way that the vacuum is a unit vector, and the adjoint a(x)
to the operator a *(x) of multiplication by x € # is defined on the whole I' #’ and
fulfils the Leibnitz rule. The operators a *(x), a(y) shall be called the creation and
the annihilation by x, y respectively.

Weset I'y# = {f-expx|fel#, xe #} and write ['# for the completion
of I'ys#, {,> and #" for the closure in I'# of the linear span 7 of all the n-fold
products of elements of .

The field operator i(a*(x) — a(x)) is known to be essentially selfadjoint. The
unitary operators W(x) = exp(a*(x) — a(x)), xe #, are called the Weyl oper-
ators.

Given Le £,(#), we define the operator a*(h;) on I'o# setting

a +(hL) = Z a +(en)a +(Len)’
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where {e,} is an ortonormal basis in #. Furthermore, we define a*(5,) setting
a®(d,) = exp — 3a*(hy).

Observe that the dual a(5,) of a*(d,) is defined on the whole I'g#. Let I' be the
homomorphism lifting the linear operators on 5 to operators on I'J# i.e.

TFA(x1x5...x,) = (Ax,)(Ax5)...(Ax,)
forall x4, x5,...,x,€ . Weintroduce a unitary operator 0,: ' ¢ — I' 3, setting
0, = det(I — LA*a*(5,)I(I — LY*a(d_y)
Elementary computation ascertains that
0, W(x) = W((xL)*x)6,

Remembering that the representation M = (kL)*U € $4,(5#) is unique, we de-
fine 6(M) = 0, I'U getting a projective representation %,(#)3M — 0(M)e
U(I'o#) of F#,(#) known as the Shale-Weil representation [3, 8]. Hence for M;,
M, € 4,(), we have

0(M,)0(M,) = c(M,, M,)0(M M,).
where c¢(M,, M;)e S*. Consider a special case,
0((xL)}) 6(xK)?) = c((kxL)*, (kK)H) O(xLP(kK)?) = c((xL)?, (kK))OnTU
where (kN)}U = (kL)*(xK)* = (kL # K)*U as it was shown earlier.

2. The representation of the symmetric space S4(¢)/% ().

In connection with the Shale-Weil representation emerges an operator-identity
which is of an independent interest (cf. [2]). In this section we will prove this
identity using a method which is much simpler than those applied in [2] and [5]
and which provides more general results. Afterward we shall show the connec-
tions of this identity with the Shale-Weil .representation of /,(5#) and the
symmetric space S4,(H)/U(HK).

LeMMA 1. For L, K e £,(9¢)
oy, 0> = det(I — KL)%
PROOF. Set a, = (n!)”2{(3hL)", Ghx)") and t, = $Tr(KL)". We first verify that
()~ 2 Gh)Gh Y, Ghe™
= 3n"'a,_ To(KN) + ((n — Din — 2!n) " KGho)' ™, Ghnr)Ghe) ™2
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n 0 [ ]
and ashort calculation givesa, = )" n~'t;a,_;. Since y a,x" = exp( Y b,,x")
j=1 n=0 n=0

for xe[—1,1]if and only if a, = )’ n™'jb;a,_; we get that
i=1

<5L,5K> = Z a, = CXp( z n-—ltn>
n=0 n=1

= exp(Tr(log(I — KL)™%)) = det(I — KL)™*

For alternative treatment see [ 1] or [6]. The case where K = L appears already
in [7].

LEMMA 2. Given x€ # and Le £,(#), we have on I'y 5 the relations
a(d.)expa’(x) = exp — 7{Lx, x)(expa” (x))(exp — a(Lx))a(d,)
and
(expa(x))a® (o) = exp — 3<x, Lxpa* (6.)(exp — a* (Lx))(expa(x)).

Proor. It follows easily from the identity a(5.)a*(x) = (a*(x) — a(Lx))a(d,)
and its dual.

LEMMA 3. Given xe # and K, Le £,(3¢), we have the relation
{d.expx,dx) = det(l — KL) *exp — ${x,(I — KL)™'Kx).

Proor. Using induction we get

2p—-1
{8 expx,dg) = {5, exp(LK)x, g ) exp —%<x,( Y (KL)") Kx>

n=0

for all pe N. Since LK is a contraction the limit for p — co exists and the relation
follows.

Using these Lemmas we can show the desired identity.

THEOREM 4. For LK, (I — KL)™ 'K € £,(#) we have dyI'1 # < D(3%) and the
identity,

a(d,)a* (3x) = det(I — KL)™*a*(8y-xuy- 1)U — KL) "2 -x0)-1)
ProOOF. We show the weak identity
(faL)a*(Gx)g>
— (fdet(I — KL)*a*(8y—xpy- )T — KL)™'a(0a-x0)-)8

for f,geI'; #. The identity is easily rewritten using the usual notation,
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(8.1, 0xg)y = det(I — KL) " ¥(8 I (I — LK)"*f,6¥I'(I — KL) *g)>

Since the nth derivative of exp(x + ta) in 0 is equal to a"exp x, it is sufficient to
show the identity for f = exp xand g = exp y. The right-hand side of the identity
can be rewritten using Lemma 2,

det(I — KL)"*(6%exp(I — LK) *x, 0¥ exp(I — KL) *y)
=det(I — KL) *exp — 3({x,(I — KL)"'Kx)
+ {Ly,(I = KL)™'y> — 2{x,(I — KL)"'y}).

The left-hand side of the identity can be rewritten as follows. Using
(exp y*)(exp x) = (exp {y, x))(exp x)(exp y*) (cf. [4]) and lemma 2 we get

{8rexpx,dxexpy) = exp(—3<Ly,y> + {x,y>){d exp(x — Ly), 0>
= det(I — KL) " *exp(—3<Ly,y> + <{x,y> — 3{(x — Ly),
(I — KL)"'K(x — Ly)),

where the last identity follows from lemma 3. Since K(I — LK) !=
(I — KL)™ 'K the Theorem holds.

An operator ¢ is said to have the standard form if ¢ = constant-
at(6x)Aa(d,), where K, Le £,(#) and A is bounded operator. We observe that
operators in the Shale-Weil representation have all the standard form (in fact if
¢ is unitary it implements a restricted symplectic operator). The following lemma
establishes the uniqueness of the standard forms.

LEMMA 5. Let K, L, M, N € £,(5), and let A, B be bounded linear operators and
¢ a constant. If

at(0g)rAa(d.) = cat(6,)'Ba(dy)
on the coherent vectors exp x, x € 3, then
K=M L=N A=B, and c=1.
Proor. We have the weak identity for x, y e #,

{expx,0x[AdF exp y) = {exp x,cdy [ Béfexpy)
and

(ofexpx,[A6F expy) = c{0} exp x, 'Bé¥exp y)
Using the calculation from theorem 4 we find,

exp3(<x, (K — M)x) + (L — N)y, > + 2{x,(B — A)y)) = c.
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Setting t%x for x and t*y for y and differentiating at 0 we get,
< (K — M)x) + (L= N)y,y> + 2{x,(B — A)y) = 0.
Since x and y are free to choose the lemma follows.

It is now possible to find the product of two arbitrary operators in the
metaplectic representation of the symmetric space by use of direct calculations

01

THEOREM 6. Let L, K,(I + KL) 'K, L(I + KL) '€ £,(#). Then L# K € £,(#)
and on I’ we have the identity,

0,0k = (det U)*0,I'U

where,
N=L#K
and
U=(I—- N> - L»(1I+ KL (I - KL
is unitary.

PrOOF. We compute,
0.0 = det(I — [2)}6, I'(I — L?)*6*  det (I — K?)*I'(I — K*)*6* ¢
= det(I — L3I — K¥*6, (I — LA*8* 64k (I — K*)¥6*
Using the identity in theorem 4 we find
0%  6x = det(I + KL) 3, xr)-1x (I + KL) " 0* Lo gpy-1-
Let us set ¢ = det(I — L2*(I + KL) *(I — K*?*. Then
0.0k = O+~ r2ypa +xny- ka0 — LRI+ KL)” I - K
0% (K +( - K)ILA+KL)~ 10 - K2
where we have used that 6}I'4 = fAéj*L and T'Ad;, = 0 4T A. Using
L#K=L+(I—I¥(I+ KL 'K(I - L})e£(X)
we get
0,0k = cdp 4x I — LI + KL) (I — K*)*0* g4y

But we know that 6,0 = kByI"U for some constant k, a unitary U and N € £,(¥)
which means that Oy = k™ 10,0,'U ' i.e.
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det(I — N2)¥SyI(I — N?)¥5*
=kt ux (I — LI + KL)™'(I — KU 1'6* ykspyu-1-
From lemma 5 we find the identities
(I - N*»=(-I»+KL)™'(-K»U!
N=L#K
k = cdet(I — N*)~* = (det(I — N~ ¥(I — LY} + KL)" (I — K>} = det U*

We have used theorem 4 to find the composition of 6,’s. However, the identity
of theorem 4 can be also useful in a quite different capacity. Consider the complex
wave representation of I'# (cf. [4]). Then elements of I's# are represented by
functions. Take d; and d, for commuting K, Le £,(5) such that |K + L| < 2.
Then for f, ge I'ys# we formally have

(Oxf, 019> = [ fDg2)exp — 3z Lz) + (Kz,2))y}(d2),

where the left hand side is defined only for || K|, || L] < 1 while the right hand side
exists for |K + L|| < 2. Hence the right hand side

det(I — KL) *a* (8¢ -xp)- 1)l — KL)™'a(drq -kp)-1)

of the identity of theorem 4 defines 6} dx for |[KL|| < 1 (for K, L commuting,
IK + L | <2 implies that |[KL || < 1).
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